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Abstract In this study, the authors focus on improving measurement update of exist-
ing nonlinear Kalman approximation filter and propose a new sigma-point Kalman
filter with recursive measurement update. Statistical linearization technique based on
sigma transformation is utilized in the proposed filter to linearize the nonlinear mea-
surement function, and linear measurement update is applied gradually and repeatedly
based on the statistically linearized measurement equation. The total measurement
update of the proposed filter is nonlinear, and the proposed filter can extract state
information from nonlinear measurement better than existing nonlinear filters. Sim-
ulation results show that the proposed method has higher estimation accuracy than
existing methods.
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1 Introduction

State estimation and filtering have been widely used in abundant practical applica-
tions such as navigation, tracking, positioning, signal processing and control [23].
Nonlinear filtering has been gaining more attention because there are always inherent
nonlinearities in many practical problems. Generally, in the sense of minimum mean
square error (MMSE), there is a lack of optimal estimator for nonlinear dynamic
state estimation problem because the closed form solution of its posterior probability
density function (PDF) is unavailable, and linear MMSE (LMMSE) estimators are
usually obtained based on Gaussian approximation to such PDFs in most applications
[2,9,22]. However, LMMSE estimator may fail in some applications with large prior
uncertainty and high measurement accuracy [5,10,18], which motivates the research
on iterated Kalman-type filter (IKTF) [13] and progressive Gaussian filtering (PGF)
[7,8,11,14].

The first proposed IKTF is iterated extended Kalman filter (IEKF). In the IEKF,
the first-order linearization of measurement function is implemented repeatedly at the
most recent estimate, which avoids possible filtering divergence due to the first-order
Taylor series truncation of measurement function [13]. Bell and Cathey interpret the
IEKF asmaximum-likelihood estimator based onGauss–Newtonmethod, which justi-
fies from another aspect that the IEKF’s benefits over EKF [3]. However, linearization
based on the first-order Taylor series truncation is used in the IEKF, which results in
limited filtering accuracy. Besides, IEKF needs cumbersome evaluation of Jacobian
matrix, which results in inconvenient implementation. In order to solve these prob-
lems, an iterated sigma-point Kalman filter (ISPKF) is proposed based on statistical
linearization and Gauss–Newton iteration method [12,15]. Different algorithms have
also been proposed to further improve the performance of IKTF, including iterated
unscentedKalmanfilter (IUKF)with step length-varying strategy [19], iterated divided
difference filter (IDDF) [16], marginalized IUKF (MIUKF) [4] and iterated posterior
linearization filter (IPLF) [6]. However, Kalman gains of IUKF, IDDF, MIUKF and
IPLF are almost equal to zero after the first iteration, which implies that their most
iterations are redundant and their total measurement updates are almost linear.

One way to avoid such problems in state estimation is the use of PGF, which grad-
ually includes the measurement information instead of using all the information in
one step [8]. In [8] and [14], PGFs based on deterministic Dirac mixture approxi-
mation method are proposed, which have higher estimation accuracy than standard
Gaussian-approximated filter. On the other hand, by means of the idea of progressive
update, an EKF with recursive measurement update is proposed, which utilizes linear
measurement update gradually, i.e., measurement information is extracted gradually
[18]. However, as discussed in [18], similar to classical EKF algorithm, it suffers
the following drawbacks. (i) It needs to assume that Jacobian matrixes of nonlinear
process and measurement functions are available. (ii) Its estimated statistics may be
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inconsistent with true distribution of error when its Kalman gain varies significantly
across all possible estimates. (iii) It fails when Jacobian matrixes of measurement
functions are zeros. Furthermore, it is based on the EKF method, and its accuracy can
be further improved.

In this paper, a new sigma-point Kalman filter (SPKF) with recursive measurement
update is developed. Statistical linearization technique based on sigma transformation
is utilized in the proposedmethod to linearize the nonlinearmeasurement function, and
linear measurement update is applied gradually and repeatedly based on the statisti-
cally linearized measurement equation. The proposed method does not need Jacobian
matrixes, and its Kalman gain is calculated based on state prior distribution repre-
sented by deterministically choosing sigma points around distribution instead of state
estimate. The superior performance of the proposed method as compared with exist-
ing methods is illustrated in numerical examples concerning univariate nonstationary
growth model and bearing-only tracking.

2 SPKF with Recursive Measurement Update

Consider the following discrete-time nonlinear stochastic dynamic system as shown
by the state-space model [21]

xk = f k−1(xk−1) + wk−1 (process equation) (1)

zk = hk(xk) + vk (measurement equation) (2)

where k is the discrete-time index, xk ∈ R
n is the state vector, zk ∈ R

m is the measure-
ment vector, wk ∈ R

n and vk ∈ R
m are uncorrelated zero-mean Gaussian white noise

vectors satisfying E[wkw
T
l ] = Qkδkl and E[vkvTl ] = Rkδkl , respectively, where δkl

is the Kronecker delta function, the initial state x0 is a Gaussian random vector with
mean x̂0|0 and covariance matrix P0|0, and it is uncorrelated with wk and vk .

2.1 Kalman Filter with Recursive Measurement Update

In this subsection, KFwith recursivemeasurement update for linear measurement case
is reviewed. For linear measurement case, we can reformulate measurement equation
in (2) as follows.

zk = Hkxk + vk (3)

Based on the linear measurement function formulated in (3), the recursive mea-
surement update equations of KF can be formulated as follows [18].

x̂(0)
k|k = x̂k|k−1 P (0)

k|k = Pk|k−1 P (0)
xv,k|k = 0n×m (4)
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for i = 1 : N

r (i)
k = 1/(N + 1 − i) (5)

P (i)
zz,k|k = Hk P

(i−1)
k|k (Hk)

T + Hk P
(i−1)
xv,k|k +

(
P (i−1)
xv,k|k

)T
(Hk)

T + Rk (6)

K (i)
k = r (i)

k

[
P (i−1)
k|k (Hk)

T + P (i−1)
xv,k|k

] (
P (i)
zz,k|k

)−1
(7)

x̂(i)
k|k = x̂(i−1)

k|k + K (i)
k

[
zk − ẑ(i)k|k

]
= x̂(i−1)

k|k + K (i)
k

[
zk − Hk x̂

(i−1)
k|k

]
(8)

P (i)
k|k =

[
In×n − K (i)

k Hk

]
P (i−1)
k|k

[
In×n − K (i)

k Hk

]T + K (i)
k Rk

(
K (i)

k

)T

−
[
In×n − K (i)

k Hk

]
P (i−1)
xv,k|k

(
K (i)

k

)T

−K (i)
k

(
P (i−1)
xv,k|k

)T [
In×n − K (i)

k Hk

]T
(9)

P (i)
xv,k|k =

[
In×n − K (i)

k Hk

]
P (i−1)
xv,k|k − K (i)

k Rk (10)

end for
where x̂k|k−1 is the predicted state at time k, Pk|k−1 is the predicted error covariance
matrix at time k, N denotes the number of recursion steps, In×n denotes the n × n
identity matrix, 0n×m denotes the n × m zero matrix, (i) denotes the i th recursion,
r (i)
k denotes the recursion coefficient at recursion i , P (i)

zz,k|k denotes the innovation

covariance matrix at recursion i , K (i)
k denotes the Kalman gain at recursion i , x̂(i)

k|k and
P (i)
k|k denote the state estimation and corresponding estimation error covariance matrix

at recursion i , respectively, ẑ(i)k|k denotes the measurement estimation at recursion i ,

and P (i)
xv,k|k denotes the cross-covariance matrix of state and measurement noise at

recursion i .
After recursion N , the filtering estimation x̂k|k and corresponding estimation error

covariance matrix Pk|k at time k can be computed as

x̂k|k = x̂(N )
k|k Pk|k = P (N )

k|k (11)

The KF with recursive measurement update formulated above is identical to stan-
dard KF in linear measurement case, which implies that these recursions are redundant
for linear measurement. The idea of such recursive measurement update approach is
superior to nonlinear measurement, but it cannot be straightforwardly used in nonlin-
ear measurement case. Next, a new SPKF with recursive measurement update will be
developed.

2.2 SPKF with Recursive Measurement Update

The derivation of existing KF with recursive measurement update is based on the
linear measurement equation. The usual SPKF cannot be straightforwardly embedded
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into the recursive measurement update equations of KF because its measurement
update equations are not explicit functions of the linear measurement matrix Hk .
Considering that a statistical linearization can be deemed as a sigma-point transform, a
statistical linearization approach will be utilized to develop a new SPKFwith recursive
measurement update. The statistical linearization takes into account the probabilistic
spread of the prior random vector when linearizing nonlinear function, which results
in more accurate linearized function in statistical sense than the first-order truncated
Taylor series expansion of nonlinear function around prior mean [1,6].

Define an auxiliary vector uk = hk(xk). Similar to the idea of progressive Gaussian
filtering, the intermediate state posterior PDFs are all approximated as Gaussian
[14], i.e., pi−1(xk |Zk) = N (xk; x̂(i−1)

k|k , P (i−1)
k|k ), where Zk = {z j }kj=1, p

i−1(xk |Zk)

denotes the posterior PDF at recursion i − 1, state estimate x̂(i−1)
k|k and correspond-

ing estimation error covariance matrix P (i−1)
k|k at recursion i − 1 denote the first two

moments of pi−1(xk |Zk), respectively. The statistical linearization of nonlinear mea-
surement function hk(xk) with respect to pi−1(xk |Zk) can be written as [1]

hk(xk) = H (i−1)
k xk + c(i−1)

k + e(i−1)
k (12)

where H(i−1)
k denotes the sensitivity matrix of statistical linearization at recursion

i − 1

H (i−1)
k =

(
P (i−1)
xu,k|k

)T (
P (i−1)
k|k

)−1
(13)

and c(i−1)
k denotes the constant vector of statistical linearization at recursion i − 1,

c(i−1)
k = ū(i−1)

k − H(i−1)
k x̂(i−1)

k|k (14)

and e(i−1)
k denotes the deviation of statistical linearization at recursion i−1, which can

be deemed as random white noise and is uncorrelated with state xk and measurement
noise vk , and its mean and covariance matrix can be formulated as follows [1]

ē(i−1)
k = 0m×1 (15)

P (i−1)
ee,k|k = P (i−1)

uu,k|k − H(i−1)
k P (i−1)

k|k
(
H(i−1)

k

)T
(16)

where ū(i−1)
k and P (i−1)

uu,k|k denote the mean and covariance matrix of auxiliary vector

uk at recursion i − 1, respectively, P (i−1)
xu,k|k denotes cross-covariance matrix of state

and auxiliary vector at recursion i − 1, and they can be approximately computed as

ū(i−1)
k = E [hk (xk)] =

∫

Rn
hk (xk) N

(
xk; x̂(i−1)

k|k , P (i−1)
k|k

)
dxk (17)
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P (i−1)
xu,k|k = E

[(
xk− x̂(i−1)

k|k
) (

hk (xk) − ū(i−1)
k

)T
]

=
∫

Rn
xkhTk (xk) N

(
xk; x̂(i−1)

k|k , P (i−1)
k|k

)
dxk − x̂(i−1)

k|k
(
ū(i−1)
k

)T
(18)

P (i−1)
uu,k|k = E

[(
hk (xk)−ū(i−1)

k

) (
hk (xk)−ū(i−1)

k

)T
]
=

∫

Rn
hk (xk) hTk (xk) N

(xk; x̂(i−1)
k|k , P (i−1)

k|k )dxk − ū(i−1)
k

(
ū(i−1)
k

)T
(19)

Based on the statistical linearization of hk(·) at recursion i − 1 in (12)–(19), the
nonlinear measurement equation in (2) can be rewritten as

zk = H(i−1)
k xk + c(i−1)

k + e(i−1)
k + vk = H(i−1)

k xk + v̌k (20)

where v̌k can be deemed as pseudo-measurement noise because it consists of real
measurement noise vk , constant vector c

(i−1)
k and random deviation e(i−1)

k of statistical
linearization, i.e.,

v̌k = vk + c(i−1)
k + e(i−1)

k (21)

It can be seen from (3) and (20) that pseudo-measurement noise v̌k is used instead
of real measurement noise vk to develop SPKF with recursive measurement update.
Therefore, the statistics of pseudo-measurement noise v̌k need to be firstly computed
as follows.

Considering that vk has zero-mean and using (14)–(15), the mean of pseudo-
measurement noise v̌k can be computed as

¯̌v(i−1)
k = c(i−1)

k = ū(i−1)
k − H(i−1)

k x̂(i−1)
k|k (22)

Considering that e(i−1)
k is uncorrelated with state xk and real measurement noise

vk and using (16) and (21), then the cross-covariance matrix of state and pseudo-
measurement noise P (i−1)

x v̌,k|k and the covariance matrix of pseudo-measurement noise

P (i−1)
v̌v̌,k|k at recursion i − 1 can be computed as follows.

P (i−1)
x v̌,k|k = P (i−1)

xv,k|k (23)

P (i−1)
v̌v̌,k|k = Rk + P (i−1)

ee,k|k = Rk + P (i−1)
uu,k|k − H(i−1)

k P (i−1)
k|k

(
H(i−1)

k

)T
(24)

According to the definition of P (i)
zz,k|k and using (20), we can obtain

P (i)
zz,k|k = H(i−1)

k P (i−1)
k|k

(
H(i−1)

k

)T + H(i−1)
k P (i−1)

x v̌,k|k +
(
P (i−1)
x v̌,k|k

)T (
H (i−1)

k

)T

+P (i−1)
v̌v̌,k|k (25)
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Using (13) and (23)–(24) in (25), we can obtain

P (i)
zz,k|k = P (i−1)

uu,k|k + Rk +
(
P (i−1)
xu,k|k

)T (
P (i−1)
k|k

)−1
P (i−1)
xv,k|k

+
(
P (i−1)
xv,k|k

)T (
P (i−1)
k|k

)−1
P (i−1)
xu,k|k (26)

According to the definition of P (i)
xz,k|k and using (20), we can obtain

P (i)
xz,k|k = P (i−1)

k|k (Hk)
T + P (i−1)

x v̌,k|k (27)

Substituting (13) and (23) into (27), we can obtain

P (i)
xz,k|k = P (i−1)

xu,k|k + P (i−1)
xv,k|k (28)

Similar to (7), by using (28), the Kalman gain of SPKF with recursive measurement
update can be calculated as follows.

K (i)
k = r (i)

k P (i)
xz,k|k

(
P (i)
zz,k|k

)−1 = r (i)
k

[
P (i−1)
xu,k|k + P (i−1)

xv,k|k
] (

P (i)
zz,k|k

)−1
(29)

It is clear from (8) that ẑ(i)k|k = Hk x̂
(i−1)
k|k for linearmeasurement equation. However,

this equation does not hold any more for nonlinear measurement equation because the
statistical linearization error needs to be included in ẑ(i)k|k , i.e.,

ẑ(i)k|k = H(i−1)
k x̂(i−1)

k|k + ¯̌v(i−1)
k (30)

Using (22), (30) can be rewritten as

ẑ(i)k|k = ū(i−1)
k (31)

Substituting (31) into (8), the recursive state update equation can be formulated as

x̂(i)
k|k = x̂(i−1)

k|k + K (i)
k

[
zk − ū(i−1)

k

]
(32)

By using (6)–(7), P (i)
k|k in (9) can be rewritten as

P (i)
k|k = P (i−1)

k|k +
(
1 − 2/r (i)

k

)
K (i)

k P (i)
zz,k|k

(
K (i)

k

)T
(33)

In the following, P (i)
xv,k|k will be computed. Firstly, the state estimation error x̃(i)

k|k
at recursion i − 1 can be formulated as follows

x̃(i)
k|k = xk − x̂(i)

k|k = x̃(i−1)
k|k − K (i)

k

(
zk − ū(i−1)

k

)
(34)
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According to the definition of P (i)
xv,k|k and using (20), we have

P (i)
xv,k|k = E

[
x̃(i)
k|kv

T
k

]
= E

[(
x̃(i−1)
k|k − K (i)

k

(
zk − ū(i−1)

k

))
vTk

]

= P (i−1)
xv,k|k − K (i)

k E
[
zkvTk

]

= P (i−1)
xv,k|k − K (i)

k H(i−1)
k E

[
xkvTk

]
− K (i)

k E
[
v̌kv

T
k

]

= P (i−1)
xv,k|k − K (i)

k H(i−1)
k E

[
x̃(i−1)
k|k vTk

]
− K (i)

k E
[ ˜̌vkvTk

]

= P (i−1)
xv,k|k − K (i)

k H(i−1)
k P (i−1)

xv,k|k − K (i)
k E

[ ˜̌vkvTk
]

(35)

Considering that e(i−1)
k is uncorrelated with real measurement noise vk , we can obtain

E
[ ˜̌vkvTk

]
= E

[
vkv

T
k

]
= Rk (36)

Substituting (36) into (35) and using (13), we can obtain

P (i)
xv,k|k = P (i−1)

xv,k|k − K (i)
k

[
Rk +

(
P (i−1)
xu,k|k

)T (
P (i−1)
k|k

)−1
P (i−1)
xv,k|k

]
(37)

Generally, in the framework of SPKF orGaussian-approximated filter, the predicted
state x̂k|k−1 and predicted error covariance Pk|k−1 at time k can be approximately
computed as

x̂k|k−1 =
∫

Rn
f k−1 (xk−1) N

(
xk−1; x̂k−1|k−1, Pk−1|k−1

)
dxk−1 (38)

Pk|k−1 =
∫

Rn
f k−1 (xk−1) f Tk−1 (xk−1) N

(
xk−1; x̂k−1|k−1, Pk−1|k−1

)
dxk−1

−x̂k|k−1 x̂
T
k|k−1 + Qk−1 (39)

where x̂k−1|k−1 and Pk−1|k−1 are given in (11).
The proposed SPKF with recursive measurement update operates by combining

the analytical computations in (26), (29), (32)–(33) and (37) with Gaussian-weighted
integrals in (17)–(19) and (38)–(39). Different SPKFs with recursive measurement
update can be obtained when different numerical techniques or sigma transformation
methods are used to compute Gaussian-weighted integrals or mathematical expecta-
tions in (17)–(19) and (38)–(39). The algorithm for SPKFwith recursive measurement
update is summarized in Table 1.

Firstly, the proposed SPKF is different from the classic SPKF in the measurement
update, though they have same formulas in the time update. Secondly, we can see from
Table 1 that the proposed SPKF with recursive measurement update is identical to the
classic SPKF when N = 1, which will be confirmed as follows. If N = 1, we can
obtain following equations from Table 1
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Table 1 SPKF with recursive measurement update

x̂(0)
k|k = x̂k|k−1, P

(0)
k|k = Pk|k−1, P

(0)
xv,k|k = 0n×m

for i = 1 : N
r (i)
k = 1/(N + 1 − i)

P(i)
zz,k|k = P(i−1)

uu,k|k + Rk +
(
P(i−1)
xu,k|k

)T
(P(i−1)

k|k )−1P(i−1)
xv,k|k+ (P(i−1)

xv,k|k )T (P(i−1)
k|k )−1P(i−1)

xu,k|k

K (i)
k = r (i)

k

[
P(i−1)
xu,k|k + P(i−1)

xv,k|k
] (

P(i)
zz,k|k

)−1

x̂(i)
k|k = x̂(i−1)

k|k + K (i)
k

[
zk − ū(i−1)

k

]

P(i)
k|k = P(i−1)

k|k + (1 − 2/r (i)
k )K (i)

k P(i)
zz,k|k

(
K (i)
k

)T

P(i)
xv,k|k = P(i−1)

xv,k|k − K (i)
k [Rk +

(
P(i−1)
xu,k|k

)T
(P(i−1)

k|k )−1P(i−1)
xv,k|k ]

end for

P (1)
zz,k|k = P (0)

uu,k|k + Rk (40)

K (1)
k = P (0)

xu,k|k
(
P (1)
zz,k|k

)−1
(41)

x̂(1)
k|k = x̂k|k−1 + K (1)

k

[
zk − ū(0)

k

]
(42)

P (1)
k|k = Pk|k−1 − K (1)

k P (1)
zz,k|k

(
K (1)

k

)T
(43)

Substituting x̂(0)
k|k = x̂k|k−1 and P (0)

k|k = Pk|k−1 into (17)–(19), we can obtain

ū(0)
k =

∫

Rn
hk(xk)N (xk; x̂k|k−1, Pk|k−1)dxk = ẑk|k−1 (44)

P (0)
xu,k|k =

∫

Rn
xkhTk (xk)N (xk; x̂k|k−1, Pk|k−1)dxk − x̂k|k−1 ẑ

T
k|k−1 = P xz,k|k−1

(45)

P (0)
uu,k|k =

∫

Rn
hk(xk)hTk (xk)N (xk; x̂k|k−1, Pk|k−1)dxk − ẑk|k−1 ẑ

T
k|k−1 (46)

where ẑk|k−1 is the predicted measurement at time k, P xz,k|k−1 is the cross-covariance
matrix at time k. Substituting (46) into (40), we can obtain

P (1)
zz,k|k = P zz,k|k−1 (47)

where P zz,k|k−1 is the innovation covariance matrix at time k. Substituting (44)–(45)
and (47) into (41)–(43), we can obtain

K (1)
k = K k x̂(1)

k|k = x̂k|k P (1)
k|k = Pk|k (48)

Thus, when N = 1, the proposed SPKF is identical to the classic SPKF.
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Finally, we can also see from Table 1 that, when N > 1, the proposed SPKF is
not identical to the classic SPKF. Moreover, when N > 1, the total measurement
update of the proposed SPKF is nonlinear because the linear measurement update is
applied gradually and the statistical linearization of nonlinear measurement function
is implemented repeatedly; however, the measurement update of the classic SPKF
is linear. Besides, the classic SPKF may fail in some applications with large prior
uncertainty and high measurement accuracy, but the proposed SPKF with recursive
measurement update can avoid such problem by applying linear measurement update
gradually.

3 Simulation

In this section, the superior performance of the proposed method as compared with
existingmethods is shown by univariate nonstationary growthmodel and bearing-only
tracking. In these simulations, we choose standard UT with tuning parameter κ = 0
to implement the proposed method and existing methods, which leads to UKF with
recursive measurement update, PUKF [14], ISPKF [12] and IUKF [19] (Note that an
automatic step size determination technique is used in the PUKF). MIUKF [4] was
often found to halt its operation, and thus, its simulation results are not shown in the
following simulation.

3.1 Univariate Nonstationary Growth Model

Univariate nonstationary growth model is very popular in econometrics, and it has
been widely used as a benchmark problem to validate the performance of nonlinear
filters due to its high nonlinearity. Its dynamic state-space model can be written as
follows [5] {

xk = 0.5xk−1 + 10 xk−1

1+x2k−1
+ 8 cos(1.2k) + wk−1

zk = x3k
20 + vk

(49)

where the process noise wk and measurement noise vk are uncorrelated zero-mean
Gaussian white processes with Qk = 2 and Rk = 1; the initial true state x0
= 0.1, the initial state estimate x̂0|0 = 0 and its corresponding estimate error variance
P0|0 = 1. Simulation time is T = 2000s, and the time-averaged square error (TSE)
and time-averaged mean square error (TMSE) are chosen as performance metrics in
this simulation, which are formulated as

TSE = 1

T

T∑
k=1

(
xsk − x̂sk

)2 (50)

TMSE = 1

MT

M∑
s=1

T∑
k=1

(
xsk − x̂sk

)2 (51)
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Fig. 1 TSEs of the proposed method and existing methods when N = 10 in 50 Monte Carlo runs

where M = 50 denotes the number of Monte Carlo run, and xsk and x̂sk are the true
and estimated state at time k of the s-th Monte Carlo run. (Note that we only use 50
Monte Carlo runs in this simulation so that we can clearly see the TSE of each run in
Fig. 1.)

In situation I, the number of recursion steps is set as N = 10, and the TSEs of
existing PUKF [14], existing ISPKF [12], existing IUKF [19], existing EKF with
recursive measurement update [18] and the proposed method are shown in Fig. 1.

It is clear to see from Fig. 1 that TSE of the proposed method is smaller than that
of existing methods. Thus, the proposed method has higher estimation accuracy than
existing methods.

In situation II, N = 1 : 20 and Fig. 2 shows the TMSEs of existing ISPKF [12],
existing IUKF [19], existing EKF with recursive measurement update [18] and the
proposed method.

It is clear to see fromFig. 2 that the proposedmethod has higher estimation accuracy
than existing methods when N = 1 : 20.We also can see from Fig. 2 that TMSE of the
proposed method is convergent while TMSEs of existing ISPKF are oscillating, which
implies that the proposed method has better convergence with respect to the number of
recursion N . Although existing EKFwith recursivemeasurement update is convergent
with respect to the number of recursion N , it has worse filtering performance than the
proposed method. Besides, the TMSE of existing IUKF keeps constant, which implies
that recursions are redundant for existing IUKF.

3.2 Bearing-only Tracking

The bearing-only tracking example has been studied extensively. The target moves
within the s − t plane according to the following dynamic model [17,20]
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Fig. 2 TMSEs of the proposed method and existing methods when N = 1 : 20

xk =

⎡
⎢⎢⎣
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ xk−1 +

⎡
⎢⎢⎣
0.5 0
1 0
0 0.5
0 1

⎤
⎥⎥⎦wk−1 (52)

where xk = [s, ṡ, t, ṫ]Tk , wk = [ws, wt ]Tk , s and t are Cartesian coordinates of the
moving target, ṡ and ṫ are corresponding velocities in s and t direction, and the process
noise wk ∼ N (0, 0.0012 I2×2). The measurement model of bearing-only observer
fixed at the origin of the plane can be formulated as

zk = arctan(tk/sk) + vk (53)

where themeasurement noise vk ∼ N (0, 2.5×10−4). The initial true state vector x0 =
[−0.05, 0.001, 0.7,−0.055]T , and the initial estimate error covariance matrix P0|0 =
10 ∗ diag([0.12 0.0052 0.12 0.012]); the initial state estimate x̂0|0 is chosen randomly
from N (x0, P0|0). Simulation time is T = 30s, and the logarithmic MSEs (LMSEs)
of positions and velocities and the logarithmic TMSEs (LTMSEs) of positions and
velocities are chosen as performance metrics in this simulation, which are formulated
as

⎧⎪⎪⎨
⎪⎪⎩

LMSEpos = log 10

{
1
M

M∑
l=1

[(
slk − ŝlk

)2 +
(
tlk − t̂

l
k

)2]}

LMSEvel = log 10

{
1
M

M∑
l=1

[(
ṡlk − ˆ̇slk

)2 +
(
ṫlk − ˆ̇tlk

)2]} (54)
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Fig. 3 LMSEpos of the proposed method and existing methods when N = 10
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Fig. 4 LMSEvel of the proposed method and existing methods when N = 10

⎧⎪⎪⎨
⎪⎪⎩

LTMSEpos = log 10

{
1
MT

M∑
l=1

T∑
k=1

[(
slk − ŝlk

)2 +
(
tlk − t̂

l
k

)2]}

LTMSEvel = log 10

{
1
MT

M∑
l=1

T∑
k=1

[(
ṡlk − ˆ̇slk

)2 +
(
ṫlk − ˆ̇tlk

)2]} (55)

where M = 1000 denotes the number of Monte Carlo run.
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Fig. 5 LTMSEpos of the proposed method and existing methods when N = 1 : 20
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Fig. 6 LTMSEvel of the proposed method and existing methods when N = 1 : 20

In situation I, N = 10, and the LMSEs of existing PUKF [14], existing ISPKF
[12], existing IUKF [19], existing EKF with recursive measurement update [18] and
the proposed method are shown in Figs. 3 and 4.

It is clear to see from Figs. 3 and 4 that LMSEpos and LMSEvel of the proposed
method are both smaller than that of existing methods. Thus, the proposed method has
higher estimation accuracy than existing methods.

In situation II, N = 1 : 20 and Figs. 5 and 6 show LTMSEposs and LTMSEvels of
existing ISPKF [12], existing IUKF [19], existing EKF with recursive measurement
update [18] and the proposed method.
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It is seen from Figs. 5 and 6 that the proposed method has higher filtering accu-
racy than existing methods. We also can see from Figs. 5 and 6 that LTMSEpos and
LTMSEvel of the proposed method are convergent while that of existing ISPKF and
IUKF almost keep constant, which implies that recursions are redundant for existing
ISPKF and IUKF. Besides, the proposed method has faster convergence speed than
existing EKF with recursive measurement update with respect to number of recursion
N .

4 Conclusion

In this paper, a new SPKF with recursive measurement update is proposed to improve
the measurement update of existing nonlinear Kalman approximation filter. The total
update of the proposed filter is nonlinear, and the proposed filter can extract state
information from nonlinear measurement better than existing methods. Simulation
results show that the proposed method outperforms existing methods in terms of
filtering accuracy for state estimation with nonlinear measurements.
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