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Abstract Acoustic echo cancellation (AEC) in voiced communication systems is
used to eliminate the echo which corrupts the speech signal and reduces the efficiency
of signal transmission. Usually, the performance of AEC system based on the adap-
tive filtering degrades seriously in the presence of speech issued from the near-end
speaker (double-talk). In typical AEC scenarios, double-talk detector (DTD) must be
added to AEC for improving speech quality. One of the main problems in AEC with
DTD is that the DTD errors can result in either large residual echo or distorting the
near-end input speech. Considering the strong correlation property of speech signals,
this paper presents a novel proportionate decorrelation normalized least-mean-square
(PDNLMS) adaptiveAECwithoutDTD for echo cancellation as an interesting alterna-
tive to the typical AEC with DTDs. Unlike traditional AEC with a DTD, the proposed
PDNLMS uses the difference of near-end speech as the residual error to update adap-
tive echo channel filter during the periods of double-talk, which can efficiently reduce
the double-talk influence on the AEC adaptation process. The experimental results
show that not only the proposed PDNLMS without DTD illustrate better stability and
faster convergence rate, but it is also of a lower steady-state misalignment and better
residual signal than current methods with DTDs at a lower computational cost.

B Jiashu Zhang
jszhang@home.swjtu.edu.cn

Kun Pu
sabancd@gmail.com

Liangwen Min
lwmin@my.swjtu.edu.cn

1 The Sichuan Province Key Lab of Signal and Information Processing, Southwest Jiaotong
University, Chengdu 610031, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-015-0059-8&domain=pdf


670 Circuits Syst Signal Process (2016) 35:669–684

Keywords Proportionate algorithm · Decorrelation · Acoustic echo cancellation ·
Double-talk

1 Introduction

Acoustic echo cancellation (AEC) adaptive filters are commonly adopted in voiced
communication systems. This kind of filter estimates the impulse response of echo
channel between loudspeaker and microphone. A typical double-talk AEC system can
be seen in Fig. 1a. Echo signal y(n) is produced by filtering x(n) through an echo
channelw(n). The microphone signal consists of echo y(n), near-end speech s(n) and
system noise v(n). An adaptive finite impulse response filter ŵ(n) is modeled to obtain
the replica of echo signal. Echo cancellation is accomplished by subtracting the replica
ŷ(n) frommicrophone signal. Even if this question is straightforward, the disturbance
of near-end speech brings a great challenge for double-talk echo cancellation. For this
reason, a DTD is introduced to sense this condition. Whenever double-talk condition
is detected, the filter adaptation is slowed down or completely halted. Nevertheless, the
filter may diverge since it works inefficiently during double-talk periods. This problem
still remains to be solved.

When no near-end signal is present, several conventional algorithms work well for
AEC. The normalized least-mean-square (NLMS) algorithm in [15] achieves both
fast convergence rate and low steady-state misadjustment. A number of variable step-
size NLMS (VSS–NLMS) algorithms such as [2,16,22] are introduced to improve
the performance of NLMS. Proportionate NLMS (PNLMS) in [6,24] improves con-
vergence rate on typical echo paths, and the PNLMS only entails a modest increase
in computational complexity compared with NLMS. The affine projection algorithm
(APA) and its different versions [10,19,21,25] are attractive choices for acoustic echo
cancellation. To improve the performance of APA, Paleologu [19] comes up with a
variable step-size APA (VSS–APA). The proposed algorithm aims to recover near-
end signal with the error signal and requires no priori information about the acoustic
environment. The affine projection sign algorithm (APSA) [21] provides both good
robustness and fast convergence. Proportionate APSA [25] designed for achieving a
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Fig. 1 a A typical AEC system. b The proposed DTD echo cancellation
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better performance under sparse channel is the combination of proportionate approach
and APSA. The system [13] dealing with nonlinear acoustic channel is made up of a
nonlinear module based on the polynomial Volterra filter and a standard linear module.
In [14], a frequency domain postfilter is added to hands-free system. Meanwhile, a
psychoacoustically motivated weighting rule is introduced. The new scheme [7] uses
the least-mean-square (LMS) algorithm to update the parameters of sigmoid function
and the recursive least-square (RLS) algorithm to determine the coefficient vector of
the transversal filter. Literature [18] presents an overview about several approaches
for the control of step size in adaptive echo cancellation.

However, the presence of near-end speech s(n) disturbs the filter adaptation. As a
consequence, the above algorithms fail to work properly. So DTDs in [11,17,20,23]
are introduced to stop the filter adaptation when double-talk is detected. Traditional
DTD sets the threshold of a certain parameter between the far-end speech and near-
end signal. By comparing this parameter with a defined threshold, a decision is made
whether the adaptive filter works or should be frozen. Some well-known algorithms
deal with the detection of near-end speech. They are mainly based on energy com-
parison and cross-correlation. The energy-based Geigel algorithm in [5] compares the
magnitude of themixed desire signal d(n)withM most recent samples of x(n). Despite
the superiority of being computationally simple, this algorithm does not always per-
form reliably. An algorithm based on the orthogonality principle is introduced in [3] .
According to the idea, a cross-correlation vector between input vector and the scalar
microphone output is considered to measure double-talk. In [1,8,9], the author pro-
posed a normalized version which is called the normalized cross-correlation (NCR)
algorithm. A low complexity version of NCR is presented in [12] for implementation
on IP-enabled telephones. However, if the detection threshold is not chosen correctly,
the adaptive filter will be influenced and achieves slow convergence rate. So a dynamic
one based on signal envelopes is proposed in [23]. The results presented in this litera-
ture prove that the accuracy is higher than that in the Geigel algorithm and comparable
to the correlation-based methods.

The main objective of this manuscript is to handle double-talk condition without
DTDs. To achieve this goal, a signal decorrelationmethod is introduced to the proposed
structure. The decorrelation in this paper is taking the difference of input sequences.
In this way, the fluctuation of near-end sequences would not influence the adaptive
filter since speech signals are strongly correlated. Adaptive filter keeps refreshing to
match the latest echo channel during double-talk periods in the proposed structure.
So the proposed algorithm obtains better recovered speech signals compared with its
rival DTD algorithms and PNLMS. The paper is organized as follows. In Sect. 2, we
present the PDNLMS algorithm designed for AEC applications. A brief convergence
analysis is given in Sect. 3. Some simulation results are provided in Sect. 4 to support
our point of view. Finally, Sect. 5 concludes this work.

2 Proposed Algorithm

In this section, we will state the model in Fig. 1b. Unlike traditional double-talk echo
canceller, our proposed structure reduces the correlation of signals and focuses on
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minimizing the difference value of e(n) and e(n − 1). This novel model removes the
DTD to reduce complexity. The derivation of the algorithm will be presented below.
All signals are real-valued.

Let w(n) denotes the coefficient vector of an unknown echo system with length M ,
and ŵ(n) represents the replica of w(n)

w(n) = [w0(n), w1(n) , ..., wM−1(n)]T (1)

ŵ(n) = [ŵ0(n), ŵ1(n) , ..., ŵM−1(n)]T (2)

Superscript capital letter T denotes transportation. Suppose y(n) is the output signal
of an unknown echo path.

y(n) = wT (n)x(n) + v(n) (3)

x(n) containsM recent samples of the far-end input signal. v(n) is zero-meanGaussian
noise with variance σ 2

v . The system noise which corrupts the output of the unknown
system is independent of the input sequences.

x(n) = [x(n), x(n − 1) , ..., x(n − M + 1)]T (4)

Let us define posteriori error signals at time n and n − 1, respectively

ep(n) = y(n) + s(n) − ŵ T (n + 1)x(n) (5)

ep(n − 1) = y(n − 1) + s(n − 1) − ŵ T (n + 1)x(n − 1) (6)

ŵ(n) in (6) is replaced by ŵ(n + 1) approximately. This assumption is reasonable
because ŵ(n) changes slowly at every iteration. The desired signal refers to d(n) =
y(n) + s(n). Inspired by our previous work [26,27], let us consider the following
constrain criteria

J (n) = ∥
∥ŵ(n + 1) − ŵ(n)

∥
∥2 + λ ∗ (ep(n) − ηep(n − 1)) (7)

λ is a Lagrange multiplier. Error difference parameter Δep = ep(n) − ηep(n − 1)
helps minimize the distinction between ep(n) and its adjacent sample ep(n−1). If we
take the partial derivative of (7) with respect to ŵ(n + 1), by setting this derivative to
zero the following equations are deduced

∂ J (n)

∂ŵ(n + 1)
= 2

(

ŵ(n + 1) − ŵ(n)
) − λ (x(n) − ηx(n − 1)) = 0 (8)

ŵ(n + 1) = ŵ(n) + λ

2
(x(n) − ηx(n − 1)) (9)

Assign D(n) = x(n) − ηx(n − 1) as the new input signal. 0 ≤ η < 1 is called
the decorrelation parameter which controls the degree of decorrelation. Obviously, if
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η = 0, our algorithm will turn into NLMS. Combined (9) with d(n − 1) = xT (n −
1)ŵ (n + 1) and d(n) = xT (n)ŵ (n + 1)

⎧

⎨

⎩

d(n) = xT (n)
(

ŵ(n) + λ
2 D(n)

)

d(n − 1) = xT (n − 1)
(

ŵ(n) + λ
2 D(n)

)
(10)

e(n) = d(n) − xT (n)ŵ(n) and e(n − 1) = d(n − 1) − xT (n − 1)ŵ(n) are defined as
prior error sequences. From (10), we can obtain the solution of λ as follows

λ = 2 (e(n) − ηe(n − 1))

‖D(n)‖2 (11)

Let Δe(n) = e(n) − ηe(n − 1), so the update equation of filter coefficients can be
rewritten as

ŵ(n + 1) = ŵ(n) + μΔe(n)D(n)

‖D(n)‖2 + δ
(12)

where δ denotes a variable regularization parameter to avoid the divide-by-zero prob-
lem and μ is step-size constant.

The characteristic of echo channel should be taken into consideration before we
apply the above algorithm to echo cancellation.Most transmission channels of acoustic
echo cancellation are naturally sparse, so the coefficients are zero or close to zero.
To accelerate the convergence rate of small coefficients and ensure the quality of
recovered near-end speech, we combine the proportionate algorithm in [6] with our
method. According to this idea, the update equation of our proportionate decorrelation
method can be summarized as

ŵ(n + 1) = ŵ(n) + μΔe(n)G(n)D(n)

DT (n)G(n)D(n) + δ
(13)

Compared with (12), G(n) = diag[g0(n), g1(n), ..., gM−1(n)] mainly controls the
step size of each coefficients to achieve a faster convergence rate. The original defin-
ition of G(n) can be specified in [6]

⎧

⎨

⎩

γmin = ρ max(δp, |ŵ0(n)|, ..., |ŵM−1(n)|)
γl(n) = max(γmin, |ŵl(n)|)
gl(n) = γl(n)/

∑M−1
i=0 γi (n)

(14)

δp prevents the system from stalling while any filter coefficient equals zero. ρ sets the
value of γmin which controls the minimum adaption rate for each coefficient. For a
filter with length M = 1024, reasonable δp and ρ both may be 0.01.

3 Algorithm Analysis

We employ the tap-weight vector ŵ(n) determined by our proposed adaptive filter to
estimate echo system w(n). Define ε(n) = w(n) − ŵ(n) as the mismatch between
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ŵ(n) and w(n). Obviously, this parameter can be adopted to verify the performance
and stability of our proposed algorithm. The following equation is obtained combining
with (13)

ε(n + 1) = ε(n) − μΔe(n)G(n)D(n)

DT (n)G(n)D(n) + δ
(15)

Suppose that the input signal x(n) is a zero-mean Gaussian signal with variance σ 2
x

which is independent with s(n) and v(n). This assumption has been widely adopted in
NLMS-type analysis [6,16]. Apparently, D(n) is not an independent Gaussian process
for that

E{D(n)D(n − 1)} = E {((x(n) − ηx(n − 1)) (x(n − 1) − ηx(n − 2))}
= −ησ 2

x �= 0
(16)

Similarly, we can easily obtain E{DT (n)G(n)D(n)} = (1+η2)σ 2
x . The denominator

of (15) can be regarded as a constant according to [4,6]. (15) will be rewritten as

ε(n + 1) = ε(n) − μG(n)D(n)

(1 + η2)σ 2
x

(

DT (n)ε(n) + vΔ(n) + s(n) − s(n − 1)
)

(17)

vΔ(n) applies white Gaussian distribution (0, 2σ 2
v ) that is independent with x(n). Let

Z(n) = E{ε(n)}, if we take the expectation of (17)

Z(n + 1) =
(

I − μG(n)RDD

(1 + η2)σ 2
x

)

Z(n) (18)
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Table 1 Simulation flow of PDNLMS and other comparing algorithms

Method Algorithm flow

PNLMS [6] Initialization

δp = ρ = 0.01 δ = 0.001 ŵ(n) = 0 G(n) = 0

Update

e(n) = d(n) − ŵT
(n)x(n)

γmin = ρ max(δp, |ŵ0(n)|, ...|ŵM−1(n)|)
γl (n) = max(γmin, |ŵl (n)|)
Gl (n) = γl (n)/

∑M−1
i=0 γi (n), 0 ≤ l ≤ M − 1

ŵ(n + 1) = ŵ(n) + e(n)G(n)x(n)

xT (n)G(n)x(n)+δ

Geigel-PNLMS [5] Initialization

δp = ρ = 0.01 δ = 0.001 ŵ(n) = 0 G(n) = 0

Update

ξ(n) = |d(n)|/max{|x(n − 1)| , ...., x(n − M)}
if ξ(n) < 0.5

ŵ(n + 1) = ŵ(n) + e(n)G(n)x(n)

xT (n)G(n)x(n)+δ

Otherwise break

EPE-PNLMS [17] Initialization

δp = ρ = 0.01 δ = 0.001 ŵ(n) = 0 G(n) = 0

σ 2
x = 0 σ 2

d = 0 λ = 0.99

Update

σ 2
x = λσ 2

x + (1 − λ)x2(n) σ 2
d = λσ 2

d + (1 − λ)d2(n)

ξ(n) = ∥
∥ŵ(n)

∥
∥2 • σ 2

x /σ 2
d

if ξ(n) > 1.1

ŵ(n + 1) = ŵ(n) + e(n)G(n)x(n)

xT (n)G(n)x(n)+δ

Otherwise break

SE-PNLMS [23] Initialization

δp = ρ = 0.01 δ = 0.001 ŵ(n) = 0 G(n) = 0 α=0.99

γ=0.05 β=0.03 vx (0) = vd (0) = vy(0) = 0 Tinit=0.8

Update

ŷ(n) = ŵT
(n)x(n)

vx (n) = αvx (n − 1) + (1 − α) |x(n)|
vy(n) = αvy(n − 1) + (1 − α)

∣
∣ŷ(n)

∣
∣

vd (n) = αvd (n − 1) + (1 − α) |d(n)|
if vd (n)

vx (n)+γ
>

vy (n)

vx (n)+γ
+ β

ŵ(n + 1) = ŵ(n) + e(n)G(n)x(n)

xT (n)G(n)x(n)+δ

Otherwise break
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Table 1 continued

Method Algorithm flow

PDNLMS Initialization

δp = ρ = 0.01 δ = 0.001 ŵ(n) = 0 G(n) = 0 η = 0.99

Update

e(n) = d(n) − ŵT
(n)x(n)

e(n − 1) = d(n − 1) − ŵT
(n)x(n − 1)

D(n) = x(n) − ηx(n − 1) Δe(n) = e(n) − ηe(n − 1)

ŵ(n + 1) = ŵ(n) + Δe(n)G(n)D(n)

DT (n)G(n)D(n)+δ

RDD is the autocorrelation matrix of D(n), RDD = E
{

D(n)DT (n)
}

. Suppose that
Y(n) = (

I − μG(n)RDD/(σ 2
x + η2σ 2

x )
)

, then

Y(n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − μg0(n)
μη

1+η2
g0(n) 0 · · · 0

μη

1+η2
g1(n) 1 − μg1(n)

μη

1+η2
g1(n) · · · 0

0 μη

1+η2
g2(n) 1 − μg2(n) · · · 0

...
...

...
. . .

...

0 0 0 μη

1+η2
gM−1(n) 1 − μgM−1(n)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(19)
ŵ(n) = 0 and μ = 1 are the initial values, so the equation (18) can be written as

Z(n + 1) =
n

∏

i=0

Y(i)w(n) (20)

For any 0 ≤ η < 1, consider the row norm of matrix Y(n)

‖Y(n)‖∞ ≤ max

(

1 − (1 − η)2

1 + η2
gi (n)

)

< 1 (21)

And

‖T (n)‖∞ =
∥
∥
∥
∥
∥

n
∏

i=0

Y(i)

∥
∥
∥
∥
∥

∞
≤ ‖Y(0)‖∞‖Y(1)‖∞ · · · ‖Y(n)‖∞ (22)

Because ‖Y(n)‖∞ is always smaller than 1, the limit of T (n) keeps close to 0. Actu-
ally, the proposed PDNLMS algorithm converges. According to (21), the parameter η

determines the convergence rate and misalignment. When η equals 0, our algorithm
turns into PNLMS. This characteristic can be verified in Sect. 4.
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Fig. 3 a Far-end and near-end input, respectively. b Recovered near-end signals of PNLMS, Geigel-
PNLMS, EPE-PNLMS, SE-PNLMS, PDNLMS with sinusoidal near-end input
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Fig. 4 Residual signals of PNLMS, Geigel-PNLMS, EPE-PNLMS, SE-PNLMS, PDNLMS, respectively,
with sinusoidal near-end input

4 Simulations and Results

The simulations of the proposed algorithm are performed in a double-talk scenario.
The input signal is either sinusoidal signal generatedwith a certain frequence or speech
sequences. The echo channel with M = 1024 can be found in Fig. 2. Two measure-
ments are introduced to evaluate the performance of our PDNLMS algorithm. They
are the systemmisalignment, 20log(

∥
∥w(n) − ŵ(n)

∥
∥ / ‖w(n)‖) and speech attenuation

(SA) during double-talk [20],

SA = 1

K

K
∑

t=1

10 log

[
E[s2(t)]
E[e2(t)]

]

(23)

Misalignment(n) = 20 log

∑N−1
k=0

∥
∥w(n)−ŵi (n − k)

∥
∥

N ‖w(n)‖ (24)
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Fig. 5 Misalignment of PNLMS, Geigel-PNLMS, EPE-PNLMS, SE-PNLMS, PDNLMS with sinusoidal
near-end input. The far-end input is zero-mean Gaussian AR1 process with variance 0.01 and a pole at 0.99.
η equals 0.99, 0.9, 0.5, respectively

where N is the number of samples used in the simulation. ŵi (n) represents the tempo-
rary filter coefficients at i th iteration. K denotes the number of double-talk samples.
From (24), the SA of a better recovered signal is always closer to 0.

In this section, we compare PNLMS [6], Geigel-PNLMS [5], EPE-PNLMS [17],
the SE-PNLMS [23] with our proposed PDNLMS algorithm. Both echo path and
adaptive filters have the length of M = 1024. All of our parameter settings can be
found in the following Table 1.

4.1 Sinusoidal signal experiments

Firstly, a sinusoidal signal evaluation experiment is considered to test the perfor-
mance of different systems. y(n) is generated by filtering a speech signal x(n)

(sampling rate at 44.1kHz) through the channel w(n) with length M = 1024.
The speech comes from a part of an English dialogue. In terms of s(n), sinusoidal
signals with digital frequence f = 1/1500 and amplitude 0.4 appear every 6000
samples to act as near-end speech. An example of the two signals can be seen
in Fig. 3a. An independent Gaussian noise with 25dB signal-to-noise ratio (SNR)
is added to y(n). The step size μ and regularization parameter δ equal to 1 and
0.001, respectively. Recovered near-end signal e(n) is provided with s(n) and x(n) in
Fig. 3b.

Figure 3b compares the recovered signals of PNLMS, Geigel-PNLMS, EPE-
PNLMS, SE-PNLMSandPDNLMS. It is observed that PNLMS fails towork properly,
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Fig. 6 a Far-end and near-end input, respectively. b Recovered near-end signals of PNLMS, Geigel-
PNLMS, EPE-PNLMS, SE-PNLMS, PDNLMS with near-end speech

while other methods almost draw the outline of s(n). But their results are not stable.
PDNLMS produces the best-recovered signal which is the closest to near-end input
s(n). The residual signals in Fig. 4 clearly support our conclusion.
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Fig. 7 Residual signals of PNLMS, Geigel-PNLMS, EPE-PNLMS, SE-PNLMS, PDNLMS, respectively,
with near-end speech

Secondly, we replace the far-end input by zero-mean Gaussian AR1 process with
variance 0.01 and a pole at 0.99. The SNR decreases from 25 to 10 dB between itera-
tion number 15,000 and 24,000, then back to 25dB after 24,000. All other conditions
remain the same with the previous experiment. The misalignment performance of
three parameters, where η equals 0.5, 0.9, 0.99, respectively, is provided in Fig. 5. We
can see that for different η, the stability and convergence rate get improved while η

approaches one. The misalignment curve of PDNLMS with η = 0.99 outperforms
its rival algorithms. In more detail, PNLMS diverges because of the fluctuation of
s(n). DTD-based methods achieve similar steady-state misalignment performance
because adaptive filter is frozen once double-talk is detected. From Fig. 5, it is
observed that our proposed algorithm is immune to the disturbance of near-end sig-
nal but a little sensitive to noise. This is because PDNLMS increases the variance of
noise. However, the steady-state misalignment of PDNLMS still remains relatively
low.
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Table 2 Speech attenuation (dB) of PDNLMS and other comparing algorithms

Methods SNR (dB) Test 1 (20.41 s) Test 2 (24.94 s) Test 3 (34.01 s)

PNLMS [6] 15 5.1238 2.5469 2.2840

20 6.4404 2.9263 2.6682

25 6.7775 3.0222 2.7500

Geigel-PNLMS [5] 15 2.6516 1.5319 1.1826

20 4.2795 1.9843 1.6551

25 4.8193 2.0799 1.7745

EPE-PNLMS [17] 15 −1.4554 0.3177 −0.7634

20 −0.1217 0.7258 −0.4215

25 0.4822 0.8393 −0.3519

SE-PNLMS [23] 15 −5.0176 −1.4643 −2.3397

20 −3.0979 −0.9064 −2.0162

25 −2.6691 −0.7658 −1.8149

PDNLMS 15 −1.0272 −0.0261 −0.2416

20 0.0958 0.3007 0.0797

25 0.2985 0.3516 0.1241

4.2 Real Speech Experiments

To investigate the efficiency of our proposed PDNLMS in speech applications, the
following experiments are employed. Both far-end and near-end sources in our exper-
iment are English recordings sampling at 44.1KHz. The background is broadcast
loudspeaker. The whole system works under the sparse channel in Fig. 2 with the filter
length M = 1024. White Gaussian noise is added to the echo signal with SNR=25dB.
μ and δ are fixed at 1 and 0.001, respectively, for all algorithms. Signals in Fig. 6a are
short versions of the signal sources.Among the outputs in Fig. 6b, our PDNLMSfits the
near-end input in Fig. 6a best. In Fig. 7, we introduce the residual signal e(n)− s(n) to
compare the performance of different algorithms. Obviously, PDNLMS still performs
much better than the others.

A quantitative assessment of the PDNLMS ismeasured by SA.We test three groups
of recordings from two male speakers and a female with the length of 20–35s. Both
near-end and far-end areEnglish recordings. Since the value of K can hardly be verified
during a dialogue, we replace it by the length of whole samples. The average SAs of
different SNR are recorded in Table 2. We can observe that the SAs of the proposed
algorithm are better than those of the rival methods.

5 Conclusion

In this study, the strong correlation of speech signals is taken into consideration
to improve the performance of double-talk acoustic echo cancellation. It has been
found that adjacent speech samples are quite similar, and the difference value of input



Circuits Syst Signal Process (2016) 35:669–684 683

sequence obtains small amplitude. Then, an improved structure based on the signal
decorrelation is proposed to handle double-talk AEC without DTD. In this way, the
new scheme is able to overcome interferences from near-end. In the proposed algo-
rithm, adaptive filter keeps refreshing during double-talk periods which is different
fromDTD approaches. Moreover, the computational complexity is reduced by remov-
ing the double-talk detector in our algorithm. Simulations show that the architecture
is more efficient than those with a DTD.

Nevertheless, our scheme still suffers some problems and need to be further
addressed. First, PDNLMS increases the variance of noise so the performance may
dropwhen SNR is low. And parameters of the algorithm should be further optimized to
work better for low sampling rate signals. Solving these problems should be included
in our further work.
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