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Abstract Electrocardiogram (ECG) signal classification is an important diagnosis
tool wherein feature extraction plays a crucial function. This paper proposes a novel
method for the nonlinear feature extraction of ECG signals by combining wavelet
packet decomposition (WPD) and approximate entropy (ApEn). The proposedmethod
first uses WPD to decompose ECG signals into different frequency bands and then
calculates the ApEn of each wavelet packet coefficient as a feature vector. A support
vector machine (SVM) classifier is used for the classification. The particle swarm opti-
mization algorithm is used to optimize the SVM parameters. The proposed method
does not require dimensionality reduction, has fast calculation speed, and requires sim-
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ple computations. The classification of the signals into five beats yields an acceptable
accuracy of 97.78%.

Keywords Approximate entropy · Classification · Feature extraction · Support
vector machine · Wavelet packet decomposition

1 Introduction

Electrocardiogram (ECG) signal classification is the most important and common tool
for describing and analyzing heart activity. The purpose of feature extraction is to find
as few properties of an ECG signal as possible that would facilitate the successful
classification of arrhythmia signals and efficient diagnosis. This paper hypothesizes
that nonlinear dynamic behavior is a key characteristic of ECG signals and that non-
linear feature extraction is effective for the classification of such. Many methods have
been proposed for the feature extraction and classification of ECG signals. A classi-
fication was constructed using linear discriminant analysis (LDA) based on the time
feature [2]. Zadeh et al. [19] extracted ECG morphological and time interval features
and designed several support vector machine (SVM) classifiers that categorized ECG
signals into three different classes. Kamath [10] analyzed ECGbeats from the perspec-
tive of energy by accounting for the features derived from the nonlinear component in
the time and frequency domains with the use of the Teager energy operator. Ye et al.
[18] constructed a heartbeat classification method that is based on a combination of
morphological features extracted by wavelet transform and independent component
analysis (ICA) as well as dynamic features derived from RR interval information.
A method for fetal ECG feature extraction that uses multidimensional ICA has also
been proposed [3]. Fei [6] applied particle swarm optimization (PSO) and SVM to
diagnose arrhythmia on the basis of the time domain features. Giri et al. [7] utilized
principal component analysis, LDA, ICA, and discrete wavelet transform (DWT) in
the automated diagnosis of coronary artery disease. Kutlu and Kuntalp [12] derived
features by using the higher order statistics of wavelet packet decomposition (WPD)
coefficients and used them as inputs into a classifier based on the k-nearest neighbor
algorithm. Nonlinear features, including approximate entropy (ApEn), were extracted
from heart rate variability (HRV) and ECG signals with a high classification accuracy
[5]. Nonlinear features were used as feature sets to be placed into several classifiers
[1].

Unlike in the aforementioned pieces of the literature, the present paper derives non-
linear feature vectors by combiningWPD and ApEn. The feature vectors are then used
as inputs in the SVM classifier to categorize ECG beats into five types: normal beat,
atrial premature beat (APC), supraventricular tachyarrhythmia (SVTA), left bundle
branch block beat (LBBB), and premature ventricular contraction (PVC). The rest of
this paper is organized as follows. Section 2 presents the proposed method and its
theoretical basis. Section 3 discusses the simulation studies conducted to evaluate the
proposed method. Section 4 concludes the paper.
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Fig. 1 WD structures
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2 Proposed Method

The features of each type of ECG signal are derived through the following steps:

Step 1: The preprocessed ECG signals [13,14] are decomposed into different
frequency bands byWPD. The ECG signals are first decomposed by lifting scheme
wavelet transform. Then, the wavelet coefficients of the signals are extracted, and
an improved half-soft threshold based on the lifting wavelet is used to denoise the
ECG signals.
Step 2: The ApEns of the wavelet packet coefficients are calculated. The obtained
ApEn is then used as a feature vector and applied as an input into theSVMclassifier.
The MIT-BIH arrhythmia database is used as the source of ECG records.

2.1 Wavelet Packet Decomposition

WPD is an extension of wavelet decomposition (WD). WPD includes multiple bases,
where each base provides a different classification performance and covers the short-
age of fixed time–frequency decomposition in DWT [7]. WD splits the original signal
into two subspaces, namely A and D, which complement each other. A and D function
as spaces that include the low- and high-frequency information of the original signal,
respectively. Figure 1 shows the decomposition of the low-frequency subspace. A is
repeated, andWD finely partitions the frequency axis toward the low frequency. WPD
is a generalized version that decomposes high-frequency bands inWD.WPD provides
a more detailed signal decomposition than WD. WPD divides frequency bands into
multilevel bands and selects the corresponding band according to the features of the
analyzed signal to match the signal spectrum and increase the time–frequency reso-
lution. WPD results in a complete wavelet packet tree (Fig. 2), where Uj,n is the nth
subspace (n being the frequency factor, n = 0, 1, 2, . . . , 2 j − 1, and j is the scale
factor) of the wavelet packet at the j th scale, and Un

j,k(t) is its corresponding ortho-

normal basis, whereUn
j,k(t) = 2− j/2un(2− j t −k) (k is the shift factor). Thus, Eqs. (1)

and (2) are satisfied.
When n is even, then

unj,0(t) =
∑

k

h0(k)u
j
j−1,k (1)

When n is odd, then
unj,0(t) =

∑

k

h1(k)u
j
j−1,k (2)
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Fig. 2 WPD structures

where h0(k) and h1(k) in Eqs. (1) and (2) are several quadruple mirror filters that are
irrelevant to scales and satisfies Eq. (3):

h1(k) = (−1)1−kh0(1 − k) (3)

Many different mother wavelets exist, such as Haar, Daubechies (db), Symlet,
Coiflet, biorthogonal, and reverse biorthogonal. The wavelet packet coefficients and
classification accuracy of the extracted features from each mother wavelet were com-
pared byKutlu andKuntalp [12]. They reported that the best feature set can be obtained
by using the db6 wavelet function. Thus, the db6 wavelet is selected as the mother
wavelet function to estimate the wavelet packet coefficients in the proposed method.
The ECG signals are decomposed into three levels. The structures are shown in Fig. 2.

2.2 Approximate Entropy

ApEn is a statistical measure used to quantify data regularities without a priori knowl-
edge of the problem [8]. ApEn adds a real number to a series. A larger real number
corresponds to higher series complexity and irregularity. The algorithm that determines
the ApEn can be divided into several steps.

1. N − m vectors of dimension m are formed:

X (i) = [x(i), x(i + 1), . . . , x(i + m − 1)]
i = 1, . . . , N − m + 1 (4)

These vectors represent m consecutive x signal values that start with i .
2. The distance between X (i) and X ( j) is defined as the highest norm:

d[X (i), X ( j)] = max
k=1,2,...,m

|x(i + k − 1) − x( j + k − 1)| (5)

3. For each X (i), the number of X ( j) ( j = 1, . . . , N − m + 1, j �= i) is counted
such that d[x(i), x( j)] ≤ r is satisfied, where r is the tolerance frame parameter.
This number is designated as Nm(i). The Bm

r (i) coefficients are then found by
using the following expression:
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Bm
r (i) = Nm(i)

N − m + 1
(6)

4. The natural logarithms for each Bm
r (i) are calculated, and their mean value is

determined as follows:

φm(r) = 1

N − m + 1

N−m+1∑

i=1

ln Bm
r (i) (7)

5. The dimension is increased to m + 1, and Steps 1–4 are repeated. Thus, Bm+1
r (i)

and φm+1(r) are obtained.
6. The ApEn is found by using the following expression:

ApEn(m, r, N ) = φm(r) − φm+1(r) (8)

Parameters m and r are determined on the basis of a specific problem. m is usually
equal to 1 or 2. The range of r varies in series complexity when more points are
included. Pincus [16] suggested that m = 2 and r = 0.1 SD−0.2 SD, where SD
denotes the standard deviation of the original data X (i). ApEn has a suitable large
transient interference capacity because the data for this type of interference (wild
points) and adjacent points link into two or three line segments. Moreover, the distance
of X (i) is large and must be removed from the threshold value detection. Rather than
just describing or reconstructing the strange attractor appearance, ApEn differentiates
the complexities of time from a statistical perspective and characterizes the differences
or changes in the power system. Thus, ApEn only requires short data (e.g., 1000 points
are suitable).

The proposed method calculates the ApEn of eachWPD coefficient of 1000 points.
Parameters m = 2 and r = 0.2SD are adopted in this study.

2.3 Support Vector Machine

The SVM classifier is a supervised learning algorithm that is based on the sta-
tistical learning theory developed by Vapnik [17]. This learning algorithm maps
low-dimensional datasets to a high-dimensional feature space. The SVM classifier
also solves binary problems by searching an optimal hyperplane that can separate
the two datasets with the largest margin in the high-dimensional space. The optimal
hyperplane is established by a set of support vectors from the original datasets. These
subsets form the boundary between two classes. Given the training dataset {xi, yi }Ni=1,
where xi is the input feature vector for each sample and N is the sample number,
yi ∈ {−1,+1} represents its label. Figure 3 shows that the optimal hyperplane is
defined as ω · x + b = 0, where x is the point lying on the hyperplane, ω is the para-
meter for the orientation of the hyperplane, and b is a scalar threshold that represents
the bias from both classes. The distance between these two parallel hyperplanes is
1/2‖ω‖2. The input feature vectors satisfy the following inequality:
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Fig. 3 Data classification using SVM

yi (ω · xi + b) ≥ 1 i = 1, 2, . . . , N (9)

The positive slack variable ξi is introduced to obtain the optimal hyperplane and solve
the following optimization problem:

min
1

2
‖ω‖2 + C

N∑

i=1

ξi

s.t. yi (ω · xi + b) ≥ 1 − ξi i = 1, 2, . . . , N , (10)

C is a penalty parameter that controls the trade-off between margin maximization
and error minimization. After solving the Lagrange equation of Eq. (10), a classifica-
tion function can be defined as follows:

f (x) = sign

{
n∑

i=1

αi yi K (xi , x) + b

}
(11)

where αi is the Lagrange multiplier and K (xi , x) = (ϕ (xi ) · ϕ(x)) is a symmetric
and positive kernel function given by Mercer’s theorem. The kernel function can map
a low-dimensional vector to a high feature space through nonlinear functions. Three
kernel functions are generally used, and their mathematical formulas are provided as
follows:

Linear kernel: K (xi , x) = (x · xi );
Polynomial kernel: K (xi , x) = ((x · xi ) + c)d , c ≥ 0;

Radial basis function (RBF) kernel: K (xi , x) = exp(−‖xi−x‖2
2δ2

) (δ is a positive real
number).

The LIBSVM [4] and popular RBF are adopted in this study. The PSO algorithm is
used to determine the optimal parameters of the SVM and RBF function.
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Table 1 Training and test sets

Classes MIT-BIH Training set Test set

N 100, 101, 103, 105, 113, 115, 117, 123 30 30

APC 209, 232 30 30

SVTA 207, 209 20 20

LBBB 109, 111 30 30

PVC 200, 201, 223, 228, 233 25 25

Total 135 135

2.4 Particle Swarm Optimization

PSO performs searches by using a population (or swarm) of individuals (or particles)
that are updated from iteration to iteration [11]. Each particle moves in the direction
of its previously best position (pbest) and its best global position (gbest) to discover
the optimal solution. The velocity and position of particles can be updated by using
the following equations:

υi j (t + 1) = ωυi j (t) + c1 · rand1 · (pbesti j (t) − pi j (t))

+ c2 · rand2 · (gbesti j (t) − pi j (t)) (12)

pi j (t + 1) = pi j (t) + β · υi j (t + 1) (13)

where t denotes the iteration counter, υi j is the velocity of particle i on the jth dimen-
sion, whose value is limited to the range [−υmax, υmax]; pi j is the position of particle
i on the jth dimension, whose value is limited to the range [−pmax, pmax]; pbesti j is
the pbest position of particle i on the jth dimension; and gbesti j is the gbest position
of the swarm on the jth dimension. The inertia weight ω is used to balance the global
exploration and local exploitation. rand1 and rand2 are random functions in the range
[0, 1], whereas β is a constraint factor used to control the velocity weight. Positive
constants c1 and c2 are personal and social learning factors.

The process of optimizing SVM parameters with PSO is described below:

1. Initialization. PSO is initialized with a population of random particles and veloci-
ties. c1 is set to 1.5, and c2 is set to 1.7. Max iteration is set to 200, whereas swarm
size is set to 20.

2. Training SVM model and fitness evaluation. The SVM model is trained with the
parameters C and δ included in the current particle. A global search and iterative
optimization are then conducted.

3. Updating pbesti j for each particle and gbesti j for the entire swarm.
4. Updating the velocity and position value of each particle. The velocity of each

particle is calculated by using Eq. (12). Each particle moves to its next position
according to Eq. (13).

5. Termination. The procedures fromSteps 2 to 4 are repeated until the stop conditions
are satisfied.
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Fig. 4 a WPD of the 105 data. b WPD of the 232 data. c WPD of the 209 data. d WPD of the 109 data.
eWPD of the 228 data

3 Simulation Studies

A simulation study is conducted using the MIT-BIH arrhythmia database to evaluate
the performance of the proposed method. The five ECG beats are classified as follows:
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Fig. 4 continued

normal (100, 101, 103, 105, 113, 115, 117, and 123), APC (209 and 232), SVTA (207
and 209), LBBB (109 and 111), and PVC (200, 201, 223, 228, and 233). A total of
270 samples are selected. The training and test sets are shown in Table 1. We select
1000 points of each type that contains the corresponding signal.
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Fig. 4 continued

3.1 Feature Extraction

The nonlinear feature is extracted by WPD and ApEn. The WPD of the ECG signal
is shown in Fig. 4, and 105, 232, 209, 109, and 228 data are used as examples on
behalf of the five signal types, respectively. Sample (a) is the original signal, whereas
sample (b) is the denoised ECG signal. The wavelet packet coefficients, s130 to s137,
are used to replace the denoised ECG signal. Figure 4 shows the procedure operation
results of the WPD of signals. The wavelet packet coefficients of different signals
after decomposition, s130–s137, differ from one another. Thus, the obtained ApEns
of the wavelet packet coefficients also have their own characteristics. The method
discussed in Sect. 2 is used to calculate the ApEn of every wavelet packet coefficient.
The acquired ApEn is considered as a feature. The ApEn of the five classes is listed
in Table 2 and used as an example. The mean and standard deviation of each ApEn
indicate the significance of that feature’s variability in the five beat classes.

3.2 Classification

The ApEn calculated above is used as an input to the LIBSVM. The labels and dis-
tribution of the samples of each category are shown in Fig. 5. Labels 1, 2, 3, 4, and 5
represent N, APC, SVTA, LBBB, and PVC, respectively.

PSO algorithm is used to determine the best parameters. The RBF is generally
used because unlike a linear kernel function, it can classify multidimensional data.
Additionally, the RBF has fewer parameters to set than a polynomial kernel function.
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Table 2 Mean and standard deviation of each ApEn

ApEn N APC SVTA LBBB PVC

S130 0.1726 ± 0.0233 0.2416 ± 0.0239 0.2886 ± 0.0269 0.1608 ± 0.0254 0.1367 ± 0.0217

S131 0.1494 ± 0.0402 0.2784 ± 0.0318 0.2950 ± 0.0451 0.4266 ± 0.0554 0.4272 ± 0.1148

S132 0.2076 ± 0.0447 0.1910 ± 0.0309 0.3134 ± 0.0343 0.2749 ± 0.0340 0.2021 ± 0.0632

S133 0.1646 ± 0.0391 0.1725 ± 0.0340 0.2636 ± 0.0293 0.2573 ± 0.0326 0.1856 ± 0.0420

S134 0.2063 ± 0.0423 0.1717 ± 0.0246 0.2889 ± 0.0345 0.2244 ± 0.0280 0.1397 ± 0.0357

S135 0.2091 ± 0.0456 0.1799 ± 0.0293 0.3098 ± 0.0424 0.2520 ± 0.0301 0.1417 ± 0.0350

S136 0.1936 ± 0.0397 0.1531 ± 0.0293 0.2865 ± 0.0352 0.1924 ± 0.0293 0.1214 ± 0.0327

S137 0.2061 ± 0.0396 0.1814 ± 0.0324 0.3224 ± 0.0386 0.2655 ± 0.0348 0.1436 ± 0.0382
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Fig. 5 Category labels and attribute value of samples

Therefore, RBF is a more effective option for kernel function. This study applies
an RBF kernel function in the SVM to obtain an optimal solution. Two major RBF
parameters (i.e., C and δ) must be set appropriately. The selected value forC influences
the classification outcome. A large C results in a high classification accuracy rate in
the training phase but a low one in the testing phase. The classification accuracy
rate becomes unsatisfactory when C is excessively small, thus rendering the model
ineffective. The δ value largely affects the partitioning outcome in the feature space,
which affects the classification outcomes. Results are shown in Fig. 6. A total of
20 experiments are conducted, and the results show the following best parameters:
C = 2.0132 and δ = 8.5244.

The results for the classification are shown in Fig. 7. The samples of the five classes
used for classification are 30, 30, 20, 30, and 25. The figure shows that: One beat
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Fig. 7 Actual classification and prediction classification figure based on the PSO algorithm

number of APC is falsely classified into the SVTA, one beat number of SVTA is
falsely classified into N, and one beat number of LBBB is falsely classified into N.
The results show that the classification accuracy of N, APC, SVTA, LBBB, and PVC is
100, 96.7, 95, 96.7, and 100%, respectively. The training accuracy is 99.26%, whereas
the total classification accuracy is 97.78% based on Eq. (14).

The classification accuracy = The number of correctly classified beats

The number of total beats
× 100%

(14)
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Table 3 Comparison results

Methods Classifier Classes Accuracy (%) Reference

Morphological and time features SVM 3 97.14 Zadeh et al. [19]

Teager energy function features NN 5 95 Kamath [10]

WT and PCA MD PSO 5 95.58 Ince et al. [9]

Principal components of bispectrum LSSVM 5 93.48 Martis et al. [15]

Proposed method LIBSVM 5 97.78 –

3.3 Comparison

A comparison of the proposed method with several other methods is summarized in
Table 3. The proposed method achieves a comparable or higher accuracy than the
other methods. The proposed method has its own characteristics of no dimensionality
reduction and requires only a few samples, thereby reducing the time needed for feature
extraction, cross-optimization, and training.

4 Conclusions

This paper presents a novel framework for classifying ECG signals on the basis of
nonlinear feature extraction by combining WPD and ApEn. A total of 270 datasets
are simulated, and the LIBSVM toolbox is used for classification. PSO algorithm is
used to determine the best parameters. The training accuracy is 99.26%, whereas the
classification accuracy is 97.78%. The simulation results indicate that the proposed
method yields an acceptable accuracy without dimensionality reduction and that it can
be used as a tool for diagnosis.
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