
Circuits Syst Signal Process (2016) 35:603–618
DOI 10.1007/s00034-015-0076-7

An Efficient Distributed Arithmetic-Based Realization
of the Decision Feedback Equalizer

M. Surya Prakash1 · Rafi Ahamed Shaik2 ·
Sagar Koorapati3

Received: 29 August 2014 / Revised: 4 May 2015 / Accepted: 5 May 2015 / Published online: 23 May 2015
© Springer Science+Business Media New York 2015

Abstract A distributed arithmetic (DA)-based decision feedback equalizer architec-
ture for IEEE 802.11b PHY scenarios is presented. As the transmission data rate
increases, the hardware complexity of the decision feedback equalizer increases due
to requirement for large number of taps in feed forward and feedback filters. DA, an
efficient technique that uses memories for the computation of inner product of two
vectors, has been used since DA-based realization of filters can lead to great computa-
tional savings. For higher-order filters, the memory-size requirement in DA would be
high, and soROMdecomposition has been employed. The speed is further increased by
employing digit-serial input operation. Two architectures have been presented, namely
the direct-memory architecture and reduced-memory architecture where the later is
derived using the former. A third architecture has also been presented where the offset-
binary coding scheme is employed alongwith the ROMdecomposition and digit-serial
variants of DA. Synthesis results on Altera Cyclone III EP3C55F484C6 FPGA show
that the proposed DA-based implementations are free of hardware multipliers and use
less number of hardware resources compared to the multiply-and-accumulate-based
implementation.

B Rafi Ahamed Shaik
rafiahamed@iitg.ernet.in

M. Surya Prakash
surya@iitg.ernet.in

Sagar Koorapati
koorapati.sagar@gmail.com

1 Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati,
Guwahati 781039, Assam, India

2 IIT Guwahati, Room No. #304, G-Block, Academic Complex, Guwahati 781039, Assam, India

3 Ineda Systems Pvt Ltd, Hyderabad 500 034, Telangana, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-015-0076-7&domain=pdf

604 Circuits Syst Signal Process (2016) 35:603–618

Keywords Inter symbol interference (ISI) · Decision feedback equalizer (DFE) ·
Distributed arithmetic (DA) · Feed forward filter (FFF) · Feedback filter (FBF) ·
Field programmable gate array (FPGA)

1 Introduction

In telecommunications, intersymbol interference (ISI) occurs because of themultipath
propagation of the transmitted signal and due to the band limited nature of channels.
Equalizers [19,20] are employed at the receiver end in order to cancel the effect of
multipath channels. Linear equalizers can counter the ISI by estimating the inverse
of the discrete time model of the channel. However, noise power would theoretically
become infinity at those frequencies where the channel transfer function becomes
zero. Even, in the absence of spectral nulls, there would be a substantial enhancement
of noise power in the vicinity of those frequencies which are greatly attenuated within
the bandwidth of the transmitted signal. Decision feedback equalizers (DFE) [7] are
widely used for effectively equalizing the channels that exhibit nulls in their frequency
spectrum .Unlike the linear equalizers, DFEs do not estimate the inverse of the channel
directly. ADFEbasically consists of a feed forward filter (FFF), a feedback filter (FBF)
and a decision device (quantizer). The FFF works directly on the received data and
equalizes the anti-causal part of the channel transfer function. The residual ISI at the
FFF output is then cancelled out by subtracting the FBF output from the FFF output.
The FBF whose coefficients are carefully chosen operates on the decisions made on
the past symbols. The DFE works basically on the assumption that there are no errors
at the output of the decision device. As long as the decisions are correct, the DFE can
equalize the channel effectively with low noise enhancement.

The problem with DFEs is that the sizes of FFF and FBF increase as the trans-
mission data rate increases. This is because of the fact that as the transmission data
rate increases, more and more symbols get overlapped, which demands for large num-
ber of taps for FFF and FBF. Hence, when implementing the DFEs, more number of
multiply-and-accumulate (MAC) units are to be employed and operated in parallel
in order to cope up with the transmission speed. But, due to the presence of large
number of multipliers, the system would become complex and the real-time imple-
mentation becomes difficult. Distributed arithmetic [5,31], an efficient technique to
compute the sum-of-product of two vectors, can be employed since it can realize
vectors of any size without the presence of a hardware multiplier. Further, DA-based
realization can lead to good throughput achievements since the computation speed
depends on the bit-length of the input vectors unlike the MAC-based implementation
where it depends on the length of the vectors. Most of the digital signal processing
(DSP) algorithms such as convolution, correlation and fast transforms are principally
the sum-of-product operations [15]. Hence, past work on DA-based realization mostly
included finite and infinite impulse-response digital filters [2,3,28,29,34], transforms
[8,9,22,33], rotation operations [4,27], adaptive digital filters [1,10,26,30]. Recent
works based on distributed arithmetic once again include transforms and filtering [11–
14,16–18,21,23,32]. In themost recentwork [24,25], a block floating point realization
(BFP) of DFE and adaptive DFE (ADFE) have been presented where the processing

Circuits Syst Signal Process (2016) 35:603–618 605

cost is marginally higher compared to the fixed point implementation. So far, DA
technique has not been exploited for the efficient realization of the decision feedback
equalizer. In this paper, we present a DA-based decision feedback equalizer architec-
ture that consumes less hardware resources operating at high frequency compared to
conventional (MAC-based) DFE implementations.

The paper is organized as follows: Section 2 presents the background ofDAconcept.
Section3presents the proposedDA-based implementationofDFEwhereDA treatment
to both FFF and FBF blocks are carried out separately. The analysis of hardware
complexity and speed ofMAC-based andDA-based schemes and their implementation
details are discussed in Sect. 4, and the superiority of the proposed scheme overMAC-
based scheme is also described here. In the entire paper, variables with the subscripts
f and b represent the terms related to FFF and FBF, respectively.

2 Distributed Arithmetic Background

Distributed arithmetic is an efficient way of computing the inner product of two vectors
in a fixed number of clock cycles irrespective of the length of vectors. DAworks on the
principle that the one-dimensional scalar convolution is equivalent to two-dimensional
binary convolution [6]. In DA, the basic idea behind the computation of inner product
is to store the partial products in memory and accessing and shift-accumulating them
will compute the result. The computation of inner product of two vectors using DA is
explained in the following paragraphs.
Consider the inner product of two vectors ‘c’ and ‘x’ (i = 0, 1, . . . , N − 1) which
may be given as

y =
N−1∑

i=0

ci xi (1)

If every sample of xi is written in fixed point Q1.B − 1 signed 2’s-complement
representation,

xi = −bi,B−1 +
B−1∑

j=1

bi,B−1− j2
− j (2)

where bi, j ∈ {0, 1} is the j-th bit in the binary representation of xi . Now,

y =
B−1∑

j=0

[
N−1∑

i=0

ci bi, j

]
2 j =

B−1∑

j=0

f
(
ci , bi, j

)
2 j (3)

where,

f
(
ci , bi, j

) =
N−1∑

i=0

ci bi, j (4)

606 Circuits Syst Signal Process (2016) 35:603–618

Input

Memory-1

2N words

2L words

Input

Memory-2

Memory-3

2L words

Memory-4

2PN words

Input
Memory-5

words

Input

Memory-6

2LP

words2LP

(a) (b)

(c) (d)

Accumulator

2−1
Accumulator

2−1

Accumulator

2−P
Accumulator

0
c3
c2

c2 + c3
c1

c1 + c3
c1 + c2

c1 + c2 + c3
c0

c0 + c3
c0 + c2

c0 + c2 + c3
c0 + c1

c0 + c1 + c3
c0 + c1 + c2

c0 + c1 + c2 + c3

0

c3

c2

c2 + c3

0

c1

c0

c1 + c0

2−P

y

y

y

y

0
c3
2c3
3c3
c2

c2 + c3
c2 + 2c3
c2 + 3c3

3c3 + 3c2 + 3c1
+3c0

0
c3
2c3
3c3
c2

c2 + c3
c2 + 2c3
c2 + 3c3
2c2

2c2 + c3
2c2 + 2c3
2c2 + 3c3

3c2
3c2 + c3

3c2 + 2c3
3c2 + 3c3

0
c1
2c1
3c1
c0

c0 + c1
c0 + 2c1
c0 + 3c1
2c0

2c0 + c1
2c0 + 2c1
2c0 + 3c1

3c0
3c0 + c1

3c0 + 2c1
3c0 + 3c1

1
2 [c0 − c1 − c2 − c3]

1
2 [c0 − c1 − c2 + c3]

1
2 [c0 − c1 + c2 − c3]

1
2 [c0 − c1 + c2 + c3]

1
2 [c0 + c1 − c2 − c3]

1
2 [c0 + c1 − c2 + c3]

1
2 [c0 + c1 + c2 − c3]

1
2 [c0 + c1 + c2 + c3]

Memory-1 Memory-2 Memory-3 Memory-4 Memory-5 Memory-6 Memory-7
Memory words

Memory-7

2N/2words

Accumulator

2−1

y

1

0

0

1

A0=1 for j = B − 1

=0 otherwise

A1=1 for j = 0

=0 otherwise

A1

A0

Pinitial

(e)

(f)

Fig. 1 Architecture for computing the inner product of two 4-length vectors using a DA. b DA ROM
decomposition. c Digit-serial input scheme. d ROM decomposition and digit-serial input. e DA with OBC
scheme. f Memory words stored inside the memories for different DA structures

y = −
N−1∑

i=0

cibi,B−1 +
B−1∑

j=1

{
N−1∑

i=0

ci bi,B−1− j

}
2− j (5)

Let

f j =
N−1∑

i=0

cibi,B−1− j (6)

Circuits Syst Signal Process (2016) 35:603–618 607

and

CB−1− j =
{

− f0 j = 0

f j j �= 0
(7)

Hence, (5) becomes

y =
B−1∑

j=0

CB−1− j2
− j (8)

From (6) and (7), it can be observed that, taking j-th bit from each of xi , the term
CB−1− j would take only one out of 2N possible combinations which are nothing but
the partial products of elements of ci . Hence all these combinations can be stored in an
LUT (usually a read-onlymemory (ROM))whose address bits are formed by j-th bit of
every xi . Then the output y can be computed by shifting the partial products taken from
the memory for every j-th (j = 0, 1, . . . , B − 1) set of bits of xi ’s and accumulating
all of them using shifting operation. As there are B bits in all xi ’s counting from LSB
to MSB, the system would take a total of B clock cycles to compute the inner product.
Figure 1a shows the DA structure for computation of the inner product as per (8) with
B = 4. Here, the address bits are indexed by j and the memory word is indexed by i .

As there are 2N partial products, the size of the LUT would be 2N , and so if N
is large, the LUT size requirement would be high. DA provides the flexibility for the
usage of multiple small-sized LUTs if N is split as N = M × L in which case (6)
becomes

f j =
ML−1∑

i=0

cibi,B−1− j (9)

=
L−1∑

i=0

cibi,B−1− j +
2L−1∑

i=K

cibi,B−1− j + · · · +
ML−1∑

i=(M−1)K

cibi,B−1− j (10)

=
M−1∑

m=0

(m+1)L−1∑

i=mL

cibi,B−1− j (11)

If s = i − mL and if the dummy variable s is replaced by i , then

f j =
M−1∑

m=0

{
L−1∑

i=0

ci+mLbi+mL ,B−1− j

}
(12)

f j =
M−1∑

m=0

{
L−1∑

i=0

ci+mLbi+mL ,B−1− j

}
(13)

Hence, M number of LUTs can be used each of size 2L , taking address lines from
every K sets of xi ’s. The DA structure corresponding to (13) with L = 2 and B = 4

608 Circuits Syst Signal Process (2016) 35:603–618

is shown in Fig. 1b where the address bits are indexed by j , the LUT block is indexed
by m and the LUT word is indexed by i . The number of clock cycles to compute
the inner product remains the same, but the number of arithmetic operations (adders)
would increase. Specifically, the system requires a total of M ×2L LUT locations and
M − 1 adders and computes the inner product in B clock cycles. L = N is same as
(6), and L = 1 case will have N individual LUTs with two locations in each. In order
to increase the speed of the system, multiple bits of xi ’s can be used in parallel as the
address lines to the LUT at the cost of increase in its size. This is obtained by splitting
B as B = P × Q in which case (8) becomes

y =
PQ−1∑

j=0

CB−1− j2
− j (14)

=
Q−1∑

j=0

CB−1− j2
− j +

2Q−1∑

j=Q

CB−1− j2
− j + · · · +

PQ−1∑

j=(P−1)Q

CB−1− j2
− j (15)

=
P−1∑

p=0

(p+1)Q−1∑

j=pQ

Ci, j2
− j (16)

If s = j − pQ and if the dummy variable s is replaced by j , then

y =
P−1∑

p=0

Q−1∑

s=0

Ci,s+pQ2
−(s+pQ) (17)

The DA structure corresponding to (17) with P = 2 is shown in Fig. 1c. In such
case, the size of the memory would be 2PN and the speed is increased by a factor of
P , and hence the inner product is computed in B/P clock cycles. Further it can be
noted from (10) that the shifting is done for P units unlike the previous case where
unit shifting is done on each of the partial product. If P = B, then all the B-bits of
xi ’s form the address lines and the inner product is computed in a single clock cycle
while P = 1 is same as (8).

Hence, from (13) and (17), it can be noted that splitting N would result in the
low memory-size requirement at the expense of increased combinational logic and
employing digit-serial would speed up the system at the cost of increased parallelism.
Alternately, one can employ the ROM splitting as well as the digit-serial nature of DA
as shown in Fig. 1d for the trade-offs between speed and hardware complexity based
on the parameters M and P as explained above. These techniques apply equally well
when the partial products of xi ’s are stored and the bits of ci ’s are used as the address
bits to the LUT. Further, the techniques work well for the signed 2’s-complement
representation of the elements of the vectors [15].

The ROM size in the basic DA architecture can be further reduced using the offset-
binary coding (OBC) technique [15], which can be derived as follows:

Circuits Syst Signal Process (2016) 35:603–618 609

Rewriting (2) as xn−i = 1
2 [xn−i − (−xn−i)] we have:

x[n − i] = 1

2

[− (
bi,B−1 − b̄i,B−1

)]

+ 1

2

⎡

⎣+
B−1∑

j=1

(
bi,B−1− j − b̄i,B−1− j

)
2− j − 2−(B−1)

⎤

⎦
(18)

Choosing

di, j =
⎧
⎨

⎩
−(bi, j − bi, j), j �= B − 1

−(bi,B−1 − bi,B−1), j = B − 1
(19)

Substituting (18), (19) in (1) and rearranging, we get

y[n] =
B−1∑

j=0

(
N−1∑

i=0

1

2
cidi,B−1− j

)
2− j

−
(
1

2

N−1∑

i=0

ci

)
2−(B−1)

Defining

CB−1− j =
N−1∑
i=0

1
2cidi, j , 0 ≤ j ≤ B − 1

and

Cinitial = −1

2

N−1∑

i=0

ci (20)

We arrive at

y[n] =
B−1∑

j=0

CB−1− j2
− j + Cinitial2

−(B−1) (21)

Now, for a given set of wi (i = 0, 1, . . . , N − 1), the terms CB−1− j ’s would take
one out of 2N combinations, half of which would be the mirror image of other half
[31]. Hence a 2N−1-sized ROM can be used the address bits of which can be obtained
through the Ex-OR operation of all the LSB’s with the LSB of the newest sample as
shown in Fig. 1e.

610 Circuits Syst Signal Process (2016) 35:603–618

Fig. 2 General block diagram
of a decision feedback equalizer

+

-

u (n)

û (n)

r (n) rq (n)

D

FFF

FBF

Quantizer

ŝ (n) s (n)

3 Proposed DA-Based Architecture

Consider a DFE shown in Fig. 2, with ‘N f ’ number of FFF coefficients and ‘Nb’
number of FBF coefficients which process the input signal u(n), (n ∈ Z), and the
previous output decisions s(n), respectively. The equations describing the operation
of the DFE are

rq (n) = Q [r (n)] (22)

where Q [.] is the quantization operation.

r (n) = û (n) − ŝ (n) (23)

s (n) = rq (n − 1) (24)

and the output of FFF and FBF filters respectively is given as follows:

û (n) =
N f −1∑

i=0

wi u (n − i) = wTu (25)

ŝ (n) =
Nb−1∑

j=0

v j s (n − j) = vT s (26)

wherewT = [
w0, w1, . . . , wN f −1

]
, vT = [

v0, v1, . . . , vNb−1
]
are the coefficients of

FFF and FBF respectively.
If each of u (n) and s (n) is represented by their signed 2’s-complement representation,
we have:

u (n − i) = −ui,B−1 +
B−1∑

b=1

ui,B−1− j2
− j (27)

s (n − i) = −si,B−1 +
B−1∑

b=1

si,B−1− j2
− j (28)

Circuits Syst Signal Process (2016) 35:603–618 611

Employing the digit-serial arithmetic, using (17) we have

û (n) =
⎡

⎣− f
(
wi , ui,0

)
20 +

Pf −1∑

j=1

f
(
wi , ui,Pf −1− j

)
2− j

⎤

⎦
(
2Pf

)Q f −1

+
Q f −2∑

k=0

⎧
⎨

⎩

Pf −1∑

j=0

f
(
wi , ui,Pf −1− j

)
2− j

⎫
⎬

⎭

(
2Pf

)k
(29)

where f
(
wi , ui,Pf −1− j

)
is given by

f
(
wi , ui,Pf −1− j

) =
N f −1∑

i=0

wi ui,Pf −1− j (30)

Now, if the ROM decomposition technique is also employed, then using (5) and (6)
we have

f
(
wi , ui,Pf −1− j

) =
L f −1∑

l=0

lM f +M f −1∑

i=lM f

wi ui,Pf −1− j (31)

Hence, Eqs. (29) and (31) describe the realization of FFF using both digit-serial input
and ROM decomposition techniques. Similarly, for FBF we can have

ŝ(n) =
⎧
⎨

⎩− f
(
vi , si,0

)
20 +

Pb−1∑

j=1

f
(
vi , si,Pb−1− j

)
2− j

⎫
⎬

⎭

(
2Pb

)Qb−1

+
Qb−2∑

k=0

⎧
⎨

⎩

Pb−1∑

j=0

f
(
vi , si,Pb−1− j

)
2− j

⎫
⎬

⎭

(
2Pb

)k
(32)

f
(
vi , si,Pb−1− j

) =
Lb−1∑

l=0

lMb+Mb−1∑

i=lMb

vi si,Pb−1− j (33)

The DA-based DFE architecture derived based on the above equations is shown
in Fig. 3. It can be seen that each of the filters has their own DA block that works
on both digit-serial and ROM decomposition techniques. The parameters Pf and Pb
decide the number of digits used from each of input register for FFF and FBF, respec-
tively. Similarly, the parameters M f and Mb decide the number of ROMs operated in
parallel for FFF and FBF, respectively. The filters FFF and FBF can be synchronized
by choosing same number of digits from each of the input register i.e. by choosing
Pf = Pb. Hence, the output of FFF and FBF can be computed using just the shift
and add operations, which makes the DFE free of hardware multipliers. The detailed
internal structure of the FFF and/or FBF blocks in all the three cases, namely direct-
memory architecture, reduced-memory architecture and OBC-memory architecture,

612 Circuits Syst Signal Process (2016) 35:603–618

Register
Bank

ROM
0

ROM
1

ROM
Lf − 1

Shift and
accumulator

Bank of
adders

FFF Block

Digit
Serial Register

Bank

ROM
0

ROM
1

ROM
Lb − 1

Shift and
accumulator

Bank of
adders

FBF Block

Digit
Serial

Decision
Device

Delay

Control Circuitry

Input
Signal

u(n)

r(n)

s(n)

+ −

û(n)

ŝ(n)

rq(n)
Equalized
Output

Fig. 3 Proposed DA-based decision feedback equalizer architecture that employs ROM decomposition
and digit-serial input

are shown in Fig. 4. The internal structure consists of a register bank, a set of memory
blocks, bank of adders and a shift-accumulator block. Input bits enter the register bank
serially which form the address bits to the memories. The adder bank consists of a
set of adders where the outputs from the memories are summed up. The result is then
shift-accumulated to compute the output. Figure 4 shows the case where P = B;
however, the parameters P and L can be chosen based on the speed and complexity
requirements. It can be seen from Fig. 4a that the contents of upper half of the memo-
ries look like the mirror image of the lower half, and hence a memory storing only one
half of the contents can be used to perform DA filtering. Specifically, one half of the
partial products of any memory in case of direct-memory architecture are nothing but
the additive inverse of the other half. Hence, only one half of the partial products may
be stored and the other half may be obtained live by taking their complement. This
operation is depicted in Fig. 4b by the NOT gate used at the output of each ROM. The
idea is particularly useful when the requirement for the memory size is large. When
the ‘upper-half’ set of the partial products are stored in the memory, the lower half
can be generated by using a multiplexer (MUX) as shown in Fig. 4b. Here, the most
significant bit (MSB) is neglected in forming the address bits to the memory, instead
it is used to find the effective address using the Ex-OR operation with each of the
remaining address bits. In case of OBC-memory-based architecture, the size of the
memories would be same as that of the reduced-memory architecture but contain more
complex combinations of partial products. Further it needs an extra adder and a register
for the storage and addition of the Cinitial term to the accumulator output. The deci-
sion device takes an input signal that lies between a set of signal levels and quantizes
it to a set of pre-defined levels that depends on the modulation scheme employed.
The control circuitry sends the required timing signals for the operation of FFF
and FBF.

Circuits Syst Signal Process (2016) 35:603–618 613

t07 t06 t05 t04 t03 t02 t01 t00

−2a0
−a0

a0

0

t17 t16 t15 t14 t13 t12 t11 t10

−2a1
−a1

a1

0

tα7 tα6 tα5 tα4 tα3 tα2 tα1 tα0

−2aα

−aα

aα

0

Accumulator

Adder bank

y

Critical
Path

Input

(a)

y = û(n)

FFF: α = Lf − 1

Input= u(n)

tij = ui,j , ai = wi

y = ŝ(n)

FBF: α = Lb − 1

Input= s(n)

tij = vi,j , ai = vi

shifter

t07 t06 t05 t04 t03 t02 t01 t00 t17 t16 t15 t14 t13 t12 t11 t10

127a0

a0

0

127a1

a1

0

127aα

aα

0

tα7 tα6 tα5 tα4 tα3 tα2 tα1 tα0Input

0 1

Accumulator

Adder bank

y

0 1 0 1

y = û(n)

FFF: α = Lf − 1

(b)

Input= u(n)

tij = ui,j , ai = wi

y = ŝ(n)

FBF: α = Lb − 1

Input= s(n)

tij = vi,j , ai = vi

Critical
Path

shifter

t07 t06 t05 t04 t03 t02 t01 t00 t17 t16 t15 t14 t13 t12 t11 t10

− 1
2 [8a0 + 7a0.... + a0]

tα7 tα6 tα5 tα4 tα3 tα2 tα1 tα0Input

0 1

1

Accumulator

Adder bank

y

0 1

1

0 1

1

y = û(n)

FFF: α = Lf − 1

(c)

Input= u(n)

tij = ui,j , ai = wi

y = ŝ(n)

FBF: α = Lb − 1

Input= s(n)

tij = vi,j , ai = vi

Critical
Path

Cinitial

0

1

− 1
2 [8a0 + 7a0.... − a0]

− 1
2 [8a0 − 7a0.... − a0]

− 1
2 [8a1 + 7a1.... + a1]

− 1
2 [8a1 + 7a1.... − a1]

− 1
2 [8a1 − 7a1.... − a1]

− 1
2 [8aα + 7aα.... + aα]

− 1
2 [8aα + 7aα.... − aα]

− 1
2 [8aα − 7aα.... − aα]

shifter

MUX select

Fig. 4 The internal structure of FFF and/or FBF blocks in the proposed architectures. a Direct-memory
architecture. b Reduced-memory architecture. c OBC-memory architecture

614 Circuits Syst Signal Process (2016) 35:603–618

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Channel Impulse response

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1
Transmitted symbols

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5

2

2.5
Received Signal

1 2 3 4 5 6
−1

0

1

2

3

4

5
FFF coefficients

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5
FBF coefficients

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1
Output decisions

Fig. 5 A typical example of a DFE-based channel-equalizer system. The equalized output mimics the
transmitted symbols assuming thtat there are no errors in the past decisions

4 Implementation Results

In order to test the proposed architecture, a DFE-based channel-equalizer system has
been created like the one shown in Fig. 5 where a frequency-selective channel is taken.
A set of message signals each modulated using binary phase shift keying (BPSK) has
been transmitted.The received symbols (containing the ISI) are thenpassed through the
FFF for the removal of anti-causal part of ISI. The remaining ISI is then cancelled out
using the decisions taken on previous symbols, and as observed in Fig. 5, the original
transmitted symbols can be retained if there is no error propagation in the DFE. For the
ease of analysis, we chose Nb = N f −1. The input to the DFE and the weights of FFF
and FBF are chosen to be fixed point Q2.6 signed 2’s-complement representation, and
the system is implemented using verilog HDL. To attain the maximum speed, Pf and
Pb are chosen to be eight and the outputs of each memory are summed up by the adder
bank, and hence one sample of output of both FFF and FBF is computed in one clock
cycle. The decision device quantizes its input to either of the two symbols (as BPSK
scheme is used). A rough estimations and comparisons of number of logic elements1,
maximum usable frequency (Fmax) and core static power consumption estimates for
the MAC-based and DA-based implementations for various FBF taps implemented
on Altera Cyclone III EP3C55F484C6 at different operating conditions (0, 85 ◦C) are
summarized in Tables 1, 2 and 3, respectively. From the table, it can be observed
that the DA-based implementation outperforms the MAC-based implementation in all
the cases. For the case of 4-tap FBF, the difference in the number of logic elements
for DA-based and MAC-based implementations is very less; however, the maximum

1 Logic elements (LEs) are the smallest units of logic in the Cyclone III device family architecture. Each
logic element consists of four input lookup table, a programmable register and many other features. (www.
altera.com/literature/hb/cyc3/cyc3_ciii51002)

www.altera.com/literature/hb/cyc3/cyc3_ciii51002
www.altera.com/literature/hb/cyc3/cyc3_ciii51002

Circuits Syst Signal Process (2016) 35:603–618 615

Table 1 Comparison of number of logic elements for MAC-based and DA-based implementations on
Altera Cyclone III EP3C55F484C6

Size of FBF MAC-based
architecture

DA-based implementations

Direct-memory
architecture

Reduced-memory
architecture

OBC-memory
architecture

4-tap 420 249 337 481

8-tap 1007 495 646 891

16-tap 1775 984 1247 1708

32-tap 3312 1918 2482 3376

Table 2 Comparison of Fmax (MHz) (0, 85 ◦C) in MHz for MAC-based and DA-based implementations
on Altera Cyclone III EP3C55F484C6

Size of FBF MAC-based
architecture

DA-based implementations

Direct-memory
architecture

Reduced-memory
architecture

OBC-memory
architecture

4-tap 60.35, 56.47 67.94, 60.87 68.09, 60.66 51.86, 46.12

8-tap 30.6, 28.13 38.2, 34.15 36.56, 32.77 31.0, 27.71

16-tap 15.36, 14.38 19.56, 17.51 19.46, 17.44 18.6, 16.64

32-tap 7.76, 7.21 10.24, 9.14 10.17, 9.06 9.73, 8.7

Table 3 Comparison of core static power consumption estimates in milli-watt (mW) for MAC-based and
DA-based implementations on Altera Cyclone III EP3C55F484C6

Size of FBF MAC-based
architecture

DA-based implementations

Direct-memory
architecture

Reduced-memory
architecture

OBC-memory
architecture

4-tap 51.70 94.01 94.02 94.02

8-tap 51.71 94.03 94.03 94.05

16-tap 51.74 94.05 94.07 94.09

32-tap 51.80 94.11 94.14 94.19

usable frequency (Fmax) is a bit morein case of DA-based implementation. Further,
it can be seen that as the filter-order increases, the difference in the number of logic
elements between the MAC-based and DA-based implementation is getting increased
while the maximum usable frequency of DA-based implementation is approaching
to that of MAC-based implementation. This can be explained as follows: For lower-
order filters, the number ofMAC units used in theMAC-based implementation is quite
low, and therefore the number of memories replacing the multipliers in case of DA-
based implementation will also be less. But as the filter order increases, the number
of memories replacing the multipliers in DA-based implementation will be high, and

616 Circuits Syst Signal Process (2016) 35:603–618

hence the difference in the number of logic elements utilized will be high. The critical
path (that decides the maximum usable frequency) of the FBF filter for the MAC-
based and DA-based direct-memory implementation is given as CPMAC = Tm +NTA

and CPDA-direct-memory = Tmemory + (N − 1) TA where Tmemory, Tm, and TA are the
computation times of memory, multiplier and adder units respectively. For lower-
order filters, because of the presence of less number of adder units, the critical path of
MAC-based and DA-based implementation differs. As the filter order increases, the
number of adders increase, and hence the critical path of theDA-based implementation
approaches that of MAC-based implementation due to the fact that the terms Tmemory
and TM become negligible compared to the term (N − 1) TA. In case of reduced-
memory architecture, even though the memory size is halved, the additional hardware
overhead is added by the Ex-OR gates, multiplexer and adder units. The number of Ex-
OR gates is fixed for a fixed P (which depends on B), while the number of adder units
and MUXs depend upon the value of M and P . The critical path in this case would be
CPDA-reduced-memory = Treduced-memory + TMUX +NTA. Since the computation time of
a memory does not vary greatly with respect to size of it, the additional computation
time of reduced-memory architecture is just TMUX+TA units. The scheme with OBC-
DA-based memory uses slightly more number of logic elements in which case, the
critical path would be CPDA-reduced-memory = TOBC-memory + TMUX + (N + 1)TA .

5 Conclusion

A distributed arithmetic-based realization of the decision feedback equalizer has been
presented. In order to attain the maximum speed, digit-serial input has been employed,
apart from that ROM decomposition technique is also employed to eliminate the
exponential increase in the size of memories as the FFF and FBF filter orders increase.
Two architectures based on digit-serial and ROM decomposition variants of DA have
been presented, and results show that both are efficient when compared to MAC-
based implementation. A third architecture which uses DA-OBC scheme has also
been presented which uses slightly more number of hardware resources compared to
reduced-memory architecture. For lower-order filters, the maximum usable frequency
is a bit high compared to that ofMAC-based implementationwhile the number of logic
elements is only few units less. For higher-order filters, the number of logic elements
is found to be almost half that of the MAC-based implementation. The proposed
architecture can be used in high-data-rate modems such as the case of IEEE 802.11b
scenarios. The speed of the proposed implementation can be further increased by using
techniques that reduce the number of adder units, which results in the reduction of
critical path.

References

1. D.J. Allred, H. Yoo, V. Krishnan, W. Huang, D.V. Anderson, LMS adaptive filters using distributed
arithmetic for high throughput. IEEE Trans. Circuits Syst. I Regul. Pap. 52(7), 1327–1337 (2005)

2. M. Arjmand, R.A. Roberts, On comparing hardware implementations of fixed-point digital filters.
IEEE Circuits Syst. Mag. 3(2), 2–8 (1981)

Circuits Syst Signal Process (2016) 35:603–618 617

3. W.P. Burleson, L.L. Scharf, A VLSI design methodology for distributed arithmetic. J. VLSI Sig.
Process. Syst. Signal Image Video Technol. 2(4), 235–252 (1991)

4. W.P. Burleson, L.L. Scharf, A VLSI implementation of a cellular rotator array, in IEEE Custom
Integrated Circuits Conference, pp. 8.1/1–8.1/4 (1988)

5. W.P. Burleson, L.L. Scharf, VLSI design of inner-product computers using distributed arithmetic, in
IEEE International Symposium Circuits Systems (ISCAS), pp. 158–161 (1989)

6. C.S. Burrus, Digital filter structures described by distributed arithmetic. IEEE Trans. Circuits Syst.
24(12), 674–680 (1977)

7. C.P. Callender, S. Theodoridis, C.F.N. Cowan, Adaptive non-linear equalisation of digital communi-
cations channels. Signal Process. 40(2–3), 325–333 (1994)

8. H.C. Chen, J.I. Guo, C.W. Jen, A new group distributed arithmetic design for the one dimensional
discrete Fourier transform, in IEEE International Symposium Circuits Systems (ISCAS), vol. 1 (2002)

9. H.C. Chen, J.I. Guo, C.W. Jen, T.S. Chang, Distributed arithmetic realisation of cyclic convolution and
its DFT application, in IEEE Proceedings on Circuits, Devices and Systems, pp. 615–629 (2005)

10. C.F.N. Cowan, J. Mavor, New digital adaptive-filter implementation using distributed-arithmetic tech-
niques. IEEE Proc. Commun. Radar Signal Process. 128(4), 225–230 (1981)

11. S.P. Joshi, R. Paily, Distributed arithmetic based Split-Radix FFT. J. Signal Process. Syst. 75(1), 85–92
(2014)

12. P.K. Meher, Hardware-efficient systolization of DA-based calculation of finite digital convolution.
IEEE Trans. Circuits Syst. II Exp. Br. 53(8), 707–711 (2006)

13. P.K. Meher, Unified systolic-like architecture for DCT and DST using distributed arithmetic. IEEE
Trans. Circuits Syst. I Reg. Pap. 53(12), 2656–2663 (2006)

14. B.K. Mohanty, P.K. Meher, A high-performance energy-efficient architecture for FIR adaptive filter
based on new distributed arithmetic formulation of block LMS algorithm. IEEE Trans. Signal Process.
61(4), 921–932 (2013)

15. K.K. Parhi, VLSI Digital Signal Processing Systems: Design And Implementation (Wiley India Pvt,
Limited, 2007)

16. S.Y. Park, P.K. Meher, Low-power, high-throughput, and low-area adaptive FIR filter based on distrib-
uted arithmetic. IEEE Trans. Circuits Syst. II Exp. Br. 60(6), 346–350 (2013)

17. S.Y. Park, P.K. Meher, Efficient FPGA and ASIC realizations of a DA-based reconfigurable FIR digital
filter. IEEE Trans. Circuits Syst. II Exp. Br. 61(7), 511–515 (2014)

18. M.S. Prakash, R.A. Shaik, Low-area and high-throughput architecture for an adaptive filter using
distributed arithmetic. IEEE Trans. Circuits Syst. II Exp. Br. 60(11), 781–785 (2013)

19. J.G. Proakis, D.G. Manolakis, Digital Communications, vol. 3 (McGraw-hill, New York, 1995)
20. S.U.H. Qureshi, Adaptive equalization. IEEE Commun. Mag. 73(9), 1349–1387 (1985)
21. J. Ramìrez, A. Garcìa, U. Meyer-Bäse, F. Taylor, A. Lloris, Implementation of RNS-based distributed

arithmetic discrete wavelet transform architectures using field-programmable logic. J. VLSI Signal
Process. Syst. Signal Image Video Technol. 33(1–2), 171–190 (2003)

22. M. Rawski, M.Wojtynski, T.Wojciechowski, P. Majkowski, Distributed arithmetic based implementa-
tion of Fourier transform targeted at FPGA architectures, in International conference on Mixed Design
of Integrated Circuits and Systems (MIXDES), pp. 152–156 (2007)

23. G. Seetharaman, B. Venkataramani, G. Lakshminarayanan, Design and FPGA implementation of self-
tuned wave-pipelined filters with distributed arithmetic algorithm. Circuits Syst. Signal Process. 27(3),
261–276 (2008)

24. R.A. Shaik, M. Chakraborty, An efficient realization of the decision feedback equalizer using block
floating point arithmetic, in IEEE Asia Pacific Conference on Circuits and Systems (APCCAS),
pp. 1047–1050 (2006)

25. R.A. Shaik, M. Chakraborty, A block floating point treatment to finite precision realization of the
adaptive decision feedback equalizer. Signal Process. 93(5), 1162–1171 (2013)

26. G. Sicuranza, G. Ramponi, Adaptive nonlinear digital filters using distributed arithmetic. IEEE Trans.
Acoust. Speech Signal Process. 34(3), 518–526 (1986)

27. S.G. Smith, S.A. White, Hardware approaches to vector plane rotation, in International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, pp. 2128–2131 (1988)

28. B.S. Tan, G.J. Hawkins, Speed-optimisedmicroprocessor implementation of a digital filter. IEEE Proc.
Comput. Dig. Tech. 128(3), 85–93 (1981)

29. L. Wanhammar, Implementation of wave digital filters using distributed arithmetic. Signal Process.
2(3), 253–260 (1980)

618 Circuits Syst Signal Process (2016) 35:603–618

30. C.H. Wei, J.J. Lou, Multimemory block structure for implementing a digital adaptive filter using
distributed arithmetic. IEEE Proc. Electron. Circuits Syst. 133(1), 19–26 (1986)

31. S.A. White, Applications of distributed arithmetic to digital signal processing: a tutorial review. IEEE
Acoust. Speech Signal Process. Mag. 6(3), 4–19 (1989)

32. J. Xie, P.K. Meher, J. He, Hardware-efficient realization of prime-length DCT based on distributed
arithmetic. IEEE Trans. Comput. 62(6), 1170–1178 (2013)

33. S.Yu, E.E. Swartziander,DCT implementationwith distributed arithmetic. IEEETrans. Comput. 50(9),
985–991 (2001)

34. J. Zeman,H.T.Nagle, A high-speedmicroprogrammable digital signal processor employing distributed
arithmetic. IEEE J. Solid-State Circuits 15(1), 70–80 (1980)

	An Efficient Distributed Arithmetic-Based Realization of the Decision Feedback Equalizer
	Abstract
	1 Introduction
	2 Distributed Arithmetic Background
	3 Proposed DA-Based Architecture
	4 Implementation Results
	5 Conclusion
	References

