
Circuits Syst Signal Process (2016) 35:185–209
DOI 10.1007/s00034-015-0042-4

A Multistage Space–Time Equalizer for Blind Source
Separation

Iman Moazzen1 · Panajotis Agathoklis1

Received: 26 March 2014 / Revised: 20 March 2015 / Accepted: 20 March 2015 /
Published online: 17 April 2015
© Springer Science+Business Media New York 2015

Abstract A multistage space–time equalizer (STE) is proposed to blindly separate
signals received by an antenna array from different sources simultaneously. Neither
the direction of arrival (DOA) nor a training sequence is assumed to be available at the
receiver. The only assumption is that the transmitted signals satisfy the constant mod-
ulus property, which is valid for many modulation schemes, and can be exploited by
the multi-modulus algorithm. Each stage consists of an adaptive beamformer, a DOA
estimator and an equalizer. Its function is to jointly combat multi-user interference and
the effect of fading channels between sources and the antenna. An adaptive version
of the basic structure of generalized sidelobe canceller (GSC), called adaptive GSC,
is presented which can track a user and strongly attenuate other users with different
DOAs. The possibly time-varying DOA for each user is estimated using the phase shift
between the outputs of two subarray beamformers at each stage. The estimated DOAs
are used to improve multi-user interference rejection and to compute the input to the
next stage. In order to significantly alleviate inter-stage error propagation and provide
a fast convergence, a mean-square-error sorting algorithm is proposed which assigns
detected sources to different stages according to the reconstruction error. Further, to
speed up the convergence, a simple, yet efficient, DOA estimation algorithm is pro-
posed which can provide good initial DOAs for the multistage STE. Simulation results
illustrate the performance of the proposed STE and show that it can deal effectively
with changing DOAs and time-varying channels.
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1 Introduction

Source signal separation is one of the fundamental issues in communication systems
in which a set of source signals have been mixed together into a combined signal
and the objective is to recover the source signals. This mixture mainly happens due
to co-channel interference (CCI) and inter-symbol interference (ISI). CCI is caused
by simultaneously serving several users which transmit data at the same frequency
from different directions, and ISI is caused either by the inherent frequency-selective
characteristic of the communication channels, or by multipath propagation [14]. The
first type of ISI, known as temporal ISI, results in successive symbols being blurred,
and in the second, called spatial ISI, several delayed versions of the same data are
received by the antenna from different direction of arrivals (DOAs) as a result of
reflections from different objects. In order to separate all users from a set of mixed
signals received by the antenna and recover the data transmitted by each user, CCI and
ISI have to be cancelled.

One of the techniques to combat CCI is using antenna arrays and beamforming
[22]. For narrowband signals, beamforming can be achieved by an instantaneous linear
combination of the received signals in the antenna array. A comprehensive review of
narrowband beamforming techniques can be found in [22]. If a pilot signal is available,
the beamformer’s weights can be adjusted so that the error between the output and the
reference signal is minimized. Another approach for combating CCI using antenna
arrays consists of two main stages: separating different users based on their locations
using DOA estimation techniques and then designing a beamformer (spatial filter) to
pass the desired signal propagating from the user of interest while rejecting signals
from all other users with different DOAs. Some of the best-known techniques for DOA
estimation are MUSIC [17] and ESPRIT [15] and their many variations. MODE is
another DOA estimation techniquewith performance close to themaximum likelihood
method at a cost ofmore computation thanMUSIC [20].MODE is statistically efficient
when either the SNR or the number of snapshots is sufficiently large [3]. MODE with
extra roots (MODEX) is a MODE-based DOA estimation algorithm with an improved
performance for lower SNR [3]. These methods entail high computational complexity.
In contrast, DOA estimation techniques using matrix pencil (MP) [16] are fast, but the
DOA estimation capacity (maximum number of users which can be detected) is less
than that ofMUSICandESPRIT.The aforementionedmethods estimateDOAswithout
employing training sequences (pilot data). If pilot data are available, it can be used to
obtain DOAs using, for example, the phase difference between subarray beamformers
as it is done in [24]. The performance of this method is very good in terms of accuracy,
capacity and computational complexity at the cost of decreasing the bit rate due to
transmitting a training sequence. When the DOA of the signal of interest is known,
three well-known beamforming techniques are delay-and-sum, linearly constrained
minimum variance (LCMV) and its efficient implementation known as generalized
sidelobe canceller (GSC) [22].
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After reducing CCI and capturing the desired signal by the beamformer, the last
stage in recovering the transmitted data is equalization which reduces ISI. Linear and
decision-feedback equalizers (DFEs) are two common approaches. The former is very
simple but not very effective when fading is very deep [14]. In such a case, the latter
shows better performance, but it may suffer from error propagation, due to feedback
of wrong decisions, resulting in performance degradation.

Separate CCI and ISI cancellation may not result in satisfactory performance, as
was articulated in [7]. Instead, a beamformer and an equalizer can be combined into
one device called space–time equalizer (STE) to jointly combat CCI and ISI. The
optimum STE is the multi-user maximum likelihood sequence estimator (MLSE) [13]
which requires the channel information of all users and entails high computational
complexity. Several suboptimal hybrid STEs have been proposed in the literature [5,7–
9] which function properly provided that either training sequence [5,8,9] is available,
or the DOA is known [7].

Blind source separation (BSS) refers to the case where the transmitted signals are
recovered without using any information, such as training sequences or DOAs. A
well-known and simple BSS approach is the multistage constant modulus algorithm
(CMA) [2,10,18,19,23]. The constant modulus property [4], which is true for many
modulation schemes such as QAM, PSK and FSK, is instrumental in CMA. Thanks to
multistage structure, this approach is able to capture multiple co-channel sources and
provides estimates of their DOAs. Each stage consists of a weight-and-sum CMA-
based adaptive beamformer which tries to capture (lock onto) one of the sources and
an adaptive signal canceller that removes the captured source from the array input
before processing it by the next stage. The canceller weights can be used to estimate
the DOA of the captured source. A blind STE has been recently proposed in [11]
based on the multi-modulus algorithm (MMA) [26], an advanced version of CMA. In
[11], the DOA is estimated using subarray beamformers [24] which is then used to
compute the input for the next stage. Multistage STEs, first, have the inherent problem
of inter-stage error propagation as a result of feeding each stage with the output of the
previous stage leading to performance degradation [25]. Second, an adaptive weight-
and-sum beamformer [11] may not lead to deep nulls at the DOAs of all interferes and
consequently may not provide strong CCI cancelation. The method proposed in this
paper addresses these two issues.

In this paper, a new multistage STE is proposed for blind source separation. Each
stage is responsible for locking onto one of the sources and is equipped with a beam-
former, aDOAestimator and an equalizer. An adaptive version ofGSC, called adaptive
GSC (AGSC), is presented which can adaptively track a user and strongly attenuate
other users with different DOAs. The beamformer and equalizer are jointly being
updated (consistent with the STE concept) to combat both CCI and ISI effectively.
Using the concept of subarray beamformers [24], the DOA, possibly time-varying,
of the captured signal is estimated and tracked. The estimated DOA at each stage is
being used by the AGSC to provide strong CCI cancellation and to form the input
to the next stage. In order to significantly alleviate inter-stage error propagation, a
sorting algorithm is suggested to assign detected sources to different stages based on
the reconstruction error at different stages. Further, to speed up the convergence, a
simple, yet efficient DOA estimation algorithm is presented which can provide good
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initial DOAs for the multistage STE. Simulation results illustrate the good perfor-
mance of the proposed STE and show that it can effectively deal with changing DOAs
and time-variant channels.

This paper is organized as follows: In Sect. 2, the problem description is presented.
The proposed multistage STE is discussed in Sect. 3. In Sect. 4, two algorithms are
outlinedwhich are utilized to speed up the convergence of the proposed STE. Section 5
summarizes the implementation steps discussed in Sects. 3 and 4. The performance
of the proposed method will be illustrated in Sect. 6 using simulations.

The mathematical notation used in this paper is as follows: Bold capital and small
letters represent matrix and vector, respectively, (e.g., “B” is a matrix and “r” is a
vector). Also, regular letters indicate a scalar value. T, H and “*” represent transpose,
conjugate transpose and conjugate, respectively. The index n shows the parameter
values at nth sample. Re{} and Im{} denotes the real and imaginary parts, respectively,
and E{} represents the expected value.

2 Problem Description

Q uncorrelated and narrowband signals with the common wavelength (λ) are being
transmitted by different users through time-varying fading and noisy channels. The
DOA for each user is different and possibly time-varying. Using the signals received
by an antenna array at the base station, the goal is to separate all sources and recover the
original data transmitted by each one of them in a blind manner. The only assumption
is that the transmitted signals satisfy the constant modulus property. DOAs are not
known and there are no pilot signals.

Consider anM-element uniform linear array at the base stationwith halfwavelength
spaceλ/2between elements andQ users transmittingdata [sq (n), forq = 1, 2, . . . , Q]
to the base station. The users’DOAs to the antenna are denoted by θ1, θ2, . . . , θQ which
might be time-varying due to user movement. After sampling, the baseband received
signal at the antenna is given by:

x1(n) = [x1(n) x2(n) . . . xM (n)]T =
Q∑

q=1

tq(n)aq(n) + �(n), (1)

where tq(n), the signal received at the antennas from each user, is as follows:

tq(n) = hTq (n)sq(n)

sq(n) = [sq(n), sq(n − 1), . . . , sq(n − (L − 1))]T
hq(n) = [hq,1(n), hq,2(n), . . . , hq,L(n)]T (2)

with hq(n) representing a fading channel between the qth user and the base station
which might be time-varying due to the changes in the channel and L being the
maximum delay of all channels. Further, �(n) is the white Gaussian noise and aq(n)

is the array manifold vector [22] given by:

aq(n) =
[
1 e− jπ sin(θq (n)) e− j2π sin(θq (n)) . . . e− j (M−1)π sin(θq (n))

]T
(3)
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In the abovemodel, it is assumed that CCI and temporal ISI are present while spatial
ISI is neglected. The goals, as mentioned before, are to accurately estimate the DOA
of all users and recover the original data transmitted by each user.

3 The Proposed Multistage Space–Time Equalizer

Todealwith the problem formulated in the previous section, amultistage STEas shown
in Fig. 1 is proposed. The STE consists of an antenna with M elements, Q stages, one
for each of the Q users, and a sorting algorithm which assigns users to the stages. The
structure of all stages is the same, and therefore, just the first stage is shown in Fig. 2.
Each stage consists of three main parts: a beamformer, a DOA estimator and an equal-
izer which includes a decision-feedback equalizer (DFE) and a channel estimator. The
major mathematical relationships between different blocks are summarized in Table 1.

Fig. 1 Structure of the proposed multistage STE

Fig. 2 First stage of the proposed STE in Fig. 1
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The beamformer at each stage locks onto one of the users and attenuates the signals
from the others. Based on the basic structure of the GSC, an adaptive beamforming
scheme called AGSC is proposed which consists of two adaptive branches denoted as
the top [wp(n) in Fig. 2] and bottom [B(n) andwa(n) in Fig. 2] branches. The objective
for the top branch is to capture and track one of the sources. The bottombranch consists
of an adaptive blocking matrix [B(n)] and an adaptive CCI weight canceller [wa(n)],
and its objective is to cancel CCI. The function of the blocking matrix B(n) is to
eliminate the signal of the captured source from the bottom branch, and the CCI
weight canceller wa(n)minimizes the energy of the signal passing through the bottom
branch (which is ideally pure CCI and noise) by placing nulls in the array response
at the DOAs of CCIs. To recover data transmitted by each user, the effect of fading
in the channel between the detected user and the base station will be compensated
using an equalizer in each stage. The equalization scheme includes a DFE and a
channel estimator to improve the performance of both ISI and CCI cancellation and is
motivated by a similar structure in [7]. A joint MMA-based scheme is used to update
bothwp(n), top branch of the beamformer, and the feedforward filter of the DFEwf (n)

[11]. Similarly, theCCIweight cancellerwa(n) and channel estimatorwh(n) are jointly
updated using the performance index proposed in [7], leading to fast convergence.

The DOA of a user is estimated using subarray beamformers motivated by the
approach proposed in [24]. The first subarray beamformer (see Fig. 2) is receiving
input from the top M − 1 antenna elements and the second one from the M − 1
bottom elements. The DOA of the corresponding user is a function of the phase shift
between the outputs of the two subarray beamformers [utop(n) and ubottom(n) in Fig.
2]. A phase tracking algorithm is implemented to estimate and track the possibly time-
varyingDOAof the captured signal. The estimatedDOA is used to update the blocking
matrix B(n) of the AGSC and to form the input to the next stage by eliminating the
detected user from the input signal.

TheMSE-based sorting algorithm assigns detected sources to different stages based
on the reconstruction mean square error (MSE) for each source signal. Intuitively, the
algorithm tries to assign sources with small reconstruction error to the early stages and
push the sources with larger error to the last stages. This arrangement significantly
alleviates inter-stage error propagation and speeds up the convergence. In the rest of
this section, the function of each part of the first stage will be described. The other
stages are the same.

3.1 Beamformer: Adaptive Generalized Sidelobe Canceller

The beamformer used at each stage is based on the GSC structure. Since the DOA
of the user is assumed not known a priori, or it may change due to user movement,
the standard GSC cannot be used here. Instead, an adaptive version of the GSC called
adaptive GSC, with all the components [wp(n),B(n) and wa(n)] being adaptively
updated, is being proposed here.

The objective for wp(n), a vector of length M − 1, is to lock onto one of the users.
The updating rule is based on the MMA [26] with the cost function given by:
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CFMMA = E

{[
(Re{yt (n)})L − RL

]2 +
[
(Im{yt (n)})L − RL

]2}
, (16)

where R is a constant determined by the statistics of the modulation scheme used
and yt (n) is the input to the “Decision Maker” block (Eq. 14). As was proposed in
[4], L = 2 provides a good compromise between performance and implementation
complexity. Taking advantage of the stochastic gradient algorithm [1] and MMA, the
updating equation for wp(n) is given by (μp is the learning step size):

wp(n + 1) = wp(n) − μpx
(top)
1 (n)e∗

MMA(n), (17)

where x(top)
1 (n) is defined in Eq. (6.a) and:

eMMA(n) = (Re{yt (n)})3 + i(Im{yt (n)})3 − R2yt (n). (18)

The role of the (M − 1) × (M-2) matrix B(n) can be intuitively described as blocking
the signal from the desired user in the lower branch of the beamformer [desired user at
each stage means the user which has been captured by wp(n)]. The updating of B(n)

is based on the estimated phase difference ϕ̂(n) (see Fig. 2) between the outputs of the
two subarray beamformers [utop(n) and ubottom(n) in Fig. 2] which will be discussed
in Sect. 3.2. Given the phase difference ϕ̂(n),B(n) can be updated by first forming
the (M − 1) × 1 array manifold vector:

ã(n) =
[
1 e− j ϕ̂(n) . . . e− j (M−2)ϕ̂(n)

]T
. (19)

Then, using singular value decomposition (SVD), ã(n) can be expressed as:

ã(n) = 


U



S



V H , (20)

where



U and



V are unitary matrices and



U is a diagonal matrix. B(n) is the null space
of ãH (n) and can be formed by deleting the first column of the (M − 1) × (M − 1)

matrix



U.
In conventional GSCs, the purpose of wa(n) is to increase CCI and noise cancel-

lation, and it is usually implemented using the least-mean-square (LMS) approach.
LMS-based GSC is simple but converges very slowly. This is due to the fact that the
conventional GSC algorithm uses utop(n) (see Fig. 2) as the error to be minimized.
Since utop(n) contains the desired signal, it has large amplitude, and to guarantee the
algorithm’s stability, the learning step size must be very small. This makes the con-
vergence very slow. In [7], it was shown that the use of es(n) (see Fig. 2) instead of
utop(n) can speed up the convergence. This stems from the fact that at steady state,
es(n) does not contains the desired signal and therefore has smaller value compared
to utop(n). Thus, the learning step size for the updating algorithm can be larger which
makes the convergence faster. Accordingly, in order to update the (M-2) × 1 vector
wa(n), the following cost function is minimized [7]:
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CFwa = E
{
|es(n)|2

}

es(n) = utop(n − � − 1) − yh(n) (21)

where yh(n) is defined in Eq. (9) and� is the decision delay. Using the LMS algorithm,
the updating equation for wa(n) is given by:

wa(n + 1) = wa(n) + μar(n)e∗
s (n), (22)

where μa is the step size and r(n) is defined in Eq. (5).

3.2 DOA Estimation

The DOA estimation approach used in this paper is motivated by the technique pro-
posed in [24] where the phase difference between the output signals of two subarray
beamformers is being used. As mentioned earlier, given an array of M elements, the
first subarray is formed using the top M − 1 elements while the second subarray is
formed using the M − 1 bottom ones. The signals from these two subarrays are fed to
two identical beamformers. It was shown in [24] that the DOA θ̂ is a function of the
phase difference ϕ̂ between the output signals of the two beamformers. θ̂ is given by:

θ̂ (n) = arcsin(ϕ̂(n)/π) (23)

In the proposed STE, the M input signals at each stage are used to form the two
(M − 1) subarrays, each feeding into two subarray beamformers which have the same
coefficient values, wp(n),B(n) and wa(n) as shown in Fig. 2. Thus, when the top
beamformer locks onto one of the users, the bottom beamformer will also lock onto
the same user. Using the outputs of these two subarray beamformers, the DOA of a
detected user θ̂ (n) can be estimated as a function of the phase difference ϕ̂(n) between
utop(n) and ubottom(n) in Fig. 2.

In order to estimate and track the phase difference between utop(n) and ubottom(n),
the second-order phase tracking loop algorithm [6] is used (μϕ is learning step size,
and τ is a positive constant):

ûtop(n) = ubottom(n)e j ϕ̂(n) (24)

eϕ(n) = Im
{
ûtop(n)[ûtop(n) − utop(n)]∗} (25)

ϕ̂(n + 1) = ϕ̂(n) + μϕ

[
eϕ(n) + τ

n∑

i=1

eϕ(i)

]
(26)

The estimated phase difference ϕ̂(n)will be used for two things: first, to updateB(n)

and, second, to form the input for the next stage. Updating B(n) has been discussed in
Eqs. (19) and (20). The preparation of the signal for the next stage will be discussed
in Sect. 3.4.
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3.3 Equalizer

The equalization scheme used in the proposed method is similar to [7] and includes a
DFE with wf (n) and wb(n) as the feedforward and feedback FIR filters, respectively,
and a channel estimator wh(n). As discussed in [7], the addition of the channel esti-
mator wh(n) can improve the performance of the structure in terms of both stronger
CCI attenuation and more effective ISI compensation. The updating of wf (n) is done
using the signal yt (n) (Eq. 14) and accordingly eMMA(n) in Eq. (18). As was proposed
in [11], wf (n) and wp(n) can be updated jointly. Further, wh(n) and wa(n) can also
be jointly updated using es(n) defined in Eq. (21), as proposed in [7]. The updating
equations are then given by:

wf (n + 1) = wf (n) − μfutop(n)e∗
MMA(n) (27)

wh(n + 1) = wh(n) + μhdh(n)e∗
s (n), (28)

where utop(n) and dh(n) are defined in Eqs. (8) and (10). μf and μh are learning step
sizes.

The postcursor response of the channel convolved with wf (n) would be cancelled
by wb(n) [7]. Thus, wb(n) can be designed using Eq. (12). The decision maker maps
its input to the nearest alphabet in terms of Euclidean distance.

3.4 Preparing the Signal for the Next Stage

The input to the second stage, x2(n) (see Fig. 2), is supposed to include all signals
received by the antenna except the signal from the user detected at the first stage. x2(n)

can be obtained as follows. First, the estimated phase ϕ̂(n)will be used to compensate
for any gain mismatch of the AGSC at the DOA of the first user. The beampattern of
the AGSC at ϕ̂(n) is obtained using [22]:

Ω =
M−2∑

m=0

e− jmϕ̂(n)w∗
m, (29)

where
w = [w0, w1, . . . , wm, . . . , wM−2]T = wp(n) − B(n)wa(n). (30)

Then, in order to normalize the beampattern to unity at ϕ̂(n), utop(n) is multiplied
by G = 1/Ω . The resulting signal, t̂(n) = Gutop(n) in Fig. 2, is an approximation
of the signal from the first user received at the first stage [i.e., tq(n) in Eq. (2) plus
noise]. In order to form the input for the second stage, x2(n), the received signal from
the first user will be subtracted from the antenna input x1(n). To this end, t̂(n) will be
multiplied by the estimated array manifold vector formed by ϕ̂(n) as follows:

â(n) = [1 e− j ϕ̂(n) . . . e− j (M−1)ϕ̂(n)]T (31)

The input for the second stage then becomes:

x2(n) = x1(n) − t̂(n)
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where t̂(n) = t̂(n) â(n). (32)

In general, the input to the (q + 1)th stage is xq+1(n) = xq(n) − t̂(n) (see Fig. 1),
obtained in the same way as described in Eqs. (29)–(32).

3.5 Stage-Switching Scheme

A problem with multistage methods [2,10,11,18,19,23] is that the residual error from
the qth stage (q = 1, 2, . . . , Q) will propagate to the next one due to the fact that
each stage is fed from the previous one. This drawback results in slow convergence
and larger errors for the last stages. To alleviate this problem, the MSE value of the
reconstruction error at each iteration will be used to reassign users to the stages. Since
the true transmitted data are not available, the MSE (see Fig. 2) can be estimated using
[6] (for q = 1, 2, . . . , Q):

MSE(q)(n + 1) = λMSE(q)(n) + (1 − λ)

∣∣∣d̂(n − �) − yt (n)

∣∣∣
2
, (33)

where λ is a constant forgetting factor (set to 0.99). If :

MSE(q+1)(n + 1) < βMSE(q)(n + 1) where 0 < β ≤ 1 (34)

then all the parameters of the (q + 1)th stage will be replaced by the parameters of
the qth stage. This is equivalent with switching the inputs of stages q + 1 and q.

Remark 1 The STE proposed here is based on combining existing methods [6,7,
11,18,19,24,26] in an innovative way to achieve blind source separation. The main
contributions of this paper are highlighted as follows:

• In the proposed STE, a multistage algorithm is combined with a STE to perform
joint CCI and ISI cancelation. The multistage algorithm is motivated by Shynk
and Gooch [18], Shynk et al. [19] where only the beamforming aspect of blind
source separation was considered without any equalization. The STE is motivated
by Lee and Wu [7] where the case of the DOA of the desired user being assumed
to be fixed as well as known a priori is dealt with. In the STE proposed here, there
are two innovations. First, an AGSC is introduced to account for the changing
DOA. Second, a blind approach is proposed which can dynamically estimate the
unknown and possibly time-varying DOA of each source. This is done using the
phase difference between two subarray beamformers, a concept used for DOA
estimation in [24].However, in [24], pilot datawere required (which is not available
here). The contribution of this paper is to combine the aforementionedmethods and
propose a multistage STE which can separate sources in a blind manner (neither
DOA nor training sequence is available).

• Further, the proposed STE addresses in an innovative way another problem ofmul-
tistage methods, which is the inter-stage error propagation as a result of feeding
each stage with the output of the previous stage. This can lead to significant perfor-
mance degradation [25]. TheSTEproposed in this paper includes a stage-switching
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scheme which not only can alleviate the error propagation but also speeds up the
convergence as simulations will show. This is the other important contribution of
the paper.

4 Convergence Acceleration Algorithms for the Proposed STE

To speed up the convergence of the proposed multistage STE, two algorithms are
suggested in this section. The first algorithm, which is a modified version of the one in
[21], estimates initial DOAs for all users. The second algorithm updates the learning
step sizes to provide a good compromise between convergence speed and stability.

4.1 The Phase Shift Initialization

During the initialization of the STE, an initial estimate for the DOAs can be obtained
using any of thewell-knownDOAestimation algorithms. However, algorithms such as
MUSIC, ESPRIT or MODEX require many computations and algorithms like matrix
pencil, which entails less computations and requires at least 2Q antenna elements (Q
is the number of users). To speed up the convergence of the proposed STE, a simple
approach is proposed here which can provide initial estimates of the DOAs and the
associated ϕ̂(0) very fast.

Consider x1(n) in Eq. (1) and assume that there is no noise or that noise power is
very small. By applying N -point discrete Fourier transform (DFT) to x1(n), i.e., DFT
in the spatial dimension and zero-padding by adding N − M zeros, we get:

X1(k) =
N−1∑

i=0

xi (n)e− j 2πN ik =
N−1∑

i=0

⎛

⎝
Q∑

q=1

tq(n)e− jϕq i

⎞

⎠ e− j 2πN ik

=
Q∑

q=1

tq(n)

(
N−1∑

i=0

e− j (ϕq+ 2π
N k)i

)
, for 0 ≤ k ≤ N − 1 (35)

where ϕq is π sin θq . It can be easily shown that Eq. (35) can be expressed as:

X1(k) =
Q∑

q=1

tq(n)e
− j

(
ϕq+ 2πk

N

)(
N−1
2

) sin
(
Nϕq
2 + πk

)

sin
(ϕq
2 + πk

N

) , for 0 ≤ k ≤ N − 1 (36)

where X1(k) is the DFT of the input signal (in the spatial dimension) for the nth snap-
shot. The Q largest peaks of X1(k) would occur at k = −Nϕq/2π (q = 1, 2, . . . , Q)

or equivalently at:

θq = arcsin

(
−2k

N

)
for q = 1, 2, . . . , Q (37)

Thus, by finding the value of k at the maxima of X1(k), an initial estimate of the
DOAs can be obtained. In the presence of noise, this estimate may not be accurate ifM
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(the number of sensors) is not large compared to Q (the number of users). However, in
such a case, the accuracy can be improved by averaging the peaks of the DFTs, X1(k),
obtained for a sequence of J snapshots. This will be illustrated with simulations in
Sect. 6.

4.2 Choosing Appropriate Learning Step Sizes

In order to choose an appropriate value for the step sizesμp, μf , μh andμa, a trade-off
between convergence speed and stability should be considered. In the updating equa-
tions, Eqs. (17), (22) and (27), x(top)

1 (n), r(n) and utop(n) are obtained from the STE
input. Therefore, in the presence of several users, their amplitude may be quite large.
In this case to guarantee convergence, μp, μa and μf should be set to small values.
From Fig. 2, it can be seen that the wh(n) is fed from the output of the decision maker,
dh(n) in Eq. (10), which has a considerably smaller amplitude than x(top)

1 (n), r(n) and
utop(n), especially in the presence of several users. Thus, μh in Eq. (28) can be set to
a larger value compared to μp, μf and μa.

Based on these observations, the convergence speed of the proposed STE can be
increased. All stages start with small step sizes to ensure convergence. When the
MSE at a stage converges to a satisfactory small value, this indicates that both errors
eMMA(n) and es(n) are small for this stage, as well as for all previous stages since all
stages are sorted from minimum to maximum MSE. It can therefore be expected that
all previous stages have locked onto a user and the signals received from the detected
users are (almost) eliminated from the inputs to the next stages. Consequently, the
input signals for the next stages are expected to have smaller amplitudes than the input
signals to the earlier stages, and therefore, the magnitudes of μp, μf and μa for all
stages can be increased. This is implemented using the following algorithm:

Given a constant ξ , an appropriate threshold depending on the modulation scheme
[6] and γi , constants arranged in this order γQ−1 > γQ−2 > · · · > γ1, then:

if
Q−1∑
k=1

MSE(k) < (Q − 1)ξ

Multiply the initial values of μp, μf , and μa with γQ−1

elseif
Q−2∑
k=1

MSE(k) < (Q − 2)ξ

Multiply the initial values of μp, μf , and μa with γQ−2
.
.
.

elseif MSE(1) < ξ

Multiply the initial values of μp, μf , and μa with γ1
else
Keep the initial values of μp, μf , and μa
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5 Implementation of the Proposed STE

The multistage STE algorithm can be summarized as follows:

For all stages:
Initialization Mode:

Initialize the phase shift ϕ̂(0) using the algorithm described in Sect. 4.1. Based on ϕ̂(0), initialize
wp(n) using Eq. (19). Set wa(0) and wh(0) to all-zero vectors. Set wf (0) to an all-zero vector except

for the first element which is set to one. Set the initial MSE(q)(0) to one for q = 1, 2, . . . , Q. Set n to
zero and go to the operating mode.

Operating Mode:
1. Using ϕ̂(n), form B(n) using the method described in Sect. 3.1.
2. Form w defined in Eq. (30), and normalize the beampattern to unity at ϕ̂(n) [multiplying the

beampattern by 1/Ω , where Ω is defined in Eq. (29)].
3. Using ϕ̂(n), form the input for all stages using Eqs. (31) and (32).
4. Using Eq. (12), find wb(n). Set the length of wb(n) to �1 + �2 − 2 − � (�1 and �2 are the

lengths of wf (n) and wh(n), and � is the decision delay in Fig. 2).
5. Find wp(n + 1),wa(n + 1),wf (n + 1), and wh(n + 1) using Eqs. (17), (22), (27) and (28),

respectively.
6. Estimate the new phase difference (ϕ̂(n + 1)) using Eq. (26).
7. Compute MSE(q)(n + 1) for q = 1, 2, . . . , Q using Eq. (33), and sort the stages based on the

rule described in Eq. (34) so that the stage with lowest MSE is first and the one with the largest is last.
8. Update the learning step size μp, μf , and μa using the algorithm described in Sect. 4.2.
9. Increase n by one and go back to step 1.

Remark 2 The proposed algorithm has some parameters that need to be appropriately
selected. The choice of learning step sizes has been already discussed in Sect. 4.2. In
the rest of this section, other important parameters are discussed.

Equalizer

• �1 , length of wf : This FIR filter is updated using the MMA (Sect. 3.3). To choose
the appropriate length, one should consider the compromise between convergence
speed and error rate. As mentioned in [26], fewer taps can result in faster conver-
gence but higher error rate. On the other hand, a longer filter during blind startup
might degrade the performance. One way to provide a good trade-off between
convergence speed and accuracy is to add more taps after MSE drops below an
acceptable level (which depends on the modulation scheme) [26].

• �2, length of wh: This filter is used to estimate the channel between each source
and the antenna. Given L [maximum delay of all channels, see Eq. (2)] and �

(decision delay, see Fig. 2), �2 should satisfy �2 ≥ L + �.
• �3, length of wb: As was discussed in Sect. 3.3, wb is responsible for canceling the
postcursor response of the channel convolved with wf . To this end, �3 should be
at least �1 + �2 − 2 − � [7].

Beamformer

• If Q sources are present, ideally the proposed method locks onto one source at
each stage and places up to Q−1 nulls at the beam pattern of each stage to strongly
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attenuate other sources. Therefore, each sub-beamformer of the proposed method
needs to have at least Q taps. As shown in Fig. 2, each sub-beamformer has M −1
elements, thusM ≥ Q+1. A high value forM would improve spatial selectivity at
the cost ofmore computation and slower convergence. In our simulations presented
in Sect. 6, M = Q + 2 works well.

Stage-Switching Scheme

• β controls the stage-switching scheme [see Eq. (34)]. If β is too small, unnecessary
switching might occur. If β is close to one, switching will rarely happen which
degrades the performance (higher MSE and slower convergence). The choice of
β depends on the modulation scheme which is 4-QAM in our simulations. For
this type of modulation, the proposed switching scheme showed a good behavior
when β is set to 0.25.

6 Simulation Results

In this section, five simulations are presented to illustrate the performance of the
proposed STE:

• The first simulation shows the performance of the DOA initialization method
discussed in Sect. 4.1.

• The second simulation demonstrates the effectiveness of the stage-switching
scheme.

• In the third simulation, the robustness and reliability of the proposed STE is evalu-
ated for 250 independent simulations with randomly generated signals and noise.

• In the fourth simulation, the performance of the proposed algorithm in terms of
accuracy of the estimated DOA is compared with the multistage algorithm pre-
sented in [18,19] to highlight the value of the suggested stage-switching scheme.

• The fifth simulation illustrates the algorithm’s ability to track moving users in the
presence of time-varying channels.

In all simulations, the modulation scheme used is 4-QAM, and the data transmitted
from each user are randomly generated. Further, for the first four simulations, four
users are considered with the fixed DOAs, θ1 = −60◦, θ2 = −30◦, θ3 = 15◦ and
θ4 = 45◦. The channels in these four simulations are also fixed and given by:

h1 = 1 (fading-free), h2 = [0.8 + 0.6 j, 0.1, 0.4 + 0.6 j],
h3 = [0.407, 0.815, 0.407], h4 = [0.6, 1, 0.8].

The zeros of h2,h3 and h4 are shown in Fig. 3. As it can be seen, h3 and h4 are
non-minimum phase channels and quite challenging to be equalized since they have
zeros close to the unit circle [14]. The simulation parameters for the second, third and
fifth simulations are summarized in Table 2.
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Fig. 3 Zeros location for different channels. a h2, b h3, c h4
Table 2 Simulations parameters

Parameter Second and third
simulation

Fifth simulation

Ns : Number of samples 15,000 25,000

M : Number of sensors 6 5

SNR: Signal-to-noise ratio (dB) 20 20

�1: Length of wf (n) 7 7

�2: Length of wh(n) 5 5

�3: Length of wb(n) 9 9

�: Decision delay 1 1

μp: Learning step size in Eq. (17) 0.00002 0.0001

μa: Learning step size in Eq. (22) 0.00002 0.0001

μϕ : Learning step size in Eq. (26) 0.001 0.001

μf : Learning step size in Eq. (27) 0.00002 0.0001

μh: Learning step size in Eq. (28) 0.01 0.01

τ : Positive constant in Eq. (26) 0.001 0.001

ε: Constant in Eq. (15) 0.01 0.01

λ: Constant in Eq. (33) 0.99 0.99

β: Constant in Eq. (34) 0.25 0.25

N : Number of points in Sect. 4.1 512 512

J : Number of snapshots in Sect. 4.1 20 20

ξ : Constant in Sect. 4.2 0.2 0.2

γ1: Constant in Sect. 4.2 3 2

γ2: Constant in Sect. 4.2 6 3

γ3: Constant in Sect. 4.2 9 –

6.1 First Simulation

In this simulation, the performance of the DOA estimation algorithm described in
Sect. 4.1 will be evaluated for different number of sensors (M) and SNR. To this end,
for a fixed M and SNR, the DOAs are estimated for 1000 independent simulations.
For all cases, 512-point DFT is considered (N = 512). The results are shown in Fig. 4
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Fig. 4 First simulation, DOAs estimation for different SNRs and M (number of antenna elements) with
one snapshot (J = 1)

for one snapshot (J = 1). Red triangles indicate the real DOA in this figure. It can be
seen that the estimation accuracy gets better as M increases. The estimated DOA is
accurate even in the presence of severe noise provided that M is large enough which
is consistent with the results in [21]. The accuracy of the estimated DOA for small
M can be increased, as mentioned in Sect. 4.1, by finding the peaks of the average of
X1(k) for a sequence of J snapshots. To illustrate the effect of averaging, the results
for two different SNRs, M = 6 and J = 20 are shown in Fig. 5.
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Fig. 5 First simulation, DOAs are estimated by averaging over a sequence of 20 snapshots

6.2 Second Simulation

In this simulation, the effectiveness of the proposed stage-switching scheme is illus-
trated and it will be shown that the proposed STE is robust to mismatch between the
initial DOA estimate and the real one. For the system considered here, the first and
second channels are the easiest to be equalized since h1(θ1 = −60◦) is fading-free
and h2 (θ2 = −30◦) is minimum phase. Further, the zeros of h3 (θ3 = 15◦) are closer
to the unit circle than the zeros of h4(θ4 = 45◦), which implies that fading is deeper
for h3 [14] and, thus, equalizing h3 is more challenging than equalizing h4. Therefore,
the expected behavior of the proposed STE after convergence is to lock onto the users
according to the following order: the first user at the first stage, the second user at the
second stage, the fourth user at the third stage and the third user at the final stage.
Let us now initialize the STE as follows: stage 1 with the DOA of 10◦ (close to the
third user), stage 2 with the DOA of 50◦ (close to the fourth user), stage 3 with the
DOA of −35◦ (close to second user) and stage 4 with the DOA of −65◦ (close to the
first user). This initialization implies 5◦ initial DOA mismatch for all users and, fur-
ther, assigns the users in the opposite order than the one expected based on the above
discussion. The third user being the most challenging to be equalized is expected to
produce a significant residual error at the beginning which will be propagating to the
other stages. The level of residual error at each stage is an indication of the difficulty
of equalizing the channel for the user detected by this stage. Thus, the initialization
chosen here represents one of the worst possible initializations. The function of the
switching scheme in the proposed STE is to place the stage with the largest MSE last
and thus lead to a small residual error for all stages at convergence. To illustrate this,
the MSE of all stages as defined in Eq. (33) is plotted in Fig. 6a, b for the following
two cases: when all stages are fixed and no switching is allowed and when the stages
are switched based on the rule defined by Eq. (34). Clearly, the switching scheme
will lead to faster convergence and the final MSE is considerably lower than in the
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Fig. 6 Second simulation, MSE and estimated DOAs for two cases: when all stages are fixed and no
switching is allowed and when the stages are switched based on the rule defined in Eq. (34). a MSE with
no switching, bMSE with switching, c DOAs with no switching, d DOAs with switching

case where there is no switching. The estimated DOAs for these two cases are shown
in Fig. 6c, d. As it can be seen, the estimation accuracy is better when switching is
used. To illustrate the sequence of switching in time, the estimated DOAs for different
stages at the switching instances as well as the initial (n = 0) and final (n = 15,000)
DOA estimations are shown in Table 3. Colors in this table represent different users
and are also indicating the level of difficulty for equalizing each user from green (the
easiest user) to red (the most difficult user). Clearly, after convergence, the order of
the user detected by each stage is from the easiest to the most difficult, consistent with
the earlier discussion.

In order to clarify the improvement of using the proposed AGSC instead of the
beamformer used in [11] (consisting of only updating wp(n)), the final beampatterns
normalized with G = 1/Ω [Fig. 2 and Eq. (29)] for these two cases are shown in
Fig. 7. It can be seen that the AGSC of the first stage tries to pass data propagating
from−60◦ and reject other users. That is why the beampattern of the first beamformer
has three deep nulls at−30◦, 15◦ and 45◦. For the second stage, since the signal of one
of the users at−60◦ has been eliminated by the first stage from the input of the second
stage [Eq. (32) and Fig.1], the beampattern has just two deep nulls corresponding to
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Table 3 Second simulation, the Estimated DOAs (in degrees) at nth sample. Entries with the same color
correspond to the same user

Fig. 7 Second simulation, the normalized beampattern for a wp(n) − B(n)wa(n), and b wp(n)

the two remaining users at 15◦ and 45◦. Due to the same reason, the third beampattern
has just one deep null at 15◦. Clearly, the use of AGSC leads to deep nulls and strong
CCI attenuation for the proposed STE.

6.3 Third Simulation

In this simulation, a similar scenario as in the second simulation is considered. The
difference is that no initial DOAs are assumed as it was done in the second simulation.
Instead, the method proposed in Sect. 4.1 is used for initialization of the DOAs. The
simulation is repeated 250 times with randomly generated signals and noise, and the
averaged MSE (dB) over 250 independent simulations is shown in Fig. 8. The initial
DOAs along with the final estimated DOAs are shown in Fig. 9a, b. Red triangles show
the real DOAs. Both Figs. 8 and 9 illustrate the good performance of the proposed
STE in terms of low MSEs and accuracy of the estimated DOAs.
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Fig. 8 Third simulation, the averaged MSE over 250 simulations

Fig. 9 Third simulation, the estimated DOAs. a Initial DOAs, b final DOAs

6.4 Fourth Simulation

The problem with multistage methods, as mentioned before, is that the residual error
from the qth stage (q = 1, 2, . . . , Q) will propagate to the next one due to the fact
that the input to each stage is the output of the previous one. To illustrate this draw-
back, the performance of the multistage algorithm proposed in [18,19] in terms of
accuracy of the estimated DOAs is considered for two different cases: when all four
channels are ideal (non-fading) and when the four channels are the ones used in the
third simulation. The algorithm in [18,19] is comprised of two sets of weights: (1) the
adaptive beamformer (based on the constant modulus algorithm) and (2) an adaptive
signal canceller (based on the LMS algorithm). To do a fair comparison between this
method and the proposed approach, the length for these weights is set to 6 (same
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Fig. 10 Fourth simulation, the estimated DOAs using [18,19]. a DOAs for ideal channels, b DOAs for
non-ideal channels

as M in the third simulation). Further, Ns and SNR are set to the same value as the
third simulation. The estimated DOAs for 250 independent simulations are shown in
Fig. 10. The actual DOAs are shown by the red triangles. As it can be seen in Fig. 10,
the deviation of the estimated DOA from the actual DOA for the case of non-ideal
channels is more than that for the ideal case. This is due to error propagation. The
stage-switching scheme proposed here can significantly alleviate this problem as is
shown in Fig. 9b. To provide a numerical comparison for the accuracy of the esti-
mated DOAs, the root-mean-square error (RMSE) was calculated for the simulations
of Figs. 9b and 10b. For the proposed method, the RMSE (0.009◦) in Fig. 9b is sig-
nificantly less than the RMSE (1.469◦) of the multistage algorithm of [18,19] in Fig.
10b.

6.5 Fifth Simulation

In this simulation, the performance of the proposed STE in the case of users with
varying DOA and time-varying channel will be illustrated. Consider the case of three
users with initial DOAs θ1 = −35◦, θ2 = 0◦ and θ3 = 45◦. The initial channel for
the first user is the same as in Fig. 3b, and the two other channels are fading free.
From the 3000th sample to the 5000th sample, all DOAs are changing very fast in a
linear fashion as shown in Fig. 11a. It can be seen that at around the 4000th sample,
the first and second user’s DOA overlap, which makes the scenario very challenging.
Also, at the 3000th sample, a time-varying zero at 0.8 exp( j2π/3)+0.4 exp( j2π [n−
3000]/10,000) will be added to the second channel h2, as in [6], and the fading-
free channel h3 will be replaced by [1, 0.8, 0.6]. For the whole time, h1, a channel
with deep fading, remains the same. At the 5000th sample, all DOAs and channels
get fixed and remain unchanged. The zero locations for h2 at the 3000th and 5000th
samples are shown in Fig. 11b which indicates that the channel is changing from
minimum phase to non-minimum phase. The zeros of h3 after the 5000th sample are
shown in Fig. 11c, indicating a minimum phase channel. The MSE averaged over
250 simulations is shown in Fig. 12a. Further, the final beampattern [normalized with
G = 1/Ω , see Eq. (29)] for all three stages is shown in Fig. 12b. It can be seen that the
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Fig. 11 Fifth simulation, a time-varying DOAs for the three users, bmoving zero of h2, and c h3 after the
5000th sample

Fig. 12 Fifth simulation, a averagedMSE, b the normalized beampattern, c the average of estimated DOAs

beampattern at each stage has a unity gain at the DOA of the detected user (shown by
arrows) and deep nulls (63–66 dB) in the direction of the other users. This indicates
a good performance in CCI cancellation for the proposed STE. Finally, the average
of the estimated DOAs is shown in Fig. 12c. The dotted green lines show the real
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DOAs. As it can be seen, the estimated DOA converges fast and is accurate which
demonstrates the ability of STE to track moving users in the presence of time-varying
channels.

7 Conclusions

In this paper, a newmultistage STE is proposed for blind source separation. Each stage
is equipped with an adaptive version of the GSC, called AGSC, a DOA estimator and
an equalizer. The beamformer and equalizer are jointly being updated to combat both
CCI and ISI effectively. The DOA, possibly time-varying, of the captured signal is
estimated and tracked using the phase difference of two subarray beamformers. The
estimated DOA is being used by the AGSC to provide strong co-channel interference
cancellation. Further, the estimated DOAs will be used to form the input to the next
stage.A simple, yet efficient,DOAestimation algorithm is also proposed for estimating
the initial DOAs and speed up the convergence. In order to significantly alleviate inter-
stage error propagation, a sorting algorithm is used which assigns detected sources to
different stages based on the value of the MSE. Simulation results demonstrate the
good performance of the proposed STE and show that it can effectively deal with
changing DOAs and time-varying channels.

Future work includes the theoretical analysis of theDOA estimation algorithm (pre-
sented in Sect. 4.1 and used for the initialization) as well as the space–time frequency
analysis of the proposed STE for the steady state. Further, it would be interesting to
extend the proposed STE to the case when spatial ISI due to multipath is present in
addition to temporal ISI and CCI.
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