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Abstract The paper is concernedwith the observer-based H∞ slidingmode controller
design for a class of uncertain stochastic singular time-delay systems subjected to input
nonlinearity.Using the slidingmode control, a robust law is established to guarantee the
reachability of the sliding surface in a finite time interval, and the sufficient condition
for asymptotic stability of the error systemand slidingmodedynamicswith disturbance
attenuation level is presented in terms of linear matrix inequalities. Finally, an example
illustrates the proposed method.
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1 Introduction

Singular systems, also referred to as descriptor systems, generalized state-space sys-
tems, differential-algebraic systems or semi-state systems, are popular in describing
the behaviors of some practical systems, such as economic systems, chemical process,
circuit systems, electric systems, power systems, robotic systems, networked con-
trol systems, space navigation systems and biological systems [1,4,27,30]. Wu et
al. considered stochastic stability analysis for discrete-time singular Markov jump
systems with time-varying delay and piecewise-constant transition probabilities [28].
Liu [13] solved the exponential robust stability and stabilization problems for uncer-
tain time-varying delay singular systems. Kao et al. [8] have recently considered
stabilization of singular Markovian jump systems with generally uncertain transi-
tion rates. Sliding mode control (SMC), due to its attractive features such as fast
response and good transient response, insensitivity to variations in system parameters
and external disturbances, has become an effective robust control approach for a wide
variety of practical engineering systems such as robot manipulators, aircraft, under-
water vehicles, spacecraft, flexible space structures, electrical motors, power systems
and automotive engines [3,20,32]. Many results have been reported on sliding mode
control for different kinds of control systems, including stochastic systems [2,16–
18], uncertain systems [10,21,23,26,29], time-delay systems [15,17,23,25,26,31],
Markovian jump systems [2,9,11,16,17,24,25] and singular systems [5–7,12,14,22–
25,31]. Wu and Ho D.W.C [22] studied SMC of singular stochastic hybrid systems.
Wu et al. [25] probed SMC with bounded H2 gain performance of Markovian jump
singular time-delay systems. Liu et al. [14] investigated dynamic soft variable structure
control of singular systems.

As is known, input nonlinearity is often found in practice systems and can cause a
serious degradation of the system performance. Then the effects of input nonlinearity
must be taken into accountwhen analyzing and implementing aSMCscheme [5,10,26,
31]. Yang et al. [31] considered SMC for Markovian switching singular systems with
time-varying delays and nonlinear perturbations. Ding et al. [5] dealt with exponential
stabilization using SMC for singular systems with time-varying delays and nonlinear
perturbations. In practice, the state of the system is expensive to measure or even not
available due to the factors of cost, technique, etc. State observation is an important
problem for control systems. Moreover, time delays usually happen due to inevitable
effects of control equipment, signal transmission and so on, which can degrade the
performance of control systems designed and even destabilize the systems without
considering the delays.

To the authors’ knowledge, the observer-based sliding mode control problem has
attractedmore andmore attention (see [9,10,17,19,24,26] and references therein). But
there are few investigations on the observer-based H∞ sliding mode control for sto-
chastic singular systems, especially with uncertainties and time delays. Wu et al. [26]
investigated the observer-based sliding mode control problem for uncertain nonlinear
neutral delay systems. The H∞ non-fragile observer-based sliding mode control for
uncertain time-delay systems and It ô stochastic systems with Markovian switching
were considered in [9] and [10], respectively. But the above approaches proposed in
the above papers are not workable for singular systems. On the other hand, the sliding
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mode control problem for singular time-delay systems were considered to guarantee
the robust exponential stability and generalized quadratical stability in [5] and [23],
respectively. Wu et al. [24] presented some good results about state estimation and
sliding mode control of Markovian jump singular systems. And the sliding mode con-
trollers were designed for Markovian jumping singular systems [31]. However, to the
best of our knowledge, there is no report on observer-based H∞ sliding mode con-
troller design for uncertain stochastic singular time-delay systems subjected to input
nonlinearity, which is still challenging and of importance.

Motivated by the aforementioned reasons, the purpose of this paper lies in the
development of observer-based H∞ sliding mode controller for uncertain stochastic
singular time-delay systems with input nonlinearity. Our work is not a simple exten-
sion of [9] and [21]; the main difficulties come from the establishment of a novel
switching function, which has a nonlinear differentiable sub-function and takes the
singular matrix E into account. And the control input is designed to guarantee that
the estimated state can be driven to the sliding surface when the input nonlinearity
is presented. Hence, we propose a more simple and convenient method to design the
observer and controller gain matrix compared with the methods in [9,10,17,26]. In
Sect. 2, system description and definitions are presented. In Sect. 3, based on an H∞
non-fragile observer, a sliding mode control law is established to guarantee the reach-
ability of the sliding surface in a finite time interval. The sufficient condition for the
asymptotic stability of the overall closed-loop system with a disturbance attenuation
level is derived via LMI. In Sect. 4, an example is provided to illustrate the validity of
the proposed method. Section 5 is conclusion.
Notation In this paper, LP

F0
([−τ, 0];Rn) is the family of all F0-measurable

C([−τ, 0];Rn)-valued random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0} such that
sup−τ≤θ≤0 E{‖ξ(θ)‖22} < ∞, where E{·} stands for the mathematical expectation
operator with respect to the given probability measure P.Rn and Rn×m denote
n−dimensional Euclidean space and the set of all n × m real matrices, respectively;
AT denotes the transpose of matrix A; I and 0 represent the identity matrix and a zero
matrix in appropriate dimension, respectively. P > 0(P ≥ 0) means that the matrix
P is a real symmetric and positive definite (semi-positive definite) matrix. ‖·‖ denotes
the standard Euclidean norm of a vector or the induced norm of a matrix. Matrices, if
their dimensions are not explicitly stated, are assumed to be compatible for algebraic
operations.

2 System Description and Definitions

Consider a class of uncertain time-delay systems subjected to input nonlinearity
described by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Edx(t) = [(A + Δ A(t))x(t) + (A1 + Δ A1(t))x(t − τ) + Bφ(u)

+ f (x) + Gv(t)]dt + g(x(t), t)dβ(t),

y(t) = Cx(t) + Dx(t − τ),

x(t) = φ(t), t ∈ [−τ, 0],
(1)
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where x(t) ∈ Rn is the state vector; φ(u) ∈ Rm is the control input; f (x) is the
nonlinear disturbance input, v(t) is the exogenous noise; g(x(t), t) is the stochastic
perturbations. β(t) is the one-dimensional Brownian motion satisfying E{dβ(t)} = 0
and E{dβ2(t)} = dt.φ(t) ∈ LP

F0
([−τ, 0]; Rn) is a compatible vector-valued con-

tinuous function. τ denotes the time delay. Here, E, A, A1, B,G,C and D are real
constant matrices of appropriate dimensions. The rankE = r < n,ΔA(t) andΔA1(t)
are the uncertainties which are assumed to be the form of

[Δ A(t)),Δ A1(t))] = MF(t)[S, S1] (2)

where M, S and S1 are the real constant matrices and F(t) : R �−→ Rk×l is the
unknown time-varying matrix function satisfying

FT (t)F(t) ≤ I. (3)

The following assumptions and lemmas are necessary for the sake of convenience.
We will assume the followings to be valid.

Assumption 1 The nonlinear input φ(u) applied to the system satisfies the following
property:

uTφ(u) ≥ αuT u. (4)

where α is a nonzero positive constant, and φ(0) = 0.

Assumption 2 For ∀x1, x2, f (x) satisfies

‖ f (x1) − f (x2) ‖≤ ρ ‖ x1 − x2 ‖ . (5)

where ρ is a positive constant.

Assumption 3 For g(x(t), t) there is a constant matrix H such that

trace
[
gT (x(t), t)PEg(x(t), t)

]
≤ ‖Hx(t)‖2 (6)

for all t ≥ 0.

Assumption 4 The singular system (1) is regular and impulse-free.

Lemma 1 Let Q = QT , S, R = RT be matrices of appropriate dimensions, then
R < 0, Q − SR−1ST < 0 is equivalent to

[
Q S
ST R

]

< 0 (7)

Lemma 2 Let D, E and F(t) be real matrices of appropriate dimensions with F(t)
satisfying FT (t)F(t) ≤ I and scalar ε > 0, the following inequality

DF(t)E + ET FT (t)DT ≤ εDDT + 1

ε
ET E (8)

is always satisfied.
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3 Sliding Mode Control

3.1 H∞ Non-Fragile Observer Design

First, the following non-fragile state observer is utilized to estimate the state of uncer-
tain time-delay systems (1)

E ˙̂x(t) = Ax̂(t) + A1 x̂(t − τ) + Bφ(u) + f (x̂) + (L + ΔL(t))(y(t) −Cx̂(t)), (9)

where L ∈ Rn×q is the observer gain to be designed later and ΔL(t) is a nonlinear
function matrix satisfying ‖ ΔL(t) ‖≤ δ, where δ is a positive constant.

Define the error e(t) = x(t) − x̂(t), then it follows from systems (1) and (12) that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ede(t) = {[(A + ΔA(t)) − (L + ΔL(t))C]e(t) + [(A1 + ΔA1(t))

− (L + ΔL(t))D]e(t − τ) + ΔA(t)x̂(t) + [ΔA1(t)

− (L + ΔL(t))D]x̂(t − τ) + f (x) − f (x̂) + Gv(t)}dt
+ g(x(t), t)dβ(t),

ye(t) =Ce(t) + De(t − τ) + Dx̂(t − τ).

(10)

Then, we introduce H∞ performance measure as follows:

J = E

{∫ ∞

0
[yTe (s)ye(s) − γ 2vT (s)v(s)]dt

}

,

Therefore, the problem is to determine the error e(t) within the upper bound, i.e.,

E

{

supv(t)∈L2

‖ ye(t) ‖2
‖ v(t) ‖2

}

< γ.

3.2 Switching Surface and Control Scheme Design

A novel switching function is chosen as

s(t) = σ(t) + BT Ex̂(t), (11)

with
σ̇ (t) = BT BK x̂(t) − BT A1 x̂(t − τ) − BT f (x̂),

where the matrix K is to be chosen later, obviously, BT B is non-singularity.

Remark 1 Notice that the switching surface function is designed with the singular
matrix E , and thematrix A1 and the nonlinear disturbance f (x) are taken into account,
which enable to avoid some difficulties caused by time delays and disturbances when
deriving the following sliding mode dynamics.
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Control input φ(u) in system (1) should be appropriately designed such that the
estimated state in system (10) can be driven onto the sliding surface even when the
input nonlinearity presented. The SMC law is derived as follows:

u(t) = − Ψ (x̂)

α‖s(t)‖ s(t), (12)

whereΨ (x̂) = β+‖K x̂(t)‖+‖(BT B)−1BT Ax̂(t)‖+‖(BT B)−1BT L(y−Cx̂(t))‖+
δ‖(BT B)−1BT ‖ · ‖y − Cx̂(t)‖ > 0, and β is an arbitrarily positive scalar.

3.3 Reachability Analysis

This proposed control scheme above will drive the estimate state to approach the
sliding mode surface s(t) = 0 in a finite time interval, and it is stated in the following
theorem.

Theorem 1 If the control input u(t) is designed as (12), then the trajectories of the
observer system (9) converges to the sliding surface s(t) = 0 in a finite time interval.

Proof From system (9) and Eq. (11), we have

ṡ(t) = BT (BK + A)x̂(t) + BT Bφ(u) + BT (L + ΔL(t))(y − Cx̂(t)). (13)

Let V1(t) = 1
2 s

T (t)(BT B)−1s(t), It follow from Eq. (13) that

V̇1(t) = sT (t)(BT B)−1
[
BT (BK + A)x̂(t) + BT Bφ(u) + BT (L

+ΔL(t))(y − Cx̂(t))
]

= sT (t)φ(u) + sT (t)
[
K x̂(t) + (BT B)−1BT Ax̂(t) + (BT B)−1BT L(y

− Cx̂(t)) + (BT B)−1BTΔL(t)(y − Cx̂(t))
]

≤ sT (t)φ(u)+ ‖ s(t) ‖ (‖ K x̂(t) ‖ + ‖ (BT B)−1BT Ax̂(t) ‖
+ ‖ (BT B)−1BT L(y − Cx̂(t)) ‖
+δ ‖ (BT B)−1BT ‖ · ‖ y − Cx̂(t) ‖). (14)

Using Eq. (12) and Assumption 1, we have uTφ(u) = − Ψ (x̂)
α‖s(t)‖ s

T (t)φ(u) ≥ αuT u,
then

sT (t)φ(u) ≤ −Ψ (x̂)‖s(t)‖. (15)

Substituting (15) into (14) yields

V̇1(t) ≤ −β ‖ s(t) ‖< 0, f or ‖ s(t) ‖
= 0. (16)

From (16), we prove the trajectory of the observer system (9) can converge to the
surface s(t) = 0 in a finite time interval. The proof is completed. ��
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From ṡ(t) = 0, the following equivalent control law can be obtained as

φeq(u) = − K x̂(t) − (BT B)−1BT Ax̂(t) − (BT B)−1BT (L

+ ΔL(t))(y − Cx̂(t)).
(17)

Substituting (17) into the observer system (9) and noting B̄ = I − B(BT B)−1BT ,
the sliding mode dynamics in the state estimation space can be obtained as follows

E ˙̂x(t) = (B̄ A − BK )x̂(t) + A1 x̂(t − τ) + B̄(L + ΔL(t))[Ce(t)

+ De(t − τ) + Dx̂(t − τ)] + f (x̂).
(18)

Hence, the stability of the overall closed-loop system with (1) and (4) will be analyzed
through the error system (10) and the sliding mode dynamics (18).

3.4 Analysis of Asymptotic Stability

In the following theorem, the sufficient condition for the asymptotic stability of the
overall closed-loop system with a disturbance attenuation level is given via LMI.

Theorem 2 Consider that the systems (1) with (10) and (18). Given a scalar γ > 0,
the switching function is chosen as (11), and the SMC law is chosen as (12). If there
exist matrices L , K, invertible matrices P0, Q0, symmetric positive definite matrices
Q1 > 0, Q2 > 0, and scalars α > 0, β > 0, εi > 0 (i = 1, 2), δ > 0, such that the
following conditions hold

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q0EP0 = diag{Ir , 0},

Γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ11 Γ12
1
2H

T H + CT LT B̄T PT −PLD + CT D PG N1

∗ Γ22 DT LT B̄T PT DT D 0 0
∗ ∗ Γ33 Γ34 0 N2
∗ ∗ ∗ Γ44 0 0
∗ ∗ ∗ ∗ −γ 2 I 0
∗ ∗ ∗ ∗ ∗ N3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

(19)
where

P = P0Q0,

Γ11 = P(A − LC) + (A − LC)T PT + 1

ε1
ST S + (4δ2 + 1)CTC

+ ρ2 I + Q1 + 1

2
HT H,

Γ12 = 1

ε1
ST S1 + P(A1 − LD) + CT D,
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Γ22 = 1

ε1
ST1 S1 + (2δ2 + 1)DT D − Q1,

Γ33 = P(B̄ A − BK ) + (B̄ A − BK )T PT + 1

ε2
ST S + 1

2
HT H + ρ2 I + Q2,

Γ34 = 1

ε2
ST S1 + PA1 + P B̄LD,

Γ44 = 1

ε2
ST1 S1 + (2δ2 + 1)DT D − Q2,

N1 = [PM, P, 0, 0], N2 = [0, 0, P B̄, P],
N3 = diag

{

− 1

ε1 + ε2
I, − 1

4
I, − 1

3
I, − I

}

.

the overall closed-loop system with (9) and (12) is asymptotically stable with distur-
bance attenuation level γ .

Proof It is easy to know that there must exist two invertible matrices P0 and Q0 such
that

Q0EP0 = diag{Ir , 0}.
Assume that P = P0Q0 satisfying PE = P0diag[Ir , 0]P−1

0 ≥ 0. Thus, we could
choose the following Lyapunov function candidate:

V2(t) = eT (t)PEe(t) +
∫ t

t−τ

eT (s)Q1e(s)ds + x̂ T (t)PEx̂(t)

+
∫ t

t−τ

x̂ T (s)Q2 x̂(s)ds.

(20)

First, we consider the overall closed-loop system with v(t) = 0, we have

LV2(t) = 2eT (t)P{[(A + ΔA(t)) − (L + ΔL(t))C]e(t) + [(A1 + ΔA1(t))

− (L + ΔL(t))D]e(t − τ) + ΔA(t)x̂(t) + [ΔA1(t) − (L

+ΔL(t))D]x̂(t − τ) + f (x) − f (x̂)} + eT (t)Q1e(t)

− eT (t − τ)Q1e(t − τ) + 1

2
trace

{
gT (x(t), t)PEg(x(t), t)

}

+ 2x̂ T (t)P{(B̄ A − BK )x̂(t) + A1 x̂(t − τ) + B̄(L + ΔL(t))[Ce(t)

+ De(t − τ) + Dx̂(t − τ)] + f (x̂)} + x̂ T (t)Q2 x̂(t)

− x̂ T (t − τ)Q2 x̂(t − τ)

= eT (t)
[
P(A − LC) + (A − LC)T PT

]
e(t) + 2eT (t)P(ΔA(t)e(t)

+ΔA1(t)e(t − τ)) − 2eT (t)PΔL(t)Ce(t) + 2eT (t)P(A1

− LD)e(t − τ) − 2eT (t)PΔL(t)De(t − τ)

+ 2eT (t)P(ΔA(t)x̂(t) + ΔA1(t)x̂(t − τ)) − 2eT (t)PLDx̂(t − τ)

− 2eT (t)PΔL(t)Dx̂(t − τ) + 2eT (t)P( f (x) − f (x̂)) + eT (t)Q1e(t)
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− eT (t − τ)Q1e(t − τ) + 1

2
trace

{
gT (x(t), t)PEg(x(t), t)

}

+ x̂ T (t)
[
P(B̄ A − BK ) + (B̄ A − BK )T PT

]
x̂(t)

+ 2x̂ T (t)PA1 x̂(t − τ) + 2x̂ T (t)P B̄L[Ce(t) + De(t − τ)

+ Dx̂(t − τ)] + 2x̂ T (t)P B̄ΔL(t)[Ce(t) + De(t − τ) + Dx̂(t − τ)]
+ 2x̂ T (t)P f (x̂) + x̂ T (t)Q2 x̂(t) − x̂ T (t − τ)Q2 x̂(t − τ). (21)

Using Assumption 2 and Lemmas 2–3, we have

2eT (t)P[ΔAe(t) + ΔA1e(t − τ)] ≤ ε1e
T (t)PMMT PT e(t)

+ 1

ε1
[Se(t) + S1e(t − τ)]T [Se(t) + S1e(t − τ)], (22)

−2eT (t)PΔL(t)Ce(t) ≤ 2δ ‖ PT e(t) ‖ · ‖ Ce(t) ‖
≤ eT (t)PPT e(t) + δ2eT (t)CTCe(t), (23)

− 2eT (t)PΔL(t)De(t − τ) ≤ eT (t)PPT e(t) + δ2eT (t − τ)DT De(t − τ), (24)

2eT (t)P(ΔAx̂(t) + ΔA1 x̂(t − τ)) ≤ ε2e
T (t)PMMT PT e(t)

+ 1

ε2
[Sx̂(t) + S1 x̂(t − τ)]T [Sx̂(t) + S1 x̂(t − τ)], (25)

− 2eT (t)PΔL(t)Dx̂(t − τ) ≤ eT (t)PPT e(t) + δ2 x̂ T (t − τ)DT Dx̂(t − τ), (26)

2eT (t)P( f (x) − f (x̂)) ≤ 2ρ‖eT (t)P‖ · ‖e(t)‖ ≤ eT (t)PPT e(t) + ρ2eT (t)e(t),
(27)

2x̂ T (t)P B̄ΔL(t)Ce(t) ≤ x̂ T (t)P B̄ B̄T PT x̂(t) + δ2eT (t)CTCe(t), (28)

2x̂ T (t)P B̄ΔL(t)De(t − τ) ≤ x̂ T (t)P B̄ B̄T PT x̂(t) + δ2eT (t − τ)DT De(t − τ),

(29)

2x̂ T (t)P B̄ΔL(t)Dx̂(t − τ) ≤ x̂ T (t)P B̄ B̄T PT x̂(t) + δ2 x̂ T (t − τ)DT Dx̂(t − τ),

(30)

2x̂ T (t)P f (x̂) ≤ 2ρ‖x̂ T (t)P‖ · ‖x̂(t)‖ ≤ x̂ T (t)PPT x̂(t) + ρ2 x̂ T (t)x̂(t). (31)

In light of Assumption 3, it holds

trace
[
gT (x(t), t)PEg(x(t), t)

]
≤ ‖Hx(t)‖2 = [e(t) + x̂(t)]T HT H [e(t) + x̂(t)].

(32)
Now substituting (22)–(32) into (21), we result in

LV2(t) ≤ ωT (t)Ξω(t),

where ωT (t) = [eT (t), eT (t − τ), x̂ T (t), x̂ T (t − τ)], and
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Ξ =
⎡

⎢
⎣

Ξ1
1
ε1

ST S1+P(A1−LD) 1
2 H

T H+CT LT B̄T PT −PLD

∗ Ξ2 DT LT B̄T PT 0
∗ ∗ Ξ3

1
ε2

ST S1+PA1+P B̄LD

∗ ∗ ∗ Ξ4

⎤

⎥
⎦ (33)

with

Ξ1 =P(A − LC) + (A − LC)T PT + (ε1 + ε2)PMMT PT + 1

ε1
ST S

+ 4PPT + 2δ2CTC + ρ2 I + Q1 + 1

2
HT H,

Ξ2 = 1

ε1
ST1 S1 + 2δ2DT D − Q1,

Ξ3 =P(B̄ A − BK ) + (B̄ A − BK )T PT + 1

ε2
ST S + 1

2
HT H

+ 3P B̄ B̄T PT + PPT + ρ2 I + Q2,

Ξ4 = 1

ε2
ST1 S1 + 2δ2DT D − Q2.

It can be shown that if LMI (19) is satisfied, Ξ < 0 holds by Lemma 1. Thus

LV2(t) ≤ ωT (t)Ξω(t) < 0, ∀ ω(t) 
= 0,

which shows that the closed-loop system is asymptotically stable.
Then consider the following performance index

J (t) =
∫ ∞

0
[yTe (s)ye(s) − γ 2vT (s)v(s)]ds,

≤
∫ ∞

0
[yTe (s)ye(s) − γ 2vT (s)v(s) + LV2(s)]ds

=
∫ ∞

0
qT (s)�q(s)ds

(34)

where qT (t) = [eT (t), eT (t − τ), x̂ T (t), x̂ T (t − τ), v(t)], and

� =

⎡

⎢
⎢
⎢
⎢
⎣

Ξ1 + CTC 1
ε1
ST S1 + P(A1 − LD) + CT D 1

2H
T H + CT LT B̄T PT

∗ Ξ2 + DT D DT LT B̄T PT

∗ ∗ Ξ3
∗ ∗ ∗
∗ ∗ ∗

−PLD + CT D PG
DT D 0

1
ε2
ST S1 + PA1 + P B̄LD 0

Ξ4 + DT D 0
∗ −γ 2 I

⎤

⎥
⎥
⎥
⎥
⎦

(35)
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By utilizing Lemma 1, it is obvious that � < 0 is equivalent to (19). This means that
J (t) < 0 (for ω(t) 
= 0). And then it results in

E

{

sup
v(t)∈L2

‖ye(t)‖2
‖v(t)‖2

}

< γ.

So the overall closed-loop system (18) is asymptotically stable with disturbance atten-
uation γ . Then the proof is obtained. ��
Remark 2 Our results can be applied to the uncertain stochastic systems with time
delays, when all the matrix E in Theorem 1 and Theorem 2 are assumed to be the
identity matrix I .

Remark 3 According to the above proposed approach, we derive that P = P0Q0 such
that Q0EP0 = diag{Ir , 0}, and then Γ < 0 in (19) is a linear matrix inequality with
the matrix variables L , K , Q1 > 0 and Q2 > 0, which could be solved by MATLAB
Toolbox. Therefore, when solving the LMI (19), we could also give the design of the
observer gain matrix L and the controller gain matrix K , which is more simple and
convenient than the methods in [9,10,17,26]. From Theorem 1, we conclude that our
proposed method is more convenient and less conservative.

4 Numerical Examples

In this section, a numerical example demonstrates the effectiveness of the method
mentioned above. Consider the system in the form of (1) with parameters as follows:

E =
⎡

⎣
−0.18 0.36 0.6
−0.06 0 0.2
0.09 −0.18 −0.3

⎤

⎦ , A =
⎡

⎣
−12.5 −3.2 2.1

9 1 −1.5
0.5 −9 16

⎤

⎦ ,

A1 =
⎡

⎣
−2.4 1 0
0 1.2 −1

−0.56 −3 6

⎤

⎦ , B =
⎡

⎣
21
3
25

⎤

⎦ , G =
⎡

⎣
10
2
16

⎤

⎦ ,

C =
[
2 −1 0

−1 5 0.75

]

, D =
[−4 −3 0
−5 9 −1

]

.

Let the initial value be x(t) = φ(t) = [−1.5, 1, 0.5]T for any t ∈ [−0.8, 0] and
the exogenous noise be v(t) = 1/(et + 50). Assume the uncertain parameter matrix
function F(t) = 0.5 e−t and the constant matrices:

M =
⎡

⎣
5 −2 1
1 0.5 0
1 −2 0.6

⎤

⎦ , S =
⎡

⎣
0 0 0.1
0 0.5 0.5
1 1 1

⎤

⎦ , S1 =
⎡

⎣
−1 0.2 0
0 2 0.1
0.5 0 5

⎤

⎦ .

And f (x) = 0.75 sin(x(t)), ρ = 0.75 in Assumption 2 and H =
[
1.5 0 1.2
−3 1.6 −1.8

]

in Assumption 3.
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Firstly, we know there exist two invertible matrices Q0 =
⎡

⎣

25
9 − 25

3 0
0 − 50

3 0
1
2 0 1

⎤

⎦ and

P0 =
⎡

⎣
0 1 10

3
1 0 0
0 0 1

⎤

⎦ such that Q0EP0 =
⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦. So we can take

P = P0Q0 =
⎡

⎣
1.6667 −16.6667 3.3333
2.7778 −8.3333 0
0.5000 0 1.0000

⎤

⎦ .

Then, we set the scalars α = 2, β = 5, γ = 0.24, ε1 = 0.15, ε2 = 0.2, δ = 0.36

and ΔL(t) =
⎡

⎣
0.6 0
0 0.6
0 0

⎤

⎦. Now we can obtain the matrices by LMI (19) in the

Theorem 2 and MATLAB as follows:

L =
⎡

⎣
−2.6405 0.6929
−0.6626 −0.0290
2.9673 −0.2930

⎤

⎦ , K = 105 × [
1.2877 0.6281 0.6690

]
,

Q1 =
⎡

⎣
296.9642 77.5053 −52.9202
77.5053 129.0531 −35.2497

−52.9202 −35.2497 89.4454

⎤

⎦, Q2 = 106 ×
⎡

⎣
7.1513 3.4884 3.7151
3.4884 1.7018 1.8123
3.7151 1.8123 1.9302

⎤

⎦.

Therefore, we can design the non-fragile state observer as (9) and the overall closed-
loop system with (9) and (12) is asymptotically stable with disturbance attenuation
level γ = 0.24, where the switching function as (11) is

s(t) = [−1.7100 3.0600 5.700
]
x̂(t) −

∫ t

0

[
21 3 25

]
f (x̂)dt

+
∫ t

0
108 × [

1.3843 6.7521 7.1918
]
x̂(s)

− [−64.4000 −50.4000 147.0000
]
x̂(s − τ)ds,

and the SMC law as (12) is u(t) = − Ψ (x̂)
2‖s(t)‖ s(t) and

Ψ (x̂) = 5 + ‖105 × [
1.2877 0.6281 0.6690

]
x̂(t)‖

+ ‖ [−0.2074 −0.2690 0.4089
]
x̂(t)‖

+ ‖ [
0.0156 0.0066

]
(

y −
[
2 −1 0

−1 5 0.75

]

x̂(t)

)

‖

+ 0.36‖ [
0.0195 0.0028 0.0233

] ‖ · ‖y −
[
2 −1 0

−1 5 0.75

]

x̂(t)‖.
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Figures 1, 2, 3 and 4 illustrate the simulation results. Figure 1 shows the trajectories
of the system states x1, x2, x3 and the estimated states x̂1, x̂2, x̂3. The responses of the
error states e1, e2, e3 are shown if Fig. 2. And the sliding mode switching function
s(t) is shown in Fig. 3 with the nonlinear control input φ(u) shown in Fig. 4.
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Fig. 1 State trajectories of x1, x̂1; x2, x̂2; x3, x̂3
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Fig. 2 Trajectories of error states e1, e2, e3

Fig. 3 Sliding mode switching
function s(t)
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Fig. 4 Nonlinear control input
φ(u)
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5 Conclusions

The problem of non-fragile observer-based H∞ sliding mode control for singular sys-
tem with time-varying delay and nonlinear perturbations has been addressed. Based
on the sliding mode control strategy and LMI technique, some criteria on asymptotic
stability of the error system and sliding mode dynamics with disturbance attenua-
tion level are derived in terms of LMIs. Finally, a numerical example demonstrates
the effectiveness of the method mentioned above. Moreover, we will consider the
relate topics, such as stochastic singular time-varying delay systems, network-based
framework, in the current and future work to achieve more industrial oriented results.
Motivated by [3,32], we also will utilize our simple and convenient approach to the
practical models.
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