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Abstract We propose a new method for underdetermined blind source separation
based on the time–frequency domain. First, we extract the time–frequency points that
are occupied by a single source, and then, we use clustering methods to estimate the
mixture matrix A. Second, we use the parallel factor (PARAFAC), which is based on
nonnegative tensor factorization, to synthesize the estimated source. Simulations using
mixtures of audio and speech signals show that this approach yields good performance.

Keywords Underdetermined blind source separation · Time–frequency ·
PARAFAC · Nonnegative tensor factorization

1 Introduction

Blind source separation (BSS) is a method that reconstructs N unknown sources
of M observed signals from an unknown mixture. In this paper, we consider an
instantaneous mixture system. Let A be the M × N mixing matrix, then the observa-
tions can be written as x(t) = As(t), where x(t) = [x1(t), x2(t), . . . xM (t)] and
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s(t) = [s1(t), s2(t), . . . sN (t)]T . Our investigation considers the underdetermined
case, where there are more sources than observations (N > M).

BSS based on the instantaneous mixtures model has been extensively studied since
the first papers by Herault and Jutten [25–27]. The early classical BSSmethod is based
on independent component analysis (ICA) theory [10]. The classic ICA theory can
only separate stationary non-Gaussian signals. Because of these limitations, it is diffi-
cult to apply it to real signals, such as audio signals. Some authors [5,14,15,28,36,37]
have proposed different approaches to enhance the classical ICA theory. These meth-
ods have better performance than classical ICA methods for nonstationary signals.
However, these approaches [5,28,36,37] cannot be applied to the underdetermined
case. Many notable works for the underdetermined case have been published in
recent years [1–3,6,7,17,22,23,29,30,32,33,38,40,41,46,47]. The basic assumption
of these studies is that the mixed signals are sparse in the time–frequency domain. A
signal is said to be sparse when it is zero or nearly zero more than might be expected
from its variance. A notable sparse-based method called DUET was developed for
delay and attenuation mixtures [29,40]. The DUET algorithm requires W-disjoint
orthogonal signals or approximate W-disjoint orthogonal signals [41,46] in the time–
frequency domain. In fact, theDUET algorithm is a ratiomatrix (RM)method that uses
clustering by an RM to accomplish source separation. Many well-known algorithms
rely on the RMmethod, such as the SAFIA algorithm [3], the TIFROM algorithm [1],
Abdeldjalil Aïssa-El-Bey et al.’s algorithm [2], Yuanqing Li et al.’s algorithm [13],
and SangGyun Kim et al.’s algorithm [30]. In [6], Adel Belouchrani et al. presented
an overview of source separation in the time–frequency domain.

Two methods have been widely used to make the signal sparse: the short-time
Fourier transform (STFT) method [29,41,46] and the Wigner–Ville distribution
(WVD) method [2,5]. We use the WVD to represent the time–frequency spectrum to
estimate the mixing matrix and the STFT for signals synthesis. The proposed under-
determined BSS algorithm in this paper is based on a two-stage approach. In the first
stage, we estimate themixturematrix using a RM in the time–frequency domain on the
spatialWigner–Ville spectrum. The second stage is the synthesis of the signals:We use
a method combining the minimum mean square error (MMSE) and the parallel factor
(PARAFAC) technique to reconstruct the estimated sources. PARAFAC is a multi-
linear algebra tool for tensor decomposition in a sum of rank-1 tensors. PARAFAC
is a multidimensional method originating from psychometrics [24] that has slowly
found its way into various disciplines. A good overview of the tensor decomposition
can be found in [31]. PARAFAC is also a powerful tool for BSS [4,8,11,13,18,20–
23,34,35,42,45]. Recently, PierreComon provided a good overviewofBSS and tensor
decomposition in [12]. BSS based on nonnegative tensor factorization can be found
in [8,18,20,21,35]. Nonnegative tensor factorization is a decomposition method for
multidimensional data, in which all elements are nonnegative. As shown in [13,34],
the traditional application of the tensor decomposition technique to BSS is limited
to restricted numbers of microphones and mixed sources: The number of sources N
and the number of observed mixtures M must satisfy N ≤ 2M − 2. However, the
application of nonnegative tensor factorization to BSS is not restricted by the number
of microphones and mixed sources. We therefore use a nonnegative PARAFACmodel
for source synthesis in this paper. The authors of [45] have proposed a time–frequency
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analysis based on the WVD together with the PARAFAC algorithm to separate elec-
troencephalographic data.

There aremany differences between the algorithm proposed in this paper and that in
[45]. First, the PARAFAC model in [45] is based on the time–frequency domain with
the WVD, while the PARAFAC model in this paper is based on the time–frequency
domain with a STFT. Second, our PARAFAC model is different from the one in [45]
because it has nonnegative elements. Thus, our PARAFAC model is not restricted by
the number of microphones and mixed sources for BSS. Finally, the algorithm in this
paper is a two-stage technique: We use time–frequency representation with the WVD
to estimate the mixing matrix in the first stage, and the second stage is the source
recovery with the nonnegative PARAFAC model.

This paper is organized as follows. In Sect. 2, we describe how the mixing matrix
is estimated using the time–frequency ratio of the spatial Wigner–Ville spectrum.
Then, we synthesize the estimated sources usingMMSE and the PARAFACmethod in
Sect. 3. Section 4 provides the simulation results, andSect. 5 draws various conclusions
from this investigation.

2 Mixing Matrix Estimation

2.1 Spatial Time–Frequency Distributions

The WVD of x(t) is defined as:

DWV
xx (t, f ) =

+∞∫

−∞
x(t + τ/2)xH (t − τ/2)e− j2π f τdτ, (1)

where t and f represent the time index and the frequency index, respectively. The
signal x(t) of Cohen’s class of spatial time–frequency distributions (STFD) is written
as [9]:

Dxx (t, f ) =
+∞∫

−∞

+∞∫

−∞
φ(u − t, v − f )DWV

xx (t, f )dudv, (2)

where φ(u, v) is the kernel function of both the time and lag variables. In this paper,
we assume that

∫∫
φ(t, f )dtd f = 1. Under the linear instantaneous mixing model of

x(t) = As(t), the STFD of x(t) becomes:

Dxx (t, f ) = ADss(t, f )AH . (3)

We note that Dxx (t, f ) is an M × M matrix, whereas Dss(t, f ) is an N × N matrix.
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2.2 Selecting a Single Source Active in the Time–Frequency Plane

If we assume that two signals x1 and x2 share the same frequency f0 at the time t0,
then the cross-time–frequency distribution (cross-TFD) between x1 and x2 at (t0, f0) is
nonzero.Hence, if Dx1x1(t0, f0) and Dx2x2(t0, f0) are nonzero, it is likely Dx1x2(t0, f0)
and Dx2x1(t0, f0) are nonzero. Therefore, if Dxx (t, f ) is diagonal, it is likely that it
has only one nonzero diagonal entry [9]. The proposed algorithm is based on single
autoterms (SATs) theory [19]; we can detect the points of single-source occupancy in
every time–frequency plane by SATs. In this paper, we use a mask-TFD to compute
the SATs. We define the mask-TFD as Dmask

xx (t, f ) = Dxx (t, f ) ∗ X (t, f ), where
X (t, f ) is the matrix of a STFT with x , as the same process in [19]; the mask-SATs
satisfy: ⎧⎪⎨

⎪⎩
C(t, f ) ≈ max

∣∣eig(Dmask
xx (t, f ))

∣∣∑ |eig(Dmask
xx (t, f ))|

‖GradC (t, f )‖2 ≤ εGrad
HC (t, f ) < 0

, (4)

where eig(Dmask
xx (t, f )) denote the eigenvalues of Dmask

xx (t, f ), and GradC (t, f ) and
HC (t, f ) are the gradient function and the Hessian matrix of C(t, f ), respectively.

2.3 Mixing Matrix Estimation Using the Time–Frequency Ratio

If we assume that there exist two observations, x1 = [x1(t1) . . . x1(tT0)]T and
x2 = [x2(t1) . . . x2(tT0)]T , and the two observations are mixed from N sources,
s1 . . . sn . . . sN and sn = [sn(t1) . . . sn(tT0)]T , then we can compute the mask-TFDs
for x1(t) and x2(t). They become:

Dmask
x1x1 (t, f ) =

∑
n

Dmask
snsn (t, f )a21na

H
1n (5)

Dmask
x2x2 (t, f ) =

∑
n

Dmask
snsn (t, f )a22na

H
2n . (6)

If we have extracted all the time–frequency points that are occupied by a single source
via (4), and if furthermore we assume that sn occupies frequency f0 at time t0, then
(5) and (6) become:

Dmask
x1x1 (t0, f0) = Dmask

snsn (t0, f0)a
2
1na

H
1n (7)

Dmask
x2x2 (t0, f0) = Dmask

snsn (t0, f0)a
2
2na

H
2n . (8)

Then, it follows that
Dmask
x1x1

(t0, f0)

Dmask
x2x2

(t0, f0)
= Dmask

sn sn (t0, f0)a1naH1n
Dmask
sn sn (t0, f0)a2naH2n

= a21n∗aH1n
a22n∗aH2n

. For the gen-

eral case of M observations and if we define a vector, D′
xx (t0, f0) = [Dmask

x1x1
(t0, f0), . . . , Dmask

xM xM (t0, f0)]T , then we can obtain a ratio vector:
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D′
xx (t0, f0)

Dmask
x1x1 (t0, f0)

=
[
1,

a22n ∗ aH
2n

a21n ∗ aH
1n

, . . . ,
a2Mn ∗ aH

Mn

a21n ∗ aH
1n

]T

. (9)

We denote the set of the above ratio as Csn for n = 1, . . . , N . Then, we can apply a
clustering method to estimate the mixing matrix combining SATs and (9). We assume
that the mixtures are normalized to have unit l2-norm. We denote the nth column
vector of A as an , which is estimated as follows:

ân = 1∣∣Csn

∣∣
∑

[t, f ]∈Csn

D′
xx (t, f ), (10)

where
∣∣Csn

∣∣ denotes the number of the points in the class for n = 1, . . . , N .

3 Source Synthesis

Nonnegative tensor factorization (NTF) of multichannel spectrograms under the
PARAFAC structure has been widely applied to BSS of multichannel signals
[18,20,21]. In this paper, we use the IS-NTF method [18] to synthesize sources. First,
we apply the STFT to time-domain observations x(t); we further assume that s(t, f )
obeys the following distribution [18]:

{
xm(t, f ) = ∑

n
amnsmn (t, f )

smn (t, f ) ∼ Nc(0|w f nhtn)
, (11)

where m is the number of observations, n is the mixed-source index, Nc denotes
the complex Gaussian distribution subject to Nc(x |u, �) = |π�|−1 exp−(x −
u)H�−1(x−u),w f n is the ( f, n)th element of matrixW (its size is F×N ), and htn is
the (t, n)th element ofmatrix H (its size is T ×N ). Set V = |X |2 and Q = |A|2, where
X is the time–frequency matrix with elements x(t, f ). We note that (11) is equivalent
to min

Q,W,H

∑
m f t dI S(vm f t |v̂m f t ), where Q,W, H ≥ 0, dI S(x |y) = x

y − log x
y − 1.

Then, we can obtain [18]:

W = W · 〈G−, QoH〉{1,3},{1,2}
〈G+, QoH〉{1,3},{1,2}

(12)

H = H · 〈G−, QoW 〉{1,2},{1,2}
〈G+, QoW 〉{1,2},{1,2}

, (13)

where G is the M × F × T derivatives tensor with gm f t = d ′(vm f t |ṽm f t )

and 〈A, B〉{1,...,M},{1,...,M} =
I1∑
i1

. . .
IM∑
iM

ai1,...,iM, j1,..., jN bi1,...,iM,k1,...,kO . Then, we can

obtain the MMSE reconstruction as:
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smn (t, f ) = a2mnwfnhfn∑
n a

2
mnwfnhfn

xm(t, f ). (14)

Finally, applying the inverse STFT to smn (t, f ), we can obtain the time-domain source.
Our source separation route is distinct from the method in [18,20]. Our algorithm has
two stages. The first is to estimate the mixing matrix. Then, source reconstruction
is the inverse problem in the second stage. We fix the mixing matrix in the source
reconstruction stage, which is equivalent to fixing Q in (12) and (13).

4 Simulation

To show the validity of our technique of mixing matrix estimation, we conducted
four experiments for mixing matrices of orders 2 × 3, 2 × 4, 3 × 4, and 3 × 6.
For each order of the mixing matrix, we used random values. Each experiment was
run 30 times. We used two methods to select the single signal active in the time–
frequency plane: traditional SATs and mask-SATs, and we set εGrad randomly in the
range 0.005 ≤ εGrad ≤ 0.05. The mixing sources used in the experiments were music
signals and speech. The length of the STFT was 1024, the window overlap was 0.5,
and all signals were sampled at 16 kHz with a sample length of 160,000.

The performance of the mixing matrix estimation was evaluated using the normal-
ized mean square error (NMSE), which is defined in [39]:

NMSE = 10 log

(∑
mn (âmn − amn)2∑

mn a
2
mn

)
, (15)

where âmn is the (m, n)th element of the estimated mixing matrix, and amn is the
(m, n)th element of the mixing matrix. Smaller NMSEs indicate better performance.

We must note that matrix ATFD was obtained similarly to Amask-TFD. The only
difference is that in (4), Dmask

xx (t, f ) is replaced by Dxx (t, f ). To show the validity of
our method, we compared it with the LI-TIFROM algorithm in [1] and the method in
[39], as shown in Fig. 1. We see that the mask-TFD algorithm achieves a better mixing
matrix estimation than that in [39]. The performance of the algorithm in [39] is better
than that of the LI-TIFROM and TFD algorithms. As pointed out in [16], the TIFROM
algorithm requires at least two adjacent windows in the time–frequency domain for
each source to ensure the degree of sparsity needed. If this condition is not satisfied,
the TIFROM algorithm cannot find the single-source points and thus cannot estimate
the mixing matrix correctly. This is why the performance of the TIFROM algorithm
is not very good in Fig. 1.

For the source synthesis stage, we performed two simulation experiments using
2 × 3 and 3× 4 mixing matrices. The sources were taken from the Signal Separation
Evaluation Campaign (SiSEC 2008) [43]. We used some “development data” from
the “underdetermined speech and music mixtures task”:

1. For the music sources including drums: a linear instantaneous stereo mixture (with
positive mixing coefficients) of two drum sources and one bass line.
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Fig. 1 Comparison of proposed algorithm with that in [1] and [39]

2. For the nonpercussive music sources: a linear instantaneous stereo mixture (with
positive mixing coefficients) of one rhythmic acoustic guitar, one electric lead
guitar, and one bass line.

3. Four female sources.

The original mixing matrix of data 1 and data 2 had positive coefficients: Anodrum =[
0.4937 0.6025 0.8488
0.7900 0.6575 0.4232

]
and Awdrum =

[
0.5846 0.7135 1.0053
0.9356 0.7786 0.5012

]
. For the

four female sources, we used the original mixing matrix:

Afemale =
⎡
⎣ 0.6547 0.6516 0.8830 −0.5571

0.3780 −0.5923 0.3532 0.7428
−0.6547 0.4739 0.3091 0.3714

⎤
⎦. We used the proposed

mask-TFD algorithm to estimate the three matrixes: Anodrum, Awdrum, and Afemale.

The results of the estimations are Ae
nodrum =

[
0.5345 0.5739 0.8318
0.7836 0.6825 0.4194

]
, Ae

wdrum =[
0.5595 0.7480 1.0053
0.8957 0.8109 0.5012

]
, and

Ae
female =

⎡
⎣0.6472 0.6500 0.8715 −0.5601
0.4010 −0.6013 0.3541 0.7626
−0.6936 0.4732 0.2987 0.3619

⎤
⎦. The NMSEs of Ae

nodrum,

Ae
wdrum, and Ae

female are –35.10, –50.88, and –33.90 dB, respectively.
To measure the performance, we decompose an estimated source image as [44]:

ŝimg
mn (t) = simg

mn (t) + espatmn (t) + einterfmn (t) + eartifmn (t), (16)
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Fig. 2 Three original source signals with hi-hat, drums, and bass
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Fig. 3 Three estimated signals with IS-MMSE

where simg
mn (t) is the true source image, and espatmn (t), einterfmn (t), and eartifmn (t) are distinct

error components representing spatial (or filtering) distortion, interference, and arti-
facts, respectively. As performance measures, we use the source to distortion ratio
(SDR):
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Fig. 4 Three original source signals with lead guitar, rhythm guitar, and bass

SDRn = 10 log10

∑M
m=1

∑
t s

img
mn (t)2

∑M
m=1

∑
t

(
espatmn (t) + einterfmn (t) + eartifmn (t)

)2 , (17)

the source image to spatial distortion ratio (ISR):

ISRn = 10 log10

∑M
m=1

∑
t s

img
mn (t)2∑M

m=1
∑

t e
spat
mn (t)2

, (18)

the source to interference ratio (SIR):

SIRn = 10 log10

∑M
m=1

∑
t

(
simg
mn (t) + espatmn (t)

)2
∑M

m=1
∑

t e
interf
mn (t)2

, (19)

and the sources to artifacts ratio (SAR):

SARn = 10 log10

∑M
m=1

∑
t

(
simg
mn (t) + espatmn (t) + einterfmn (t)

)2
∑M

m=1
∑

t e
artif
mn (t)2

. (20)

Higher values indicate better results for SDR, ISR, SIR, and SAR. We note that in the
MMSEmethod, we do not reconstruct the single-channel sources but their multichan-
nel contribution to the multichannel data.

Figure 3 shows the three estimated signals with IS-MMSE. The two mixed signals
in Fig. 3 are obtained using the three original source signals in Fig. 2 with mixing
matrix Anodrum. Figure 5 shows the three estimated signals with IS-MMSE. The two
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Fig. 5 Two mixed signals with lead guitar, rhythm guitar, and bass separated by IS-MMSE
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Fig. 6 Performance of the PARAFAC algorithm [18] and mask-TFD with PARAFAC in three examples
(two microphones and three sources with no drums, two microphones and three sources with drums, and
three microphones mixed with four female sources)
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mixed signals in Fig. 5 are obtained using the three original source signals in Fig. 4
with mixing matrix Awdrum (we use Amask-TFD in the IS-MMSE algorithm).

Figure 6 shows the performance of the PARAFAC algorithm [18] and mask-TFD
with PARAFAC in three examples with music, audio, and speech sources. As shown in
Fig. 6, neither the method reported in [18] nor mask-TFDwith PARAFAC yields good
performance for the nonpercussive music sources. This may be because the number
of single signals active in the time–frequency plane is very small. The performances
of mask-TFD with the PARAFAC algorithm are better than that of the PARAFAC
algorithm reported in [18] in all cases. As shown in [18,35], the performance of the
nonnegative PARAFACmodel is heavily related to its initialization. If the initialization
is poor, then it is difficult for the nonnegative PARAFAC algorithm to achieve global
convergence. In fact, the first stage of mask-TFD with PARAFAC is the initialization
of the nonnegative PARAFAC algorithm.

5 Conclusion

We have proposed a two-stage approach to solve the underdetermined instantaneous
BSS problem. We used a cluster method for single time–frequency active points in
the mixing matrix estimation stage. Methods using joint diagonalization [5,19] are
not suitable for underdetermined mixtures. In this paper, we have used a new clus-
ter method for underdetermined mixing matrix estimation and then applied NTF to
the source synthesis. Numerical simulations have illustrated the effectiveness of the
new approach for the audio nonstationary signals of the Signal Separation Evaluation
Campaign (SiSEC 2008) public data.

Acknowledgments The authors would like to thank the editor in chief, Dr. M. N. S. Swamy, for helpful
comments and improving the presentation of this paper and anonymous reviewers for their valuable com-
ments and suggestions for improving this paper. This work was supported in part by the National Natural
Science Foundation of China under Grant 60872074 and 61271007.

References

1. F. Abrard, Y. Deville, A time–frequency blind signal separation method applicable to underdetermined
mixtures of dependent sources. Signal Process. 85(7), 1389–1403 (2005)

2. A. Aissa-El-Bey, N. Linh-Trung, K. Abed-Meraim et al., Underdetermined blind separation of nondis-
joint sources in the time–frequency domain. IEEE Trans. Signal Process. 55(3), 897–907 (2007)

3. M. Aoki, M. Okamoto, S. Aoki et al., Sound source segregation based on estimating incident angle of
each frequency component of input signals acquired by multiple microphones. Acoust. Sci. Technol.
22(2), 149–157 (2001)

4. H. Becker, P. Comon, L. Albera et al., Multi-way space–time–wave-vector analysis for EEG source
separation. Signal Process. 92(4), 1021–1031 (2012)

5. A. Belouchrani, M.G. Amin, Blind source separation based on time–frequency signal representations.
IEEE Trans. Signal Process. 46(11), 2888–2897 (1997)

6. A.Belouchrani,M.G.Amin,N.Thirion-Moreau et al., Back to results source separation and localization
using time–frequency distributions: a overview. IEEE Signal Process. Mag. 30(6), 97–107 (2013)

7. S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM J. Sci. Comput.
20(1), 33–61 (1998)

8. A. Cichocki, R. Zdunek, A.H. Phan et al., Nonnegative matrix and tensor factorizations: applications
to exploratory multi-way data analysis and blind source separation (Wiley, New Jersey, 2009)



3894 Circuits Syst Signal Process (2015) 34:3883–3895

9. L. Cohen, Time–frequency distributions—a review. Proc. IEEE 77(7), 941–981 (1989)
10. P. Comon, Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)
11. P. Comon, Blind identification and source separation in 2×3 under-determined mixtures. IEEE Trans.

Signal Process. 52(1), 11–22 (2004)
12. P. Comon, Tensors: a brief introduction. Signal Process. Mag. 31(3), 44–53 (2014)
13. L. De Lathauwer, J. Castaing, Blind identification of underdeterminedmixtures by simultaneousmatrix

diagonalization. IEEE Trans. Signal Process. 56(3), 1096–1105 (2008)
14. Y. Deville, M. Benali, Differential source separation: concept and application to a criterion based on

differential normalized kurtosis, in Proceedings of EUSIPCO, Tampere, Finland, 4–8 Sept 2000
15. Y. Deville, S. Savoldelli, A second-order differential approach for underdetermined convolutive source

separation, in: Proceedings of ICASSP 2001, Salt Lake City, USA, 2001
16. T.Dong,Y. Lei, J. Yang,An algorithm for underdeterminedmixingmatrix estimation.Neurocomputing

104, 26–34 (2013)
17. D.L. Donoho, M. Elad, Maximal sparsity representation via l1 minimization. Proc. Nat. Acad. Sci.

100, 2197–2202 (2003)
18. C. Févotte, A. Ozerov, Notes on nonnegative tensor factorization of the spectrogram for audio source

separation: statistical insights and towards self-clustering of the spatial cues. Exploring Music Con-
tents (Springer, Heidelberg, Berlin, 2011), pp. 102–115

19. C. Fevotte, C. Doncarli, Two contributions to blind source separation using time–frequency distribu-
tions. IEEE Signal Process. Lett. 11(3), 386–389 (2004)

20. D. FitzGerald, M. Cranitch, E. Coyle, Non-negative tensor factorization for sound source separation,
in Proceedings of Irish Signals and Systems Conference, pp. 8–12 (2005)

21. D. FitzGerald, M. Cranitch, E. Coyle, Extended nonnegative tensor factorization models for musical
sound source separation. Computational Intelligence and Neuroscience, Article ID 872425 (2008)

22. S. Ge, J. Han, M. Han, Nonnegative mixture for underdetermined blind source separation based on a
tensor algorithm. Circuits Syst. Signal Process. (2015). doi:10.1007/s00034-015-9969-8

23. F. Gu, H. Zhang, W. Wang et al., PARAFAC-based blind identification of underdetermined mixtures
using Gaussian mixture model. Circuits Syst. Signal Process. 33(6), 1841–1857 (2014)

24. R.A. Harshman, Foundations of the PARAFAC procedure: models and conditions for an “explanatory”
multimodal factor analysis. UCLA Working Papers in Phonetics, 16 (1970)

25. J. Herault, C. Jutten, Space or time adaptive signal processing by neural network models, in Interna-
tional Conference on Neural Networks for Computing, Snowbird, USA, 1986

26. J. Herault, C. Jutten, Blind separation of sources. Part 1: an adaptive algorithm based on neuromimetic
architecture. Signal Process. 24(1), 1–10 (1991)

27. J. Herault, C. Jutten, B. Ans, Détection de grandeurs primitives dans un message composite par une
architecture de calcul neuromimétique en apprentissage non supervisé. In 10◦ Colloque sur le traitement
du signal et des images, FRA. GRETSI, Groupe d’Etudes du Traitement du Signal et des Images (1985)

28. A. Hyvarinen, Blind source separation by nonstationarity of variance: a cumulant-based approach.
IEEE Trans. Neural Netw. 12(6), 1471–1474 (2001)

29. A. Jourjine, S. Rickard, O. Yilmaz, Blind separation of disjoint orthogonal signals: demixing n sources
from 2 mixtures, in Proceedings of ICASSP 2000, Turkey, vol. 6, pp. 2986–2988 (2000)

30. S. Kim, C.D. Yoo, Underdetermined blind source separation based on subspace representation. IEEE
Trans. Signal Process. 57(7), 2604–2614 (2009)

31. T.G. Kolda, B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
32. M.S. Lewicki, T.J. Sejnowski, Learning overcomplete representations. Neural Comput. 12, 337–365

(2000)
33. Y. Li, S.I. Amari, A. Cichocki et al., Underdetermined blind source separation based on sparse repre-

sentation. IEEE Trans. Signal Process. 54(2), 423–437 (2006)
34. D. Nion, K.N. Mokios, N.D. Sidiropoulos et al., Batch and adaptive PARAFAC-based blind separation

of convolutive speech mixtures. IEEE Trans. Audio Speech Lang. Process. 18(6), 1193–1207 (2010)
35. A. Ozerov, C. Févotte, R. Blouet, et al., Multichannel nonnegative tensor factorization with structured

constraints for user-guided audio source separation, in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2011. IEEE, pp. 257–260 (2011)

36. L. Parra, C. Spence, Convolutive blind separation of nonstationary sources. IEEE Trans. Audio Speech
Lang. Process. 8(3), 320–327 (2000)

37. D.T. Pham, J.F. Cardoso, Blind separation of instantaneous mixtures of non-stationary sources. IEEE
Trans. Signal Process. 49(9), 1837–1848 (2001)

http://dx.doi.org/10.1007/s00034-015-9969-8


Circuits Syst Signal Process (2015) 34:3883–3895 3895

38. R. Qi, Y. Zhang, H. Li, Overcomplete blind source separation based on generalized Gaussian function
and sl0 norm. Circuits Syst. Signal Process. (2014). doi:10.1007/s00034-014-9952-9

39. V.G. Reju, S.N. Koh, I.Y. Soon, An algorithm for mixing matrix estimation in instantaneous blind
source separation. Signal Process. 89(9), 1762–1773 (2009)

40. S. Rickard, R. Balan, J. Rosca, Real-time time-frequency based blind source separation, inProceedings
of ICA 2001, San Diego, CA, 9–13 Dec 2001

41. S. Rickard, O. Yilmaz, On the approximate w-disjoint orthogonality of speech, in ICASSP, Orlando,
Florida, 13–17 May 2002

42. P. Tichavsky, Z. Koldovsky, Weight adjusted tensor method for blind separation of underdetermined
mixtures of nonstationary sources. IEEE Trans. Signal Process. 59(3), 1037–1047 (2011)

43. E. Vincent, S. Araki, P. Bofill, Signal separation evaluation campaign. In (SiSEC 2008)/Under-
determined speech and music mixtures task results (2008), http://www.irisa.fr/metiss/SiSEC08/
SiSEC_underdetermined/dev2_eval.html

44. E. Vincent, First stereo audio source separation evaluation campaign: data, algorithms and results.
Independent Component Analysis and Signal Separation (Springer, Berlin Heidelberg, 2007), pp. 552–
559

45. M.Weis, F. Romer, M. Haardt, et al., Multi-dimensional space–time–frequency component analysis of
event related EEG data using closed-form PARAFAC, in IEEE International Conference on Acoustics,
Speech and Signal Processing. ICASSP 2009, IEEE 2009, pp. 349–352 (2009)

46. O. Yilmaz, S. Rickard, Blind separation of speech mixtures via time–frequency masking. IEEE Trans.
Signal Process. 52(7), 1830–1847 (2004)

47. M. Zibulevsky, B.A. Pearlmutter, Blind source separation by sparse decomposition. Neural Comput.
13(4), 863–882 (2001)

http://dx.doi.org/10.1007/s00034-014-9952-9
http://www.irisa.fr/metiss/SiSEC08/SiSEC_underdetermined/dev2_eval.html
http://www.irisa.fr/metiss/SiSEC08/SiSEC_underdetermined/dev2_eval.html

	A Time--Frequency Domain Blind Source Separation Method for Underdetermined Instantaneous Mixtures
	Abstract
	1 Introduction
	2 Mixing Matrix Estimation
	2.1 Spatial Time--Frequency Distributions
	2.2 Selecting a Single Source Active in the Time--Frequency Plane
	2.3 Mixing Matrix Estimation Using the Time--Frequency Ratio

	3 Source Synthesis
	4 Simulation
	5 Conclusion
	Acknowledgments
	References




