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Abstract Proposed is a novel variable step size normalized subband adaptive filter
algorithm, which assigns an individual step size for each subband by minimizing the
mean square of the noise-free a posterior subband error. Furthermore, a noniterative
shrinkage method is used to recover the noise-free priori subband error from the
noisy subband error signal. Simulation results using the colored input signals have
demonstrated that the proposed algorithm not only has better tracking capability than
the existing subband adaptive filter algorithms, but also exhibits lower steady-state
error.

Keywords Normalized subband adaptive filter · Variable step size · Noniterative
shrinkage method · Colored input signal

1 Introduction

In application fields of adaptive filtering algorithms such as system identification, noise
cancellation, echo cancellation, and channel estimation, the widely used algorithm is
the normalized least mean square (NLMS) due to its low computational complexity
[7,9]. Compared to the conventional NLMS algorithm, the variable step size versions
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presented in [2,3,12,16] offer the improved performance in terms of convergence rate
and steady-state error. Nevertheless, these NLMS-type algorithms will suffer from
slow convergence when the input signals are colored. Aiming to such input signals, the
affine projection algorithm (APA) and its variants (e.g., see [13,15] and the references
therein) provide faster convergence rate than the NLMS algorithm. Because the APAs
use themost recent input signal vectors to update the tap-weight vector, theNLMSuses
only the current input signal vector. However, the APAs require large computational
cost due to involving the matrix inversion operation in updating the tap-weight vector.

In a recent decade, in order to speed the convergence of filter for colored input sig-
nals, the subband adaptive filters (SAFs) have received great attention [4]. This is due
to the fact that the SAF divides the colored input signal into almost mutually exclu-
sive subband signals through analysis filters. Moreover, each subband input signal is
approximate white. In [5], Lee and Gan proposed the normalized SAF (NSAF) algo-
rithm based on the principle of minimum disturbance. This algorithm performs better
than the NLMS in convergence rate for colored input signals, due to the inherent
decorrelating property of SAF [6]. Also, the NSAF has almost the same computa-
tional complexity as the NLMS. Unfortunately, the performance of the original NSAF
algorithm depends on the fixed step size that reflects a compromise between fast con-
vergence rate and low steady-state error. To overcome this conflict, several variable
step size NSAF algorithms have been proposed [1,8,10,11]. In [1], a set-membership
NSAF (SM–NSAF) algorithm was developed, whereas its convergence performance
is sensitive to the selection of the error-bound parameter. The variable step size matrix
NSAF (VSSM–NSAF) was presented in [8], which converged faster than the SM–
NSAF. However, this algorithm still has large final estimation error. Following this
approach, based on the same principle that minimizes the mean square deviation
(MSD), two variable step size NSAF algorithms were proposed in [10] and [11],
respectively. The difference is that the latter has a lower steady-state error than the
former, since it uses an individual step size for each subband while the former uses
a common step size for all subbands. Regrettably, both algorithms cannot track the
changes in the unknown system.

In this paper, we propose a new variable step size NSAF algorithm, called NVSS–
NSAF, based on the minimization of the mean square of the noise-free a posterior
subband error signals with respect to the step size. The proposed algorithm assigns
an individual step size for each subband and uses the noniterative shrinkage method
reported in [17] to estimate the noise-free a priori subband error signals.

2 The Original NSAF Algorithm

Consider the desired signal d(n) which arises from the output end of the unknown
system,

d(n) = uT(n)wo + η(n), (1)

where (·)T denotes the transpose of a vector,wo is the unknown M-dimensional vector
that we wish to identify, u(n) = [u(n), u(n−1), ..., u(n−M+1)]T is the input signal
vector, η(n) is the system noise with zero-mean and variance σ 2

η which is independent
of u(n).
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Fig. 1 Block diagram of multiband-structured SAF

Figure 1 shows the multiband structure of SAF, where N denotes the number of
subbands. The signals d(n) and u(n) are partitioned into multiple subband signals by
using analysis filters {Hi (z), i ∈ [0, N − 1]}, respectively. Then, the subband signals
yi (n) and di (n) for i ∈ [0, N − 1] are critically decimated to yield yi,D(k) and
di,D(k), respectively. Here, n and k indicate the original sequences and the decimated
sequences, respectively. The i th subband error signal ei,D(k) is defined as

ei,D(k) = di,D(k) − yi,D(k) = di,D(k) − uTi (k)w(k) (2)

wherew(k) is the tap-weight vector offilter,ui (k) = [ui (kN ), ui (kN−1), ..., ui (kN−
M + 1)]T, and di,D(k) = di (kN ).

As introduced in [5], the original NSAF algorithm for updating the tap-weight
vector is expressed as

w(k + 1) = w(k) + μ

N−1∑

i=0

ui (k)ei,D(k)

uTi (k)ui (k)
(3)

where μ is the step size.
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3 Proposed Algorithm

3.1 Derivation of Algorithm

Replacing the fixed step size μ with the time-varying individual step sizes μi (k) for
i ∈ [0, N − 1], then (3) becomes

w(k + 1) = w(k) +
N−1∑

i=0

μi (k)
ui (k)ei,D(k)

uTi (k)ui (k)
. (4)

Before deriving μi (k), we define the noise-free a priori subband error and noise-free
a posterior subband error as follows:

εi,a(k) = uTi (k) [wo − w(k)] , (5)

εi,p(k) = uTi (k) [wo − w(k + 1)] . (6)

Thus, (2) can also be expressed as

ei,D(k) = εi,a(k) + ηi,D(k) (7)

where ηi,D(k) is the i th subband system noise, and its variance σ 2
ηi,D

can be computed

by σ 2
ηi,D

= σ 2
η /N [14].

Substituting (5)–(7) into (4), we have

εi,p(k) = [1 − μi (k)] εi,a(k) − μi (k)ηi,D(k) −
N−1∑

j=0
j �=i

μ j (k)
uTi (k)u j (k)e j,D(k)

uTj (k)u j (k)
(8)

Applying the diagonal assumption that has been used to derive the original NSAF, i.e.,
uTi (k)u j (k) ≈ 0, i �= j [5], (8) can be simplified as

εi,p(k) = [1 − μi (k)] εi,a(k) − μi (k)ηi,D(k) (9)

Taking the square and mathematical expectation of both sides of (9), we obtain

E
[
ε2i,p(k)

]
= [1 − μi (k)]

2 E
[
ε2i,a(k)

]
+ μ2

i (k)σ
2
ηi,D

(10)

where E[·] denotes the mathematical expectation.
In order to obtain the optimum step size μi (k) at each iteration, we now solve

the minimization problem of E
[
ε2i,p(k)

]
with respect to μi (k). Taking the derivative

of E
[
ε2i,p(k)

]
with respect to μi (k) and setting it to zero, the step sizes μi (k) for

i ∈ [0, N − 1] are obtained as
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μi (k) =
E

[
ε2i,a(k)

]

E
[
ε2i,a(k)

]
+ σ 2

ηi,D

(11)

Note that the step sizes μi (k) computed by (11) always lie in the range of (0, 1). This
implies that the proposed algorithm is stable, based on the fact that the range of the
step size in the original NSAF for stable convergence is 0 < μ < 2.

In practical applications, the statistical mean E
[
ε2i,a(k)

]
is generally estimated by

the time average of ε2i,a(k), i.e.,

σ 2
εi,a

(k) = ασ 2
εi,a

(k − 1) + (1 − α)ε2i,a(k) (12)

where α is the forgetting factor, which is determined by α = 1 − N/κM, κ ≥ 1 [8].
Now, the only thing that remains is to determine the noise-free it a priori subband

error εi,a(k) in (12). Although εi,a(k) is unknown in the entire adaptive process, it can
be recovered from the subband error signal ei,D(k) by using the noniterative shrinkage
method described in [3,17], i.e.,

εi,a(k) = sign
(
ei,D(k)

)
max

(∣∣ei,D(k)
∣∣ − ti , 0

)
(13)

where sign(·) denotes the sign function, and ti is the threshold parameter. The method
has obtained success in image denoising applications [17]. Based on our extensive

simulation results, it is found that ti =
√

λσ 2
ηi,D

with λ = 3–5 can yield good results.

Hence, the proposed NVSS–NSAF algorithm is summarized in Table 1.

Table 1 Proposed NVSS–NSAF algorithm

Initialization w(0) = 0, σ 2
εi,a

(0) = 0

Parameters ti =
√

λσ 2
η /N , threshold parameter with λ = 3–5

α = 1 − N/κM, forgetting factor with κ > 1

Adaptive process for i ∈ [0, N − 1]
ei,D(k) = di,D(k) − uTi (k)w(k)

εi,a(k) = sign
(
ei,D(k)

)
max

(∣∣ei,D(k)
∣∣ − ti , 0

)

σ 2
εi,a

(k) = ασ 2
εi,a

(k − 1) + (1 − α)ε2i,a(k)

μi (k) = σ2
εi,a

(k)

σ2
εi,a (k)+σ2

ηi,D

end

w(k + 1) = w(k) +
N−1∑
i=0

μi (k)
ui (k)ei,D(k)

uTi (k)ui (k)
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3.2 Convergence of Algorithm

In this section, the convergence of the proposed algorithm is analyzed based on the
mean square deviation (MSD) defined by

m(k) = E
[
‖θ(k)‖2

]
�= E

[
‖wo − w(k)‖2

]
(14)

where ‖·‖ denotes the Euclidean norm of a vector.
Subtracting (4) fromwo, taking the squared Euclidean norm of both sides, and then

applying (5), we have

‖θ(k + 1)‖2 = ‖θ(k)‖2 − 2
N−1∑

i=0

μi (k)
εi,a(k)ei,D(k)

uTi (k)ui (k)
+

N−1∑

i=0

μ2
i (k)

e2i,D(k)

uTi (k)ui (k)
(15)

where we again use the diagonal assumption [5].
From (11), one can know that μi (k) for i ∈ [0, N − 1] are deterministic in nature;

thus, we can express the mathematical expectation of both sides of (15) as

m(k + 1) = m(k) − 2
N−1∑

i=0

μi (k)E

[
εi,a(k)ei,D(k)

uTi (k)ui (k)

]
+

N−1∑

i=0

μ2
i (k)E

[
e2i,D(k)

uTi (k)ui (k)

]
.

(16)
For a high-order adaptive filter, the fluctuation of ‖ui (k)‖2 from one iteration to the
next can be assumed to be small enough, so that (16) becomes

m(k + 1) − m(k) = −
N−1∑

i=0

μi (k)
2E

[
εi,a(k)ei,D(k)

] − μi (k)E
[
e2i,D(k)

]

E
[
uTi (k)ui (k)

] . (17)

Substituting (7) and (11) into (17), and using the common assumption that εi,a(k) is
independent of ηi,D(k) [8,14], we get

m(k + 1) − m(k) = −
N−1∑

i=0

(
E

[
ε2i,a(k)

])2

(
E

[
ε2i,a(k)

]
+ σ 2

ηi,D

)
E

[
uTi (k)ui (k)

] ≤ 0. (18)

It is clear that m(k) is nonincreasing, which implies that the proposed algorithm is
convergent as k increases. Also, the equality in (18) holds if and only if the algorithm
has gone into the steady state, i.e., m(k + 1) = m(k) as k → ∞. Hence, in this case,
we obtain

E
[
ε2i,a(∞)

]
= 0, i ∈ [0, N − 1]. (19)

Based on the fact that each subband input is close to a white signal [8,10], (19) can be

simplified as E
[
ε2i,a(∞)

]
≈ m(∞)σ 2

ui = 0, which implies m(∞) = E
[‖θ(∞)‖2]
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= 0. As a result, the proposed algorithm can theoretically converge to the optimal
solution wo in the mean square sense.

4 Simulation Results

In order to assess the algorithm performance, the Monte Carlo (MC) simulations
(average of 50 independent runs) are performed in the system identification scenar-
ios. In our simulations, the unknown vector wo is a room acoustic impulse response
with M = 512 taps. Also, to show the tracking capability of the algorithm, the
unknown vector is changed as −wo at the 8 × 104th input samples. The colored
input signal u(n) is generated by filtering a zero-mean white Gaussian signal through
a first-order system φ1(z) = 1/(1 − 0.9z−1) or a second-order system φ2(z) =
1/(1 − 1.6z−1 + 0.81z−2) [10]. The background noise η(n) is a white Gaussian sig-
nal with a signal-to-noise ratio (SNR) of 30dB, unless otherwise specified. Here, we
assume that the variance of the system noise, σ 2

η , is known, because it can be easily
estimated online [8,10,11]. The cosine modulated filter bank is used in all the SAF
algorithms [4]. The normalized MSD (NMSD), 10 log10

[‖wo − w(k)‖22 / ‖wo‖22
]
, is

used to measure the performance of the algorithms.
This work first examines the performance of the proposed algorithm using different

numbers of subbands (i.e., N = 2, 4, and 8), as shown in Fig. 2. The colored input
signal is generated by φ1. As expected, the convergence rate of a large number of
subbands (e.g., N = 8) is faster than that of a small one (e.g., N = 2). The reason is
behind this phenomenon is that each subband input signal is closer to a white signal
for a larger number of subbands. However, this phenomenon will not be obvious when
the number of subbands is larger than a certain value (in this case is 4). Besides,
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Fig. 2 NMSD curves of the NVSS–NSAF with N = 2, 4, and 8
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Fig. 3 NMSD curves of the NVSS–NSAF for different values of λ

increasing the number of subbands also means increased computational complexity.
Thus, a proper selection of N relies on a trade-off between convergence rate and
computational complexity. Based on this principle, the number of subbands is chosen
as N = 4 in the following simulations.

Since the proposed algorithm uses the noniterative shrinkage method to estimate
εi,a(k), i.e., (13), the parameter λ must be selected properly. Figure 3 investigates the
effect of λ on the performance of the proposed algorithm, where the input signal is
the same as Fig. 2. As can be seen, a suitable range of λ is 3 ≤ λ ≤ 5, because the
proposed algorithm obtains a good balance between convergence rate and steady-state
error.

Finally, the performance of the proposed NVSS–NSAF algorithm is compared to
that of the NSAF algorithm with two fixed step sizes, the VSSM–NSAF algorithm
[8] and the VSS–NSAF algorithm with two values of β [11], as shown in Figs. 4 and
5. In Fig. 4a, b, the colored input signals are generated by φ1 and φ2, respectively,
and SNR = 30dB. To fairly compare the algorithms, the number of subbands N = 4
is used in all the algorithms, and the parameters of the algorithms in [8] and [11]
are chosen according to the recommended values in the literatures. It is clear that
variable step size algorithms (e.g., VSSM–NSAF, VSS–NSAF, and NVSS–NSAF)
improve the performance of filter in terms of convergence rate and steady-state error,
as compared to the NSAF with the fixed step size. However, among these variable
step size algorithms, the VSSM–NSAF in [8] has the largest steady-state error, and
the NVSS–NSAF has the lowest steady-state error. Choosing a proper value of β, the
VSS–NSAF in [11] can obtain the same convergence rate or steady-state error as the
NVSS–NSAF, but it sacrifices the steady-state error or convergence rate. Besides, the
VSS–NSAF in [11] has no tracking capability when the unknown system suddenly
changes. Figure 5 describes the NMSD results of these SAFs for SNR = 20 dB,
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Fig. 4 NMSD curves of various SAF algorithms with SNR = 30dB. a The colored input is generated by
φ1. b The colored input is generated by φ2. NSAF: μ = 0.7 and μ = 0.2; VSSM–NSAF: κ = 6 [8];
VSS–NSAF: tr {P(0)} = 100 and β = 1, 2 [11]; proposed NVSS–NSAF: κ = 1, λ = 4 (Color figure
online)

using the colored input signals generated by φ1 and φ2. As one can see, the proposed
algorithm still outperforms the other algorithms in terms of convergence rate, steady-
state error, and tracking capability. Moreover, one can also observe from Figs. 4 and 5
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Fig. 5 NMSD curves of various SAF algorithms with SNR = 20 dB. a The colored input is generated by
φ1. b The colored input is generated by φ2. The choices of the algorithms parameters are the same as Fig. 4
(Color figure online)
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that the steady-state errors of these algorithms using the same input signal increase as
the SNR decreases.

5 Conclusions

In this study, we derived the NVSS–NSAF algorithm by solving the minimization
problem of the mean square of the noise-free a posterior subband error with respect to
the step size. The proposed algorithm uses an individual step size for each subband.
In order to recover the noise-free a priori subband error from the noisy subband error
signal, a noniterative shrinkagemethod was employed. Compared to the conventional
NSAF, VSSM–NSAF in [8], and VSS–NSAF in [11] algorithms, the proposed algo-
rithm obtains good performance in terms of the tracking capability and steady-state
error.
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