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Abstract In this paper, we propose a two-stage sparse decomposition-based method
for single-channel speech separation in time domain. First, we propose a Dictionary-
updated orthogonal matching pursuit (DUOMP) algorithm which is used in both
separation stages. In the proposed DUOMP algorithm, all atoms of each source-
specific dictionary are updated by subtracting off the current approximation of each
source to the original atoms. It is proved that the DUOMP algorithm can limit the
separated sources within a region where they are uncorrelated in statistical sense more
quickly. Then, we propose an adaptive dictionary generation method followed by a
frame labeling method to perform a second-stage separation on the mixed frames
having certain temporal structure. Experiments show that the proposed method out-
performs a separationmethod using sparse non-negativematrix factorization (SNMF),
a separation method using OMP and a source-filter-based method using pitch infor-
mation in overall. Additionally, what affects the performance of the proposed method
is also shown.
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1 Introduction

In a natural environment, several speech signals are usually mixed. Speech separation
aims to estimate such individual speech sources from their mixture. It has several
obvious applications, e.g., in hearing aids or as a preprocessor to offer robustness in
speech recognition, speaker recognition and speech coding. Single-channel speech
separation (SCSS) discussed in this paper is an extreme case, where only one mixture
is observed. It is considered as the most difficult case since no information of mixing
matrix can be used. However, the human auditory system has impressive ability to
solve this problem, that is, even using an ear, we can still isolate each individual
speech when multi-talkers speak at the same time.

SCSS is an ill-posed problem, aiming to recover underlying speech sources from
an observed mixture. Previous state-of-the-art SCSS approaches can be divided into
two groups: source-driven or computational auditory scene analysis (CASA)-based
method [11,12,36,43,44], and model-driven method [1,13,30,32,45]. CASA-based
method tries to achieve human performance in auditory scene analysis (ASA) based
on the perceptual organization of speech. Ideal binary time–frequency (T–F) mask
has been proposed as the main computational goal of CASA [41]. The grouping
principles prominently used in speech organization are harmonicity and periodicity of
voiced speech, temporal continuity, onset and offset synchrony, common amplitude
modulation, etc. CASA-based method does not rely heavily on priori knowledge of
sources. However, in general, its separation performance is not as good as that of
model-driven method.

Model-driven method generally outperforms CASA-based method, since it utilizes
priori information of speakers. From a separation viewpoint, model-drivenmethod can
be divided into two classes: statistical model-driven method and decomposition-based
method. Statistical model-driven method is based on statistical models (e.g., vector
quantization (VQ) [8,27,33], Gaussian mixture model (GMM) [1,8,17,25,26,30],
hidden Markov model (HMM) [10,31,42] and sinusoidal model [15,19,20,24,38])
or codebooks [e.g., independent component analysis (ICA) bases [13,14,16] and VQ
codebooks [19–21,26]] trained for individual speakers. It tries to solve out model
parameters or find codebook atoms which can generate mixture optimally to estimate
sources by statistical methods, e.g., minimum mean square error (MMSE) estima-
tion [25,29,30], maximum-likelihood (ML) estimation [13,15,26] and maximum a
posterior (MAP) estimation [13–15,25]. Though statistical model-driven method has
been reported to be effective, its training is rather time-consuming and estimation
is significantly complex. In [32], 8192 states are required to fit each HMM to care-
fully model each transition state. In [19,20], every possible combination needs to
be considered during distortion function minimization to find the optimal codebook
atoms.

In statistical model-driven SCSS method, sparsity has been proven to be useful for
SCSS. For example, generalizedGaussian distribution is used based on the observation
that only a small number of coefficients of ICAbasis functions differ significantly from
zero [13]; a sparse-distributed code of basis functions is generated in [30], leading to
better separation results than a compact code of basis functions in [28].
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Sparsity has been also used in decomposition-based SCSSmethod [2,18,23,34,35,
37,40], which is called as sparse decomposition-based SCSS method in this paper.
Sparse decomposition-based method performs separation by mapping a mixture fea-
ture onto the union of learned source dictionaries and then computing the parts which
fall in each dictionary by sparse decomposition. Each source dictionary is learned
prior to give sparse representation of corresponding speaker’s training speech fea-
tures. Generally, sources are only sparse in their own specific dictionaries; therefore,
they have less overlap in the source-specific dictionary union. Obviously, this feature
is very helpful for separation. SCSS using sparse non-negative matrix factorization
(SNMF) is a classical sparse decomposition-based method and has achieved compa-
rable performance [2,35,40].

In sparse decomposition-based SCSS method, sparse coefficients of dictionary
atoms need to be computed by sparse decomposition. Various methods have been
proposed recently, of which the most typical methods are basis pursuit (BP) [3,4,6,9]
and orthogonal matching pursuit (OMP) [7,22,39]. OMP can achieve similar perfor-
mance to BP with the major advantages of its speed and ease for implementation. It
is a greedy algorithm in which an atom most strongly correlated with the residual is
chosen and its contribution is subtracted off to update the residual at each iteration. In
OMP, the dictionary is fixed, while residuals are updated iteratively. To make a better
match between chosen atoms and updated residuals, we propose a dictionary-updated
OMP (DUOMP) algorithm in which dictionary is also updated at each iteration in this
paper. We also prove its benefit for separation theoretically.

In addition, sparse decomposition-based method generally use the same trained
source-specific dictionaries for separation of all mixed frames. However, it is not
reasonable sincemixed frames very different in temporal or frequency structure are not
distinguished. Therefore, we propose to generate adaptive source dictionaries based on
temporal structure information to perform a second-stage separation on mixed frames
of certain temporal structure in this paper. Such frames are labeled out by a proposed
frame labeling method mainly using pitch period and frame label results.

To evaluate the proposedmethod,we access the performance in variousways inGrid
Corpus [5]. First, we compare DUOMP to OMP intuitively by showing their selected
atoms for separation of the samemixed frame. Second, pitch period tracking and frame
labeling results obtained are reported. Third, the proposed method is compared with
a method using SNMF [35], a method using OMP and a source-filter-based method
using pitch information [38] in terms of SNR, SDR, SIR and SAR. It is observed that
the proposed method achieves better separation results in overall.

The remainder of this paper is structured as follows. In Sect. 2, we introduce the gen-
eral model for sparse decomposition-based SCSS. In Sect. 3, we propose a two-stage
sparse decomposition-based SCSS algorithm using DUOMP and temporal structure
information. First, a DUOMP algorithm is proposed to compute sparse decomposi-
tion. Second, a frame labeling procedure is introduced to label mixed frames of certain
temporal structure. Third, an adaptive dictionary generation method is presented
for a second-stage separation of labeled mixed frames. The experiment results are
reported and discussed in Sect. 4. Finally, we conclude and give future perspectives in
Sect. 5.
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2 Sparse Decomposition-Based Approach

Consider the standard linear instantaneous mixing model where a mixed signal y(t)
at time t is the linear combination of K speaker sources at the same time, that is,

�y =
K∑

k=1

�sk (1)

where �y = [ y(1), y(2), . . . y(N ) ]T is a vector of size N denoting the single mixture,
and �sk = [ sk(1), sk(2), . . . sk(N ) ]T is a vector of the same size representing the kth
source.

Suppose that �y can be sparsely represented in a known overcomplete dictionary D
which is the concatenation of K source-individual dictionaries,D = [

D1 D2 · · · DK
]
,

�y = D�θ (2)

where �θ is the complete codematrixwhich is the concatenation of the source-individual

codes, �θ = [ �θT1 �θT2 · · · �θTK
]T
. The sparsest representation �θ of �y in D, denoted as �̂θ ,

can be found by solving the following problem,

min
∥∥∥�θ

∥∥∥
1
, s.t. �y = D�θ (3)

where ‖.‖1 denotes the l1 norm of a vector. If the source dictionaries are diverse
enough, it is possible to separate �y into its individual sources �̂sk as

�̂sk = Dk �̂θk (4)

where �̂θk is a part of �̂θ , denoting the estimation of source-individual code �θk .
As a consequence of above, there are two connected tasks to be solved in sparse

decomposition-based SCSS: source dictionary learning and sparse decomposition
computation. For the first task, we simply generate Dk as a matrix consisting of the
kth speaker’s time-domain training frames as columns called atoms in the first sep-
aration stage and focus on generating adaptive dictionary �k by selecting atoms of
certain temporal structure from Dk in the second separation stage. As shown in our
simulations, it is effective to use such time-domain source dictionaries for separation
since better overall results are achieved as compared to the separation method using
SNMF. It is worth mentioning thatDk generated as unsupervised clustering of training
frames has also been tested, but results in much lower SNR. The greatest contribution
for the first task is that we propose an adaptive source dictionary generation method
in the second separation stage. The method is based on pitch period and frame label
information, leading to improvement of separation on the mixed frames having certain
temporal structure.

For the second task, we propose a DUOMP algorithm in which all atoms of a source
dictionary are updated at each iteration so as tomatch residual better in temporal struc-
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Fig. 1 Block diagram of the proposed sparse decomposition-based speech separation method using

DUOMP and temporal structure information (�̂s(1)k is the source estimated in the first separation stage,
and �k is the adaptive source dictionary generated using temporal structure information)

ture. We prove that DUOMP can achieve uncorrelated sources after fewer iterations in
statistical sense as compared to OMP theoretically. The proposed DUOMP is used in
both separation stages, leading to better separation performance thanOMPas observed
in our simulations.

3 Proposed Separation Method

We will now proceed to describe the proposed two-stage sparse decomposition-based
separation approach using DUOMP and temporal structure information. In this paper,
we focus on separating speech mixture composed of two speakers, i.e., K = 2 and
k ∈ {1, 2}. Figure 1 shows the block diagram of the proposed separation approach.

As shown in Fig.1, the system is composed of the following blocks: the first-stage
separation using DUOMP algorithm, frame labeling, adaptive dictionary generation
and the second-stage separation using DUOMP algorithm. All mixed frames are sepa-
rated in the first separation stage, while only labeled mixed frames are separated again
in the second separation stage. Separation is performed frame after frame, and then,
speech is synthesized by overlap-adding.

3.1 First-stage Separation Using DUOMP

In this subsection, we propose a DUOMP algorithm to compute sparse decomposition
for separation.We update all the atoms of each source dictionary by subtracting off the
current approximation of the corresponding source iteratively. In this way, atoms are
expected to match more with updated residuals in temporal structure; thus, improved
separation results should be achieved. Nowwewill first present the proposed DUOMP
algorithm for SCSS and then explain its benefit theoretically.

The first-stage separation algorithm using DUOMP is presented as follows.
Now we will proceed to explain the benefit of the proposed DUOMP algorithm for

SCSS.

Theorem 1 On the assumption that correlation coefficients between atoms inD0
1 and

D0
2 have a distribution with mean 0, we have estimation of �s1 and �s2 at iteration

t = p + q achieved using DUOMP, denoted as �̂st1 and �̂st2, satisfying
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Algorithm 1 (first-stage separation using DUOMP)

INPUT:
Two time-domain source dictionaries D1 and D2
Mixed signal �y

OUTPUT (suppose convergence satisfies after m iterations) :

Two estimated sources �̂s(1)1 and �̂s(1)2
Two matrices Im1 and Im2 consisting of chosen atoms from D1 and D2 respectively

Two approximations �̂θm1 and �̂θm2 of sources �s1 and �s2 respectively

A residual �rm = �y − [
Im1 Im2

] [
�̂θm

T

1 �̂θm
T

2

]T

PROCEDURE:
(1) Initialize the residual �r0 = �y, the source dictionaries D0

1 = D1,D0
2 = D2 and their union D0 =[

D0
1 D0

2

]
, the matrices consisted of chosen atoms I01 = ∅, I02 = ∅, and the iteration counter t = 0.

(2) Find the index that solves the optimization problem [22,39]

λt = arg max j=1,...,M

∣∣∣
〈
�r t , �dtj

〉∣∣∣ (5)

where �dtj is the j th atom of Dt which is the concatenation of source dictionaries, Dt = [
Dt
1 Dt

2
]
, and

M is the number of atoms in Dt .
(3) Merge the newly selected atom �dλt with the previous matrices of chosen atoms:

It1 =
{ [

It−1
1

�dλt

]
λt ≤ M1

It−1
1 M1 ≤ λt ≤ M

(6)

It2 =
{
It−1
2 λt ≤ M1[
It−1
2

�dλt

]
M1 ≤ λt ≤ M

(7)

where M1 and M2 denote the numbers of atoms in D1 and D2, respectively.
(4) Solve a least-squares problem to obtain a new approximation of �y supported in Dt :

�θ t = argmin�θ
∥∥∥�y − It �θ

∥∥∥
2

(8)

[22,39] where It is the concatenation of It1 and It2, I
t = [

It1 It2
]
. The solution of (8) is given by

�̂θ t =
(
It

(
It

)T)−1
It �y [7].

(5) Update all the atoms in Dt :

�dtj =
⎧
⎨

⎩
�d0j − �̂θ t1It1 1 ≤ j ≤ M1

�d0j − �̂θ t2It2 M1 + 1 ≤ j ≤ M
(9)

where �̂θ t1 and �̂θ t2 denote the parts of �̂θ t supported in Dt
1 and Dt

2, respectively, satisfying
�̂θ t =

[
�̂θ t
T

1 �̂θ t
T

2

]T
.

(6) Calculate the new residual [9,22,39],

�r t = �y − �̂θ t It (10)

Increment t , and return to step 2 until satisfying
∥∥�r t∥∥2 ≤ δe or max j=1,...,M

∣∣∣
〈
�r t , �dtj

〉∣∣∣ ≤ δc where δe

and δc are chosen thresholds and ‖.‖2 denotes the l2 norm of a vector.

(7) Estimate the speech source in the first-stage separation as �̂s(1)k = Dm
k

�̂θmk .

E
(〈

�̂st1, �̂st2
〉)

≈ 0

when pq > Q where Q is a large number, p and q denote the number of selected

atoms to estimate �s1 and �s2 at iteration t, respectively, and
〈
�̂st1, �̂st2

〉
denotes correlation

between �̂st1 and �̂st2.
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Proof Suppose that at iteration t = p + q, the kq th atom in Dt
2 denoted as �dtkq is

selected, we have the estimated sources �̂st1, �̂s
t
2 at iteration t satisfying

�̂st1 = It1 �̂θ t1 = It−1
1 ( �̂θ t−1

1 + �u) (11)

�̂st2 = It2 �̂θ t2 = [ It−1
2

�dtq2 ]
[
( �̂θ t−1

2 + �v)T θ̂ t2(q)

]T
(12)

where �μ and �ν are vectors of the same sizes as �̂θ t−1

1 and �̂θ t−1

2 , respectively. Since

�̂θ t is obtained by solving (8), according to experience, when p and q are larger, we
have

‖�μ‖0 ≤ A1, ‖�μ‖1 ≤ σ1 (13)

‖�v‖0 ≤ A2, ‖�v‖1 ≤ σ2 (14)

where A1 and A2 are small integers, and σ1 and σ2 are small values which can be
ignored. Therefore, by combing (11–14), we have

〈
�̂st1, �̂st2

〉
≈

〈
�̂st−1
1 , �̂st−1

2

〉
+ θ̂ t2(q)

〈
�̂st−1
1 , �dtkq

〉
(15)

From (11), we have

�̂st−1
1 =

p−1∑

m=1

cm �d0jm (16)

where cm is a variable scalar dependent on �̂θ11, �̂θ21, . . . , �̂θ p+q−1

1 and �d0jm denotes the

jm th atom in D0
2. From (9) and (12), we have

�dtkq =
�d0kq − �̂st−1

2∥∥∥ �d0kq − �̂st−1
2

∥∥∥
2

= 1∥∥∥ �d0kq − �̂st−1
2

∥∥∥
2

( �d0kq − It−1
2 ( �̂θ t−1

2 + �ν))

= 1∥∥∥ �d0kq − �̂st−1
2

∥∥∥
2

q∑

r=1

br �d0kr (17)

where br is variable scalar dependent on �̂θ12, �̂θ22, . . . , �̂θ p+q−1

2 and �d0kr denotes the kr th
atom in D0

2. Combining (16) and (17), we have

〈
�̂st−1
1 , �dtkq

〉
=

p−1∑

m=1

q∑

r=1

cmbr
〈 �d0jm , �d0kr

〉
(18)
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Since cm and br are bounded and
〈 �d0j , �d0k

〉
has a distribution with mean 0, according to

the central limit theorem, when pq is a large number,
〈
�̂st−1
1 , �dqkq

〉
has approximately

normal distribution with mean 0, that is,

E
(〈

�̂st−1
1 , �dtkq

〉)
= 0 when pq >Q (19)

where Q is a large number. Similarly, we have

E
(〈

�̂st−1
1 , �̂st−1

2

〉)
= 0 when pq >Q (20)

Combing (15), (19) and (20), we have

E
(〈

�̂st1, �̂st2
〉)

= 0 when pq >Q (21)

(21) can be also concluded in a similar way on the suppose that the jpth atom in Dt
1

denoted as �dtjp is selected at iteration t . Theorem 1 is proved. ��

By a similar analysis, we can easily find that E(
〈
�̂st1, �̂st2

〉
) ≈ 0 holds when p > Q

and q > Q by using OMP for SCSS. The comparison means that separated sources
by using DUOMP tend to be limited within a region where they are uncorrelated more
quickly in statistical sense than those using OMP. It is obviously helpful for SCSS
since sources are generally independent of each other.

3.2 Frame Labeling

By analyzing the sources estimated in the first separation stage, we present a frame
labeling approach for the second-stage separation of mixed frames having certain
temporal structure mainly including quasi periodicity and sample value concentration.
In this paper, a frame is termed concentrated if the values of its most samples are
mainly positive or negative. Figure 2 shows some examples of normalized concentrated
frames. It can be seen that a concentrated frame may be unvoiced or transition, and
has certain temporal structure.

Three mixed types are considered here, which are voiced/voiced (V/V), voiced/
concentrated (V/C) and concentrated/voiced (C/V). In V/V frames, both �s1 and �s2 are
voiced. In V/C frames, only �s1 is voiced and �s2 is concentrated. In C/V frames, only
�s2 is voiced and �s1 is concentrated. V/V, V/C and C/V frames are labeled by using the
following measures:

– pitch period pk , the pitch period of �̂s(1)
k in samples.

– pitch period difference |p1–p2|, the difference between the pitch periods of two

estimated sources �̂s(1)
1 and �̂s(1)

2 in samples.
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Fig. 2 Concentrated frame examples

– sample concentration ratio (SCR) rk , defined as

rk =
∣∣∣
∑N

n=1 �̂s(1)
k (n)

∣∣∣
∑N

n=1

∣∣∣�̂s(1)
k (n)

∣∣∣
(22)

where �̂s(1)
k (n) denotes the value of the nth sample in �̂s(1)

k . Concentrated frames
have much higher SCRs than the other frames.

– zero crossingnumber (ZCN) zk , the zero crossingnumber of �̂s(1)
k in samples.Voiced

and concentrated frames generally have larger ZCNs than the other frames.

The proposed frame labeling method works as follows:

(1) All mixed frames are labeled as V/V when neither p1 nor p2 is not zero, |p1–p2|
is bigger than a chosen threshold εp, and both z1 and z2 are lower than a chosen
threshold εz . For the frames labeled as V/V, clear their labels if neither of their
nearest neighbor frames is labeled as V/V. For unlabeled frames, label them V/V
if their nearest neighbor frames are both labeled V/V.

(2) Calculate r̄k and z̄k , the average of rk and zk of labeled V/V frames in step (1),
respectively.

(3) For the frames not labeled as V/V in step (1), label them as follows when neither
p1 nor p2 is not zero and |p1–p2| is smaller than εp:

All unlabeled frames are labeled V/V when for both estimated sources, rk is lower
than αr̄k where α is a chosen scalar invariant, zk is lower than β z̄k where β is a chosen
scalar invariant, and pk is continuous. pk is considered continuous in this paper when
there exists three consecutive frames including the present frame satisfying that the
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differences between the pitch periods of the nearest neighbor frames are both smaller
than a chosen threshold εd .

All the frames not labeled V/V above are considered V/C when r1 is lower than
αr̄1, z1 is lower than β z̄1 and p1 is continuous. Then, set p2 to 0. C/V frames are
labeled and processed in a similar way.

All the remaining unlabeled frames are considered V/C (or C/V) when there exists
a frame labeled V/C (or C/V) among the three consecutive frames and set p2 = 0 (or
p1 = 0). Then, the rest of unlabeled frames are labeled V/C (or C/V) when both of
their previous and next frames are labeled V/C (or C/V) and set p2 = 0 (or p1 = 0).

(4) For the frames not labeled in step (1) or (3), the present frame is considered a
concentrated frame included when r1 or r2 is higher than a chosen threshold εr .
Label the present frame as a V/C frame when satisfying that p1 	= 0 and the pitch
difference between the present and the next (or previous) frame is lower than εd .
Label the present frame C/V in a similar way.

(5) For the frames not labeled in step (1), (3) or (4), the present frame is considered
voiced frame included, denoted asV/X orX/V temporarily, when satisfying that rk
is lower thanαr̄k , pk 	= 0, and the pitch difference between the present and the next
(or previous) frame is lower than εd for the same k. Label the V/X or X/V frames
V/V when rk′ is lower than αr̄k′ and zk′ is lower than β z̄k′ for k′ = 1, 2, k′ 	= k.
Label the V/X frames V/C when r2 is lower than αr̄2 or z2 is lower than β z̄2.
Label the X/V frames C/V when r1 is lower than αr̄1 or z1 is lower than β z̄1.

3.3 Adaptive Source Dictionary Generation Using Temporal Structure
Information

In this subsection, we propose an adaptive dictionary generation method to perform a
second-stage separation on labeled V/V, V/C and C/V frames. The proposed method
utilizes pitch period and frame labeling results obtained in the subsection above to
incorporate priori temporal structure information into dictionary generation. In this
way, mixed frames showing great variety are distinguished; thus, improved separation
performance can be expected. To be distinguished from source dictionaries Dk used
in the first separation stage, source dictionaries generated here are denoted as �k .

As presented inTheorem1,DUOMP is appropriate for SCSSon the assumption that
correlation coefficients between atoms in two source dictionaries have a distribution
with mean 0. Therefore, to try to satisfy the assumption for labeled V/V frames,
we generate an adaptive dictionary for the estimation of one source by adding the
limitation on pitch period while keeping the other source dictionary unchanged. In
this way, correlation coefficients are most likely to satisfy the assumption since they
vary greatly. It is worth noting that we have observed that it indeed results in poor
separation performance by generating adaptive dictionaries for both sources in our
experiments.

For a labeled V/V frame, an adaptive dictionary�k is generated for the source with
simpler temporal structure denoted as �sk . �sk is considered simpler here when fewer
atoms are selected for its estimation in the first-stage separation, that is, Imk consists
of fewer atoms. �k is generated as a matrix consisting of atoms chosen in Dk based
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on pitch periods as columns. The difference between the pitch period of each atom in
�k and pk is smaller than a chosen threshold ε′

p.
For a labeled V/C frame, �2 is generated as a matrix consisting of atoms selected

from D2 whose pitch periods are zero, SCRs are greater than a chosen threshold, ε′
r ,

and ZCNs are smaller than a chosen threshold. �1 is generated in the same way as
that for the estimation of the voiced source having simpler temporal structure above.
Though the assumption in Theorem 1 may be not satisfied strictly since atoms in
�1 and �2 both show certain temporal structure, DUOMP is still expected to be
appropriate due to that the atoms in �2 still show great randomness. Indeed, as shown
in our simulation, it is helpful for separation by generating adaptive dictionaries for
V/C frames in this way.

For a labeled C/V frame, adaptive source dictionaries are generated in a similar
way.

4 Experiment

As a proof of concept, we evaluate the performance of the proposed SCSSmethod and
compare it with the method using SNMF [35] and the method using OMP. We also
report the separation performance of our proposed method on the mixtures available
online in a source-filter-based method using pitch information [38]. To evaluate the
separation performance, average of signal-to-noise ratio (SNR), average of source-to-
distortion ratio (SDR), average of source-to-interferences ratio (SIR) and sources-to-
artifacts ratio (SAR) are used. The SNR of the kth separated sentence �̂rk is defined
as

SNR = 10 lg

[
(�rk)T�rk

(�rk − �̂rk)T(�rk − �̂rk)

]
(23)

where �rk is the original sentence of kth speaker and �̂rk is the respective separated
sentence.

To evaluate the proposed separation algorithm, we used the Grid Corpus provided
for SCSS byCooke et. al [5].We selected four speakers including two female (speakers
18 and 20) and two male speakers (speakers 1 and 2) from the database and denoted
them as F1, F2, M1 and M2 in sequel. For each speaker, half of the sentences in the
database were used for training and ten other sentences are selected randomly for
testing. Speech sources are added directly at 0 dB SNR for each speech pair to have
400 female–malemixtures, 100 female–femalemixtures and 100male–malemixtures.
The original sampling frequency was decreased from 25 to 8 kHz, and a hamming
window of duration 32 ms with a frame shift of 16 ms was used.

In this section, we first give an example of selected atoms for SCSS using the
proposed DUOMP and OMP algorithm, respectively. Then, we report the results of
the proposed pitch tracking and frame labeling method. Thirdly, we compare the
separation performance of the proposed method with that of the method using SNMF
and OMP, and report our separation SNR results on the six mixtures available online
in [38]. Finally, we discuss what affects the separation performance of the proposed
method and address our future work.
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Fig. 3 Waveforms of sources and selected atoms. a, b Sources 1,2; c, d the first 16 atoms selected to
estimate sources using OMP; e, f the first 16 atoms selected to estimate sources using DUOMP

4.1 Selected Atoms in DUOMP

Figure 3 shows the first 16 atoms chosen using OMP and DUOMP, respectively, for
the separation of a mixed frame. In this example, 70 and 51 atoms are selected for
the estimation of two sources using OMP, while 32 and 89 atoms are selected using
DUOMP. In our simulations, we set δe = 10−10, δc = 10−5.

4.2 Pitch Tracking and Frame Labeling Results

In this subsection, we report the results of pitch period tracking and frame labeling,
which are used to find out the mixed frames with temporal structure to perform a
second-stage separation. The relationship between their performance and separation
results will be discussed in the following discussion subsection. In our simulations,
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Fig. 4 Pitch period tracking results on test mixture of a male (M1) and a female (F1) speakers (“pbbv6n”
and “sbil4a”), together with truth pitch period trajectories (black solid lines)

Table 1 Pitch period tracking
results in terms of ηpk (%)

ηp1 ηp2

F/F 75.9 73.1

F/M 74.0 81.1

M/M 62.1 68.9

we set εp = 2, εr = 0.6, εz = 80, α = 3, β = 1.2, εd = 3. The parameters
are experimentally determined and can lead to better SCSS performance than other
parameters.

Figure 4 depicts the pitch period tracking result of a female–male mixture. For each
mixture, two pitch period trajectories in samples are estimated by analyzing the sources
estimated in the first separation stage using autocorrelation method. The ground truth
pitch period trajectories are obtained directly from original speech sources.

To evaluate the overall performance of pitch period tracking, we use a correctness
measure defined as,

ηpk =
∣∣∣
{
n f | − ε′

p ≤ �qk(n f ) − �̂qk(n f ) ≤ ε′
p

}∣∣∣
N f

(24)

where �qk and �̂qk denote the true and estimated pitch period trajectory of speaker k in

samples, respectively, n f denotes frame index,
{
n f | − ε′

p ≤ �qk(n f ) − �̂qk(n f ) ≤ ε′
p

}

denotes an index set consisting of frames satisfying −ε′
p ≤ �qk(n f ) − �̂qk(n f ) ≤ ε′

p,|{·}| denotes the cardinality of a set, and N f denotes the number of total frames
evaluated. In our experiment, we set ε′

p = 1. Tables 1 and 2 summarize the averaged
pitch period tracking and frame labeling results of 600 mixtures tested.

As shown in Table 1, the proposed pitch period tracking method performs best for
female–male pairs and worst for male–male pairs for the reason that the first-stage
separation performs best on female–male mixtures and worst on male–male mixtures.
From Table 2, it can be seen that our proposed method performs best for V/V frames
and much worse for V/C and C/V frames. The reason is that the method relies heavily
on the estimated waveforms. Concentrated frames show much more randomness than
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Table 3 Results of separation using SNMF, OMP and DUOMP (first-stage, second-stage and first-stage
plus second-stage separation) in SNR (dB)

Method F/F F/M M/M

SNMF 4.7/4.5 5.5/5.3 3.3/3.9

OMP 4.8/4.7 5.7/5.8 3.7/4.4

DUOMP (first-stage separation) 5.1/5.0 6.2/6.3 4.0/4.5

DUOMP (second-stage separation) 5.3/5.1 6.4/6.6 4.1/4.6

DUOMP (first-stage plus second-stage separation) 5.7/5.5 6.7/6.8 4.3/4.8

Table 4 Results of separation using SNMF, OMP and DUOMP (first-stage, second-stage and first-stage
plus second-stage separation) in SDR (dB)

Method F/F F/M M/M

SNMF 4.2/5.0 6.2/6.0 1.9/3.1

OMP 3.8/4.1 5.4/5.4 2.2/3.3

DUOMP (first-stage separation) 4.3/4.7 6.2/6.2 2.5/3.4

DUOMP (second-stage separation) 4.4/4.8 6.4/6.3 2.6/3.6

DUOMP (first-stage plus second-stage separation) 5.0/5.3 6.8/6.7 3.0/3.8

voiced frames in time domain; thus, it results inmuchmore difference between original
and estimated waveforms.

4.3 Separation Results

We compare the separation results of the proposed first-stage, second-stage and first-
stage plus second-stage separation using DUOMP with that of the separation method
using SNMF and the method using OMP in SNR, SDR, SIR and SAR, respectively.
The average results of 600 mixtures tested are shown in Tables 3, 4, 5 and 6. The same
training sentences are used to generate each SNMF source dictionary with the sparsity
λ = 0.1 and the size of 560 as in [35]. The dictionaries used in the OMP method are
the same as those used in the DUOMPmethod in the first-stage separation. First-stage
plus second-stage separation method selects the separated frames of higher SNR from
the first-stage and second-stage separation results as its separation results.

As shown in Table 3, first-stage separation using DUOMP outperforms separation
using OMP in SNR by 0.3 dB in female–female mixtures, 0.5 dB in female–male
mixtures and 0.2 dB in male–male mixtures, respectively. As compared to the method
using SNMF, it achieves 0.45 dB higher SNR in female–female mixtures, 0.85 dB
higher SNR in female–male mixtures and 0.65 dB higher SNR in male–male mix-
tures, respectively. Second-stage separation using DUOMP outperforms first-stage
separation using DUOMP by 0.15dB in female–female mixtures, 0.25 dB in female–
malemixtures and 0.1 dB inmale–malemixtures, respectively. Although second-stage
separation leads to higher frame SNRs for most of the labeled frames than first-
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Table 5 Results of separation using SNMF, OMP and DUOMP (first-stage, second-stage and first-stage
plus second-stage separation) in SIR (dB)

Method F/F F/M M/M

SNMF 5.0/6.3 9.3/8.7 3.3/4.9

OMP 8.7/11.4 12.7/11.7 8.9/8.9

DUOMP (first-stage separation) 9.5/12.2 13.5/12.9 8.8/9.8

DUOMP (second-stage separation) 9.3/12.7 14.3/12.9 8.7/10.0

DUOMP (first-stage plus second-stage separation) 10.2/13.3 14.7/13.7 9.4/10.5

Table 6 Results of separation using SNMF, OMP and DUOMP (first-stage, second-stage and first-stage
plus second-stage separation) in SAR (dB)

Method F/F F/M M/M

SNMF 10.4/10.1 10.1/10.0 10.2/10.6

OMP 6.2/5.3 6.6/6.9 3.9/5.2

DUOMP (first-stage separation) 6.5/5.7 7.3/7.5 4.3/4.9

DUOMP (second-stage separation) 6.7/5.9 7.4/7.7 4.4/5.0

DUOMP (first-stage plus second-stage separation) 7.0/6.3 7.8/7.9 4.7/5.3

stage separation, it leads to lower frame SNRs for rare labeled frames. Therefore,
the improvement is small. First-stage plus second-stage separation can achieve better
SNR results by selecting separated frames of higher frame SNRs from first-stage and
second-stage separation as its separated frames. As shown in Table 3, it achieves 0.5dB
higher SNR in female–female mixtures, 0.5dB higher SNR in female–male mixtures
and 0.3dB higher SNR in male–male mixtures, respectively, than the first-stage sep-
aration. However, it is not practical due to that frames of higher frame SNRs cannot
be selected since speech sources are not known as a priori. Still, we can consider
incorporating a perceptual evaluation of speech quality (PESQ) 563 system to select
separated frames which can lead to higher mean opinion score (MOS) to improve our
proposed method in our future work.

From Tables 4, 5 and 6, it can be included that compared to separation using SNMF,
second-stage separation usingDUOMPachieves 0.3dBhigher SDR, 4.8 dBhigher SIR
and 3.3 dB lower SAR in average. Thus, the proposed method outperforms separation
using SNMF in overall. It can be easily seen that DUOMP still outperforms OMP for
SCSS in SDR, SIR and SAR. As shown in Tables 4, 5 and 6, First-stage separation
achieves 0.15dB higher SDR, 0.8dB higher SIR and 0.5dB higher SAR in average
than separation using OMP. Moreover, compared to first-stage separation, second-
stage separation achieves slightly higher SDR, SIR and SAR results, while first-stage
plus second-stage separation achieves relatively much higher results.

Finally, we compare the separation performance of our proposed method on the
six mixtures available online reported in a source-filter-based method using pitch
information [38] in SNR. The mixtures include four female–male, a female–female
and a male–male speech pairs. Table 7 shows the comparison results. The results of
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Table 8 Results of (a–g) in
SNR (dB)

Method F/F F/M M/M

(a) 5.2/4.9 6.4/6.5 4.0/4.5

(b) 5.3/4.9 6.4/6.4 4.0/4.5

(c) 5.5/5.3 6.5/6.7 4.3/4.7

(d) 5.5/5.3 6.4/6.5 4.1/4.6

(e) 6.1/5.8 6.6/6.9 4.6/5.0

(f) 5.8/5.7 6.9/6.9 4.3/4.8

(g) 6.3/6.3 7.2/7.3 5.1/5.5

Table 9 Results of (a–g) in
SDR (dB)

Method F/F F/M M/M

(a) 4.4/4.7 6.3/6.3 2.5/3.4

(b) 4.3/4.8 6.3/6.2 2.5/3.4

(c) 4.7/5.2 6.6/6.6 3.0/3.7

(d) 4.7/5.0 6.3/6.3 2.7/3.5

(e) 5.5/5.9 6.7/6.7 3.5/4.2

(f) 5.2/5.6 6.9/7.0 3.0/3.9

(g) 6.0/6.5 7.4/7.4 4.3/5.0

separation using SNMF are also given. It is shown that our proposed method performs
better than source-filter-based method using pitch information in SNR in overall.

4.4 Discussion and Future Work

In the proposed method, a second-stage separation is presented based on adaptive
dictionaries and performed on labeled V/V, V/C and C/V frames. In this subsection,
we experimentally discuss how pitch period tracking, frame labeling and dictionary
generation impact the proposed second-stage separation performance and have a con-
sideration of our potential future work.

Tables 8, 9, 10 and 11 shows the results of : (a) second-stage separation only on
labeled V/V frames; (b) second-stage separation only on labeled V/C and C/V frames;
(c) second-stage separation only on true V/V frames using true pitch periods; (d)
second-stage separation only on true V/C and C/V frames using true pitch periods; (e)
second-stage separation on true V/V, V/C and C/V frames using true pitch periods; (f)
second-stage separation on labeled V/V frames using optimal dictionaries; (g) second-
stage separation on true V/V frames using true pitch periods and optimal dictionaries.
True V/C frames are defined as frames satisfying p1 	= 0, p2 = 0, r2 ≥ ε′

r , and
true C/V frames are defined in a similar way. Optimal dictionaries are defined as
the dictionaries leading to the highest frame SNRs which are selected from adaptive
dictionaries generated based on the temporal structure of source 1, 2 and dictionaries
the same as those used in the first-stage separation. The results are averaged on the
tested 600 mixtures.
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Table 10 Results of (a–g) in
SIR (dB)

Method F/F F/M M/M

(a) 9.4/12.4 13.8/12.9 8.6/9.9

(b) 9.8/12.5 13.6/12.9 8.8/9.9

(c) 10.2/12.5 14.5/13.3 9.3/10.5

(d) 10.0/12.7 13.7/13.1 9.1/10.0

(e) 11.0/14.5 15.1/13.4 9.7/10.8

(f) 11.0/12.9 14.4/14.3 9.5/10.5

(g) 11.6/14.6 15.4/17.8 11.0/12.2

Table 11 Results of (a–g) in
SAR (dB)

Method F/F F/M M/M

(a) 6.7/5.8 7.4/7.6 4.4/4.9

(b) 6.6/5.9 7.3/7.7 4.3/5.0

(c) 6.7/6.1 7.7/7.9 4.7/5.2

(d) 6.7/6.1 7.4/7.6 4.4/5.1

(e) 7.5/6.7 7.7/8.0 5.2/5.5

(f) 7.0/6.7 8.1/8.2 4.7/5.4

(g) 7.6/7.3 8.4/9.6 5.7/6.2

From (a–b) in Tables 8, 9, 10 and 11, it can be seen that frame labeling improves
separation performance since the results of (a) and (b) are both higher than those of
first-stage separation and lower than those of second-stage separation. Moreover, by
comparing (c) to (a), (d) to (b) and (e) to the second-stage separation results, we find
out that, by improving the accuracy of pitch period tracking and frame labeling, we
can achieve at most 0.2dB higher SNR, 0.3dB higher SDR, 0.3dB higher SIR and
0.1dB higher SAR for the separation of V/V frames, 0.1dB higher SNR, 0.1dB higher
SDR and 0.1dB higher SIR for the separation of V/C and C/V frames, 0.4dB higher
SNR, 0.5dB higher SDR, 0.2dB higher SIR and 0.1dB higher SAR in overall.

More importantly, it is observed that the proposed method can be improved more
by optimal dictionaries used for the separation of V/V mixtures. Comparing (f) to (a),
we can see that 0.3dB higher SNR, 0.7dB higher SDR, 1.0dB higher SIR and 0.6dB
higher SAR can be achieved. Although optimal dictionaries leading to the highest
frame SNRs cannot be selected since sources are not known, we can still expect to use
a PESQ 563 system as a feedback to choose the dictionaries leading to highest MOS
score as optimal dictionaries.

Comparing (g) to (a), we can see that by the combination of improving the accuracy
of pitch period tracking and using optimal dictionaries, it can lead to 1.1dB higher
SNR, 1.3dB higher SDR, 2.9dB higher SIR and 1.4dB higher SDR. Thus, we will
consider improving pitch period tracking and using optimal dictionaries to improve
our proposed method in our future work.

In addition, although DUOMP outperforms OMP in SCSS as shown in Tables 3,
4, 5 and 6, the complexity of the algorithm is higher. The reason is that all atoms are
updated at each iteration. As a potential future work, we expect to reduce the algorithm
complexity by updating part of atoms and study on which atoms to be updated.
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5 Conclusion and Future Work

In this paper, we presented a two-stage sparse decomposition-based SCSS method. A
DUOMP algorithm has been proposed to compute sparse decomposition, and an adap-
tive dictionary generation method has been presented for a second-stage separation
of mixed frames having certain temporal structure. In our proposed DUOMP algo-
rithm, all atoms of each source dictionaries are updated by subtracting off the present
approximation to the source at each iteration, leading to separated sources which are
limited within a region in which they are uncorrelated more quickly in a statistical
sense than OMP. Adaptive dictionaries are generated based on pitch period and frame
label information to distinguish mixed frames having different temporal structure. By
comparison to other separation methods, it was observed that our proposed method
achieved better separation performance in SNR, SDR, SIR and SAR.

We have discussed what affects the performance of the proposed separation method
and considered selecting optimal source dictionaries and improving the pitch period
tracking and frame labeling accuracy as our potential work. In addition, we will con-
sider reducing the complexity of our proposed method by studying on updating part
of atoms and incorporating dictionary learning into the presented separation work.
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