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Abstract This paper is concerned with the problem of fault estimation for a class
of Lipschitz nonlinear systems. In order to settle the chattering problem caused by
traditional sliding mode observer for fault estimation, a second-order sliding mode
observer is proposed on the basis of the super-twisting algorithm. Firstly, linear coor-
dinate transformations are introduced to decouple the fault signal from the system.
Secondly, the Lyapunov function approach is applied to derive the criteria guarantee-
ing the stability of the observer error dynamic system. The obtained results eliminate
the cumbersome proving process for the stability of the super-twisting algorithm by
the geometric method. Thirdly, an estimation of the fault is generated by the proposed
second-order sliding mode observer. Furthermore, only the output information of the
system and observer is necessary for fault estimation. Finally, a robotic arm system is
employed to show the effectiveness of the proposed fault estimation method.
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1 Introduction

Due to the increasing scale of control systems, faults are prone to occur in these
systems. Faults may lead to degradation or instability for the whole system, even
catastrophic consequences if they cannot be detected and treated in time. Therefore, it
is becoming a hot topic on how to improve safety and reliability of control systems [5].
Fault detection and isolation (FDI) of dynamic systems has received great attention and
is developing rapidly based on this [10]. In the last few decades, the model-based FDI
has been successfully applied to real systems [12,28,30], whose basic idea is to employ
a residual signal to detect faults [14]. The existing model-based FDI methods can be
classified into the following three types according to different residual generation
forms: the observer method, the parity space method, and the parameter estimation
method. Among them, the observer method is the most popular one and has received
much attention in the existing literature. For the latest advance in observer designing,
we refer to [31,32]. Plentiful and substantial achievements for observer-based FDI
can be found in several excellent books [4,7] and survey papers [10,14,15].

It should be noted that FDI only uses the residual signal to indirectly determine
whether system is faulty or not. Compared with FDI, fault estimation is more difficult
and challenging. The shape and magnitude of a fault can be obtained directly through
fault estimation, and thus, an intuitive understanding of faults can be realized. The
observer-based fault estimation has been widely studied for this reason. To name a
few, the fault estimation problem of dynamic systems is studied in [1,13,19,21,26,29],
whereas only linear systems are considered. As most of actual systems are subject
to nonlinearities, therefore the study for fault estimation of nonlinear systems is of
both theoretical and practical significance. To the best of the authors’ knowledge, the
fault estimation problem of nonlinear systems has not been deeply studied due to its
complexity. For example, the fault estimation problem of nonlinear systems is studied
in [11,16,23] by adaptive observers, but adaptive observers often use indirect residual
information to estimate the fault. In fact, it is difficult to achieve high accuracy of
fault estimation by this method. A neural network observer is employed to estimate
the fault of a class of nonlinear systems in [25], but how to choose the parameters
of neural network is still lack of a unified scientific basis. In addition, high accuracy
of fault estimation is achieved by sliding mode observer in [9], and further study can
be seen in [6,17,24,27]. Nevertheless, sliding mode observer needs a high-frequency
switch to achieve sliding mode dynamic, which requires much energy, also brings
about chattering inevitably, and easily excites the unmodeled dynamic of the observer
error dynamic system. The unknown input (fault) estimation was studied in [22] by a
second-order sliding mode observer based on the super-twisting algorithm. However,
not only the gain values of sliding mode observer are obtained through the geometric
method, but also the studied system needs to be linear.

Motivated by above analyses, this paper aims to present a second-order slidingmode
observer to estimate the fault of a class of nonlinear systems using the super-twisting
algorithm. The proposed second-order slidingmode observer has two features: (1) The
undesirable chattering caused by traditional sliding mode observer is avoidable, and
then fault estimation can be stably obtained, which overcomes the shortcomings of
traditional sliding mode observer; and (2) The advantage of traditional sliding mode
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observer, which can achieve high accuracy of fault estimation, is retained. To eliminate
the cumbersome stability proving process of the super-twisting algorithm using the
geometric method [18], a Lyapunov function in [20] is adopted.

Subsequent sections of the paper are organized as follows. In Sect. 2, the nonlinear
system is described and proper coordinate transformations are employed to decouple
the fault. The second-order sliding mode observer is designed in Sect. 3. Estimation of
the fault is achieved in Sect. 4. The proposed method is applied to a rot-arm problem
in Sect. 5. Finally, Sect. 6 draws the conclusion for the whole paper.

Throughout the paper, A > 0 represents A is a symmetric positive definite matrix;
‖A‖ represents the Euclidean norm of vector A or Frobenius norm of matrix A;
λmin(A) and λmax(A) represent the minimum and maximum eigenvalue of matrix A,
respectively; A+ is the left pseudo-inverse of matrix A; In represents the nth-order
identity matrix; the superscripts T and -1 stand for the matrix transpose and inverse,
respectively; Rn denotes an n-dimensional Euclidean space.

2 System Description

Consider the following nonlinear continuous-time system with actuator fault

{
ẋ(t) = Ax(t) + Bu(t) + Eg(x) + Df (t),
y(t) = Cx(t),

(1)

where x ∈ R
n, y ∈ R

p, u ∈ R
m denote the state, measurement output and control

input, respectively; g is the nonlinear vector function, satisfying Lipschitz condition,
i.e.,

∥∥g (x) − g
(
x̂
)∥∥ ≤ Lg

∥∥x − x̂
∥∥, where Lg > 0 is the Lipschitz constant. f ∈ R

q

represents the actuator fault, which satisfies
∥∥ ḟ

∥∥ ≤ δ, δ ∈ (0,∞). A, B, C, D, E
are matrices of appropriate dimension, where D is the matrix with full column rank.

First of all, the following assumptions and definition are given.

Assumption 1 The matrix CD is full column rank, i.e., rank (CD) = rank (D) = q.

Assumption 2 The invariant zeros of the triple (A, D,C) are in the open left-hand
complex plane, i.e.,

rank

[
s In − A D

C 0

]
= n + rank (D)

for arbitrary complex number s with nonnegative real part.

Definition 1 [3] Consider the following dynamic system

ẋ = h (x) , (2)

where x ∈ U, x (0) = x0, and h : U → R
n is continuous on an open neighborhood

U ⊂ R
n of the origin. The zero solution of system (2) is finite-time convergent if there

exists an open neighborhood U0 ⊂ U of the origin and a function Tm : U0\ {0} →
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(0,∞), such that ∀x0 ∈ U0, the solution trajectory x (t, x0) of system (2) starting
from the initial point x0 ∈ U0\ {0} is well defined and unique in forward time for
t ∈ [0, Tm (x0)) and limt→Tm(x0)x (t, x0) = 0. Then, Tm (x0) is called the settling
time. The zero solution of system (2) is finite-time stable if it is Lyapunov stable and
finite-time convergent.

The following lemma is useful to prove that the zero solution of system (2) is
finite-time stable.

Lemma 1 [2] Suppose there exists a continuously differentiable function V : U → R,
real numbers c > 0 and β ∈ (0, 1), and a neighborhood U0 ⊂ U of the origin such
that V is positive definite onU0 and V̇ +cV β along system (2) is negative semidefinite
on U0. Then the zero solution of system (2) is finite-time stable.

If the nonlinear system (1) satisfies the above assumptions, the actuator fault f can be
decoupled by appropriate coordinate transformations, and then fault estimation can
be conveniently obtained. From the coordinate transformation x̄ = (

x̄T1 , x̄T2
) = T x

in [8,9], the following system is inferred from the original system (1). For clarity, we
omit the time parameter t in the following development, e.g., x (t) is denoted as x ,
y (t) is denoted as y, etc.

˙̄x1 = A11 x̄1 + A12 x̄2 + B1u + g1 (x̄) , (3){ ˙̄x2 = A21 x̄1 + A22 x̄2 + B2u + g2 (x̄) + D2 f,
y = C2 x̄2,

(4)

where x̄1 ∈ R
n−p, x̄2 ∈ R

p,

[
g1 (x̄)
g2 (x̄)

]
= T Eg

(
T−1 x̄

)
, and

[
A11 A12
A21 A22

]
= T AT−1,

[
B1
B2

]
= T B,

[
0 C2

] = CT−1,

[
0
D2

]
= T D,

where D2 =
[
0(p−q)×q

D̄2

]
, D̄2 ∈ R

q×q , D̄2 and C2 are both invertible.

Introducing a further coordinate transformation w = Sx̄ for system (3)–(4) with

S =
[
In−p L
0 Ip

]
, where L = [

L̄ 0
]
, L̄ ∈ R

(n−p)×(p−q), then

ẇ1 = (A11 + L A21) w1 + [A12 + L A22 − (A11 + L A21) L]w2

+ (B1 + LB2) u + [
In−p L

]
T Eg

(
T−1S−1w

)
, (5){

ẇ2 = A21w1 + (A22 − A21L) w2 + B2u + g2
(
S−1w

) + D2 f,
y = C2w2.

(6)

In the following section, an observer will be designed for system (5)–(6), and the
stability of the observer error dynamic system will be proved.
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3 Observer Designing

The following observer is designed for system (5)–(6),

˙̂w1 = (A11 + L A21) ŵ1 + [A12 + L A22 − (A11 + L A21) L]C
−1
2 y

+ (B1 + LB2) u + [
In−p L

]
T Eg

(
T−1S−1ŵ

)
, (7){ ˙̂w2 = A21ŵ1 + (A22 − A21L)C−1

2 y + B2u + g2
(
S−1ŵ

) + υ,

ŷ = C2ŵ2,
(8)

where ŵ = [
ŵ1, w2

]T. Note that ŵ does not represent the state estimation
[
ŵ1, ŵ2

]T.
Define ey = ŷ − y, e1 = ŵ1 − w1, e2 = ŵ2 − w2, then ey = C2

(
ŵ2 − w2

) = C2e2.
As C2 is invertible, then e2 can be obtained as e2 = C−1

2 ey . The second-order sliding
mode item υ is expressed as

⎧⎨
⎩

υ (t) = υ1 (t) + υ2 (t) ,

υ1 (t) = −k1 |e2|1/2 sgn (e2) ,

υ̇2 (t) = −k2sgn (e2) ,

where |e2|1/2sgn (e2) can be written in component-wise as

|e2|1/2sgn (e2) =
[
|e21|1/2sgn (e21) , . . . ,

∣∣e2p∣∣1/2sgn (
e2p

)]T
.

The parameters k1 and k2 are the gain values to be designed later, and sgn represents
the sign function.

Sliding mode surface is designed as

e2=0. (9)

From the definition of e1, e2 and (5)–(8), the observer error dynamic system is given
by

ė1 = (A11 + L A21) e1 + [
In−p L

]
T E

[
g

(
T−1S−1ŵ

)
− g

(
T−1S−1w

)]
, (10)

ė2 = A21e1 + g2
(
S−1ŵ

)
− g2

(
S−1w

)
+ υ − D2 f. (11)

By computation, it shows that S−1ŵ − S−1w =
[
In−p −L
0 Ip

] [
ŵ1 − w1
w2 − w2

]
=

[
e1
0

]
,

then
∥∥S−1ŵ − S−1w

∥∥ = ‖e1‖.
Theorem 1 Given the nonlinear system (1) with Assumptions 1–2, the observer
error dynamic system (10) is asymptotically stable, and e1 satisfies ‖e1 (t)‖
≤ N ‖e1 (0)‖ exp (−αt/2 ) if the following matrix inequality

ĀT R̄T + R̄ Ā + 1

ε
R̄ R̄T + ε

(
Lg

)2‖T E‖2
∥∥∥T−1

∥∥∥2 In−p + αR < 0 (12)
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is established. Where ε, α are positive numbers, N =
√

λmax(R)
λmin(R)

, R̄ = R
[
In−p L

]
,

Ā = [
AT
11 AT

21

]T
, and R ∈ R

(n−p)×(n−p) is a symmetric positive definite matrix.

Proof Consider the Lyapunov function V = eT1 Re1. Differentiating V with respect to
time yields

V̇ = eT1

[
(A11 + L A21)

TR + R (A11 + L A21)
]
e1

+ 2(Re1)
T [

In−p L
]
T E

[
g

(
T−1S−1ŵ

)
− g

(
T−1S−1w

)]

= eT1

(
ĀT R̄T + R̄ Ā

)
e1 + 2

(
R̄Te1

)T
T E

[
g

(
T−1S−1ŵ

)
− g

(
T−1S−1w

)]
.

By the inequality 2XTY ≤ 1
ε
XTX + εY TY , it yields that

V̇ = eT1

(
ĀT R̄T + R̄ Ā

)
e1 + 2

(
R̄Te1

)T
T E

[
g

(
T−1S−1ŵ

)
− g

(
T−1S−1w

)]

≤ eT1

(
ĀT R̄T + R̄ Ā

)
e1 + 1

ε
eT1 R̄ R̄

Te1 + ε
{
T E

[
g

(
T−1S−1ŵ

)

−g
(
T−1S−1w

)]}T {
T E

[
g

(
T−1S−1ŵ

)
− g

(
T−1S−1w

)]}

≤ eT1

(
ĀT R̄T + R̄ Ā

)
e1 + 1

ε
eT1 R̄ R̄

Te1 + ε
(
Lg

)2‖T E‖2
∥∥∥T−1

∥∥∥2‖e1‖2
= eT1

[
ĀT R̄T + R̄ Ā + 1

ε
R̄ R̄T + ε

(
Lg

)2‖T E‖2
∥∥∥T−1

∥∥∥2 In−p

]
e1.

From the inequality (12), then V̇ ≤ −αeT1 Re1 = −αV , so system (10) is asymptoti-
cally stable. As V̇ ≤ −αV , then there exists a positive N such that

‖e1 (t)‖ ≤ N ‖e1 (0)‖ exp (−αt/2 ) ,

where N =
√

λmax(R)
λmin(R)

. The poof is complete. 	

From Sect. 2, we know x̄ = S−1w, and let ˆ̄x = S−1ŵ for simplicity. Denoting
g2

(
ŵ, w

) = g2
(
S−1ŵ

) − g2
(
S−1w

)
, it follows that

ġ2
(
ŵ, w

) = dg2
dx

∣∣
x= ˆ̄x

˙̄̂x − dg2
dx

|x=x̄ ˙̄x

= dg2
dx

∣∣
x= ˆ̄x

˙̄̂x − dg2
dx

|x=x̄
˙̄̂x + dg2

dx
|x=x̄

˙̄̂x − dg2
dx

|x=x̄ ˙̄x

=
[
dg2
dx

∣∣
x= ˆ̄x − dg2

dx
|x=x̄

] ˙̄̂x + dg2
dx

|x=x̄

( ˙̄̂x − ˙̄x
)

,

and consequently

∥∥ġ2 (
ŵ, w

)∥∥ ≤ L dg2
dx

‖e1‖
∥∥∥ ˙̄̂x

∥∥∥ + Lg2 ‖ė1‖ . (13)
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where L dg2
dx

and Lg2 are the Lipschitz constant of the vector functions dg2
dx and g2.

From (10), it follows that

‖ė1‖ =
∥∥∥(A11 + L A21) e1 + [

In−p L
]
T E

[
g

(
T−1S−1ŵ

)
− g

(
T−1S−1w

)]∥∥∥
≤ ‖A11 + L A21‖ ‖e1‖ + Lg

∥∥[
In−p L

]
T E

∥∥ ∥∥∥T−1
∥∥∥ ‖e1‖

=
(
‖A11 + L A21‖ + Lg

∥∥[
In−p L

]
T E

∥∥ ∥∥∥T−1
∥∥∥)

‖e1‖ .

(14)
To facilitate the subsequent analysis, letω = A21e1−D2 f +g2

(
S−1ŵ

)−g2
(
S−1w

)
.

From (13)–(14), it implies

‖ω̇‖ ≤ ‖A21‖ ‖ė1‖ + ‖D2‖
∥∥ ḟ

∥∥ + ∥∥ġ2 (
ŵ, w

)∥∥
≤ ‖A21‖

(
‖A11 + L A21‖ + Lg

∥∥[
In−p L

]
T E

∥∥ ∥∥∥T−1
∥∥∥)

‖e1‖ + ‖D2‖ δ

+ L dg2
dx

‖e1‖
∥∥∥ ˙̄̂x

∥∥∥ + Lg2

(
‖A11 + L A21‖ + Lg

∥∥[
In−p L

]
T E

∥∥ ∥∥∥T−1
∥∥∥)

‖e1‖
≤

[(‖A21‖ + Lg2

) (
‖A11 + L A21‖ + Lg

∥∥[
In−p L

]
T E

∥∥ ∥∥∥T−1
∥∥∥)

+L dg2
dx

∥∥∥ ˙̄̂x
∥∥∥]

·N ‖e1 (0)‖ exp (−αt/2 )+‖D2‖ δ.

Choose

γ =
[(‖A21‖ + Lg2

) (
‖A11 + L A21‖ + Lg

∥∥[
In−p L

]
T E

∥∥ ∥∥∥T−1
∥∥∥)

+ L dg2
dx

∥∥∥ ˙̄̂x
∥∥∥]

·N ‖e1 (0)‖ exp (−αt/2 ) + ‖D2‖ δ,

then
‖ω̇‖ ≤ γ. (15)

Theorem 2 Under Assumptions 1–2, the observer error dynamic system (11) is finite-
time stable if the parameters k1 and k2 satisfy the condition

k1 > 0, k2 >
2γ 2

k21
+ γ. (16)

Proof Denote

ϕ = ω −
∫ t

0
k2sgn (e2) dτ , (17)

then the observer error dynamic system (11) turns into the following form

ė2 = −k1|e2|1/2sgn (e2) + ϕ, (18)

ϕ̇ = −k2sgn (e2) + ω̇. (19)
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Define z = [σ, ϕ]T, where σ = |e2|1/2sgn (e2), then component-wise of z is zi =[|e2i |1/2sgn (e2i ) , ϕi
]T
, i = 1, 2, . . . , p; ω can be written in component-wise as

ω = [
ω1, ω2, . . . , ωp

]T. 	

Once the finite-time stability of the error dynamic system (18)–(19) is proved, then

the finite-time stability of the observer error dynamic system (11) will be got.
Consider the Lyapunov function

Vi = zi
TPzi , i = 1, 2, . . . , p,

where P = 1
2

[
4k2 + k21 -k1

-k1 2

]
, as k1, k2 > 0, then P > 0.

The derivative of Vi is

V̇i = − 1

|e2i |1/2
zi
TQzi + ω̇i a

Tzi , (20)

where Q = k1
2

[
2k2 + k21 -k1

-k1 1

]
, aT = [−k1 2

]
. Computation shows that

ω̇i a
Tzi = 1

|e2i |1/2
(
zi
TMT

i Pzi + zi
TPMi zi

)
. (21)

where Mi =
[

0 0
ω̇i sgn(e2i ) 0

]
.

By (20)–(21), it yields that

V̇i = − 1

|e2i |1/2
zi
TQzi + ω̇i a

Tzi

= − 1

|e2i |1/2
zi
T

(
Q − MT

i P − PMi

)
zi

= − 1

|e2i |1/2
zi
T Q̃i zi ,

where

Q̃i = k1
2

[
2k2 + k21 + 2ω̇i sgn(e2i ) -k1 − 2ω̇i sgn(e2i )

k1
-k1 − 2ω̇i sgn(e2i )

k1
1

]
.

Let

Q̃0i =
[
2k2 + k21 + 2ω̇i sgn(e2i ) -k1 − 2ω̇i sgn(e2i )

k1
-k1 − 2ω̇i sgn(e2i )

k1
1

]
.
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As k1 > 0, if Q̃0i > 0, then Q̃i > 0. The necessary and sufficient condition for
Q̃0i > 0 is

2k2 + k21 + 2ω̇i sgn(e2i ) > 0 and det Q̃0i > 0. (22)

By simplifying, then (22) is equivalent to

k2 > −k21
2

− ω̇i sgn(e2i ) and k2 >
2ω̇2

i

k21
+ ω̇i sgn(e2i ). (23)

From (15)–(16), we know (23) is satisfied, then Q̃0i > 0, so Q̃i > 0.
On the other hand, it is easy to obtain

λmin (P) ‖zi‖2 ≤ Vi = zi
TPzi ≤ λmax (P) ‖zi‖2. (24)

Thus,

|e2i |1/2 ≤ ‖zi‖ ≤ Vi 1/2

[λmin (P)]1/2
, (25)

where ‖zi‖2 = |σi |2 + |ϕi |2.
By (24)–(25), one can get

V̇i = − 1

|e2i |1/2
zi
T Q̃i zi

≤ − 1

|e2i |1/2
λmin

(
Q̃i

)
‖zi‖2

≤ −μi Vi
1/2,

(26)

where μi = [λmin(P)]1/2λmin

(
Q̃i

)
λmax(P)

.

By (26) and Lemma 1, e2 and ϕ converge to zero in finite time, so the observer
error dynamic system (11) is finite-time stable. This completes the proof.

Remark 1 By theLyapunov function, the parameters k1 and k2 are derived to guarantee
the finite-time stability of the observer error dynamic system (11). The cumbersome
proving process for the stability of the super-twisting algorithm by the geometric
method [18] is also avoidable.

4 Fault Estimation

Based on the above section, the actuator fault estimation will be achieved by the
second-order slidingmode observer in this section. The conclusion is stated as follows.

Theorem 3 If system (1) satisfies assumptions 1–2, the parameters k1 and k2 satisfy
(16), then the actuator fault of system (1) can be estimated as

f̂ = −D+
2

∫ t

0
k2sgn (e2) dτ . (27)
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Proof FromTheorem2,ϕ converges to zero in finite time.According to (17), it follows
that

ω −
∫ t

0
k2sgn (e2) dτ → 0.

Substituting ω = A21e1 − D2 f + g2
(
S−1ŵ

) − g2
(
S−1w

)
yields

A21e1 − D2 f + g2
(
S−1ŵ

)
− g2

(
S−1w

)
−

∫ t

0
k2sgn (e2) dτ → 0. (28)

	


As the observer error dynamic system (10) is asymptotically stable fromTheorem1,
then e1 converges to zero, thus g2

(
S−1ŵ

) − g2
(
S−1w

) −→ 0, so the estimation

expression of actuator fault f can be inferred from (28) as f̂ = −D+
2

∫ t
0 k2sgn (e2) dτ .

Hence, the conclusion follows.

Remark 2 From (27), only the deviation between the output of the second-order sliding
mode observer (8) and the output of the system (1) is needed to estimate the actuator
fault f of system (1), so the fault estimation can be implemented online.

Remark 3 As the second-order sliding term−k2
∫ t
0 sgn (e2) dτ is continuous, the actu-

ator fault estimation expression (27) can avoid chattering caused by traditional sliding
mode observer [9,27].

5 Simulation Results

Consider the single link flexible joint robot arm described by [16]

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ̇m = ωm,

ω̇m = k

Jm
(θ1 − θm) − b

Jm
ωm + Kτ

Jm
u,

θ̇1 = ω1,

ω̇1 = k

J1
(θ1 − θm) − mgh

J1
sin (θ1) ,

(29)

where θm and ωm are the angular position and velocity of the motor; θ1 and ω1 are the
angular position and velocity of the link. Jm and J1 are inertia of the motor and the
link, respectively, k is the elastic constant, m is the link mass, the length of the link is
given by 2h, b is the viscous friction coefficient, Kτ is the amplifier gain, and g is the
acceleration due to gravity. It is assumed that the motor position, motor velocity, and
the sum of link velocity and link position are measured.
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Let xT = (x1, x2, x3, x4) = (θm, ωm, θ1, ω1), then the robot system (29)
is in the form of (1). Its system matrices are stated as follows [16] A =⎡
⎢⎢⎣

0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 10
1.95 0 −1.95 0

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0
21.6
0
0

⎤
⎥⎥⎦, C =

⎡
⎣1 0 0 0
0 1 0 0
0 0 1 1

⎤
⎦, E = I4.

Taking into account the actuator fault occurs in the control input channel, then
D = B, and the Lipschitz nonlinear item

g (x) =

⎡
⎢⎢⎣

0
0
0

−0.333 sin x3

⎤
⎥⎥⎦ .

Introducing the coordinate transformation

T =

⎡
⎢⎢⎣
0 0 0.7071 −0.7071
0 0 1 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ ,

then in the new coordinate, system matrices become

[
A11 A12

A21 A22

]
=

⎡
⎢⎢⎣

−4.0250 4.2250 −1.3789 0
−8.4499 4.0250 1.9500 0

0 0 0 1
34.3654 24.3000 −48.6000 −1.2500

⎤
⎥⎥⎦ ,

D2 =
⎡
⎣ 0

0
21.600

⎤
⎦ , C2 =

⎡
⎣0 1 0
0 0 1
1 0 0

⎤
⎦ .

Nonlinear term

g
(
T−1 x̄

)
=

[
g1
g2

]
=

⎡
⎢⎢⎣

0.2355 sin (0.7071x̄1 + 0.5x̄2)
−0.333 sin (0.7071x̄1 + 0.5x̄2)

0
0

⎤
⎥⎥⎦ .

Through the coordinate transformation T , the original system (1) has become the
form of (5) and (6), so the coordinate transformation S = I4.

Take α = 1.05, the Lipschitz constant Lg = 0.333, δ = 0.024π , the matrix
L = [

0 0 0
]
. By solving matrix inequality (12), ε = 1, R = 1 can be obtained.

It can be easily shown that rank (CD) = rank (D) = 1, and the triple (A, D,C)

does not possess any invariant zeros, then Assumptions 1–2 are satisfied. The initial
states of system (1) are x (0) = [

0.25 −0.08 0.23 −0.15
]T, by the coordinate trans-
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Fig. 1 The system state x̄1 and its estimation ˆ̄x1
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Fig. 2 The system state x̄2 and its estimation ˆ̄x2

formation T , then x̄ (0) = [
0.2687 0.08 0.25 −0.08

]T, and the initial conditions for

observer are set as ˆ̄x (0) = [
0 0 0 0

]T. Simulation step is set as 0.001s.
Consider the actuator occurring the following incipient fault

f (t) =
{
0, 0 ≤ t < 1.5;
0.012 sin 2π t cosπ t, 1.5 ≤ t ≤ 8.

Figures 1, 2, 3, and 4 show the actual states (dash line) and their estimates (solid
line). From Figs. 1, 2, 3 and 4, the designed observer can trace the states very well (in
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Fig. 3 The system state x̄3 and its estimation ˆ̄x3
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Fig. 4 The system state x̄4 and its estimation ˆ̄x4

order to make the estimation errors clear, the local amplification of Figs. 2 and 3 near
the initial time is shown). The simulation in Fig. 5a shows that the proposed second-
order sliding mode observer based on the super-twisting algorithm (SOSMOSTA) can
achieve fault estimation rapidly and stably, whereas in Fig. 5b, it shows that traditional
sliding mode observer (TSMO) [9,27] cannot reconstruct the fault signal very well in
Fig. 5b, which needs the high-frequency switch compared with the proposed method
in the paper.
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Fig. 5 a Fault estimation based on SOSMOSTA. b Fault estimation based on TSMO

6 Conclusions

In this paper, the actuator fault of a class of Lipschitz nonlinear systems is estimated
by the proposed second-order sliding mode observer based on the super-twisting algo-
rithm, which avoids chattering, and can estimate the fault stably. The stability of the
observer error dynamic system is proved by the Lyapunov function. Fault estimation
can be calculated online by the deviation between the output of the second-order slid-
ing mode observer and the output of the system. Simulation of a robotic arm system
shows the effectiveness of the proposed approach. Extension of the proposed method
to robust fault estimation for uncertain nonlinear systems is an interesting problem for
further study.
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