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Abstract In this paper, we study the problem of master–slave synchronization for
chaotic Lur’e systems with sampled-data control. The sampling intervals are assumed
to satisfy a Bernoulli distributed white noise sequence with fixed and given occurrence
probability. By applying an input-delay approach, the probabilistic sampling system
is transformed into a continuous time-delay system with stochastic parameters in the
system matrices. Based on Lyapunov functional approach, a sufficient condition of
exponentially mean-square synchronization is obtained by analyzing the correspond-
ing synchronization error systems. The controller gains are designed by solving a set
of linear matrix inequalities. Finally, two numerical examples are given to demonstrate
the effectiveness of the proposed method.

Keywords Lur’e chaotic systems · Exponential synchronization · Sampled-data
control · Stochastic sampling

1 Introduction

Since the concept for synchronization of coupled chaotic systems was first proposed
by Pecora and Caroll [18], chaos synchronization has become a very hot topic in
the nonlinearity community, and a variety of alternative schemes for ensuring the
control and synchronization of chaotic systems have been proposed due to its potential
applications in variousfields such as secure communication, physics, automatic control
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and chemical and biological systems [17]. It has been shown that a lot of nonlinear
systems, such as neural networks, n-scroll attractors, Chua’s circuits and hyper-chaotic
attractors can be represented in the form of Lur’e systems [10,12,29]. Therefore, a
number of control schemes for synchronization of chaotic Lur’e systems have been
proposed such as state-feedback control [5,6,8,40], dynamic output feedback control
[20], impulsive control [1,2,13], PD control [7,30], adaptive control [11,14] and so
on.

With the rapid development of modern high-speed computers, modern control
systems tend to be controlled by digital controllers for better scalability, reliability,
flexibility, and cost-effectiveness [31–34]. The sampled-data controllers, which only
need the samples of the state variables of the master–slave systems at discrete time
instants, are proposed to synchronize chaos systems. Lu et al. [15] investigated the
problem of synchronization of chaotic Lur’e system by using the input-delay approach
combinedwith the free-weightingmatrix technique. Comparedwith the control design
method in [15], the result presented in [38] is less conservative by using an improved
free-weighting matrix method. Recently, the work in [3,41] has improved the results
by employing some discontinuous Lyapunov functional. Compared with the time-
independent Lyapunov functional introduced in [15,38], the discontinuous Lyapunov
functional suggested in [3,41] can capture more information about the actual sam-
pling pattern and provide less conservative results. The sampled-data synchronization
of chaotic Lur’e systemwas further studied in [26,37]. In [27], the problemof sampled-
data control for master–slave synchronization schemes that consist of identical chaotic
Lur’e systems with time delays was studied. Xiao et al. [28] studied the synchroniza-
tion problem of chaotic Lur’e system by adopting the quantized sampled-data control.
The problem of secure communication via synchronization of Lur’e systems using
samped-data controller was investigated in [24].

It should be noted that, for analysis and design of the above-mentioned control
systems [3,15,24,26–28,37,38,41], only the information of variation range and/or
variation rate of the time delay was employed. However, the uncertain sampling may
happen when the sampler contains uncertainties or the mathematical model is not ide-
ally consistent with the sampling equipment in some practical systems. One example
is the case of deadbeat control for MW (megawatt) class PWM (pulse width modula-
tion) inverter system [21]. Another example is the stochastic effects of short tandem
repeat (STR) typing [22]. Therefore, the necessity of the controller design problem
using sampled-data with the stochastically varying sampling interval has been high-
lighted and many important results have been reported [4,9,19,23,25,35,36,39]. To
the best of the authors’ knowledge, the problem of sampled-data synchronization for
Lur’e systems considering both the information of variation range of the time delay
and the information of probability of the time-varying delay in an interval has not been
investigated in the existing literatures.

Motivated by above discussions, in this paper, attention is focused on the syn-
chronization problem of chaotic Lur’e systems with stochastic sampled-data control.
Unlike previous studies in [3,15,24,26–28,37,38,41], the sampling period considered
here is assumed to be time-varying that switches between two different values in a ran-
dom way with a given probability. It is also assumed to satisfy Bernoulli distribution,
which can be further extended to the case with multiple stochastic sampling periods
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[9]. By applying an input-delay approach, the probabilistic sampling system is trans-
formed into a continuous time-delay system with stochastic parameters in the system
matrices. Based on Lyapunov stability theory combined with lower bound lemma, a
delay-dependent condition is established such that the master and slave system can be
exponentially mean-square synchronized. Moreover, a controller gain is obtained by
solving a set of linear matrix inequalities. The effectiveness of the proposed theoretical
result is demonstrated by numerical simulations.

Throughout this paper, I denotes the identity matrix with appropriate dimensions,
Rn denotes the n dimensional Euclidean space, andRm×n is the set of all m × n real
matrices, ‖ . ‖ refers to the Euclidean vector norm and the induced matrix norm. For
symmetric matrices A and B, the notation A > B(respectively, A ≥ B) means that the
matrix A − B is positive definite (respectively, nonnegative). E{x} and E{x |y} mean
the expectation of x and expectation of x conditional of y, respectively.

2 Problem Formulation and Preliminaries

Consider the following master–slave type of Lur’e systems with sampled-data control
[3,15,24,26–28,37,38,41]:

M :
{
ẋ(t) = Ax(t) + H f (Dx(t)),

p(t) = Cx(t),
(1)

S :
{
ẏ(t) = Ay(t) + H f (Dy(t)) + u(t),

q(t) = Cy(t),
(2)

U : u(t) = −K (p(tk) − q(tk)), tk ≤ t ≤ tk+1 (3)

which consists of master systemM, the slave system S, and controller U ; the master
and slave systems are delayed Lur’e systems with state vectors x(t), y(t) ∈ Rn ,
respectively, A ∈ Rn×n, H ∈ Rn×nh ,C ∈ Rl×n, D ∈ Rnh×n are known constant
matrices, u(t) ∈ Rn is the slave system control input, and K ∈ Rn×l is the sampled-
data controller gain matrix to be designed. It is assumed that f (·) : Rnh → Rnh is a
diagonal nonlinearity with f (·) belonging to sector [k−

i , k+
i ] for i = 1, 2, . . . ,m.

For the sampled-data synchronization, only discrete measurements of p(t) and q(t)
can be used for synchronization purposes, that is, we only have themeasurements p(tk)
and q(tk) at the sampling instant tk . In this paper, the control signal is assumed to be
generated by using a zero-order-hold (ZOH) function with a sequence of hold times
0 ≤ t0 < t1 < · · · < tk · · · < lim

k→∞ tk = +∞.

Define dk(t) = (t − tk), then tk = t − (t − tk) = t − dk(t), tk ≤ t < tk+1.
Define the error signal e(t) = y(t) − x(t), we have

ė(t) = Ae(t) + Hg(De(t), x(t)) + KCe(t − dk(t)), (4)

where

g(De(t), x(t)) = f (De(t) + Dx(t)) − f (Dx(t)).
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The nonlinearity g(De(t), x(t)) belongs to the sector [k−
i , k+

i ], i = 1, 2 . . . ,m,
then

[
gi (di e(t), x(t)) − k−

i di e(t)
] [
gi (di e(t), x(t)) − k+

i di e(t)
] ≤ 0,∀e(t), x(t) ∈ Rn .

(5)

As pointed out in [4,19,25,35,36], in an environment, the sampling period itself
might be a stochastic variable due to unpredictable environmental changes. To reflect
such a reality, in this paper, the sampling of each control signal is allowed to randomly
switch between to different values c1 and c2 with c2 > c1 > 0, and the probability of
the occurrence of each is known, that is,

Prob{c = c1} = α,Prob{c = c2} = 1 − α.

From the definition of dk(t), it is obvious that dk(t) is a sawtooth function with
randomness, and its value lies in the interval [0, c2]. We divide the intervals [0, c2]
into two interval [0, c1] and (c1, c2] and introduce the following stochastic variable
δ(t):

δ(t) =
{
1, 0 ≤ dk(t) ≤ c1
0, c1 ≤ dk(t) ≤ c2.

(6)

We are assumed that δ(t) is a Bernoulli distributed sequence with Prob{δ(t) = 1} =
δ0, and Prob{δ(t) = 0} = 1 − δ0, where δ0 = α + c1

c2
(1 − α) [4,19]. Then we have

E{δ(t) − δ0} = 0 and E{(δ(t) − δ0)
2} = δ0(1 − δ0).

Define two functions τ1 : R → [0, c1] and τ2 : R → [c1, c2] such that

τ1(t) =
{
dk(t), δ(t) = 1
c1, δ(t) = 0,

τ2(t) =
{

c1, δ(t) = 1,
dk(t), δ(t) = 0.

(7)

Therefore, the system (4) can be equivalently written by using δ(t) and τi (t)(i = 1, 2)

ė(t) = Ae(t) + Hg(De(t), x(t)) + δ(t)KCe(t − τ1(t))

+ (1 − δ(t))KCe(t − τ2(t)). (8)

Remark 2.1 In [3,15,24,26–28,37,38,41], the sampled-data synchronization of
chaotic Lur’e system has been studied. It should be pointed that the sampling period
are assumed to be implemented in a deterministic way. However, due to the sudden
environment changes, random sampler failures, etc., it is necessary to investigated
the stochastic sampling (the sampling periods may vary in a probabilistic way) case.
Hence, the sampled-data synchronization of chaotic Lur’e systems with stochastic
sampling is studied in this paper. And the random variables δ(t) are employed to
model the probability distribution of the stochastic sampling. Such a description orig-
inated from [4,19] has never been considered in Lur’e systems.
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Definition 2.1 The system (8) is said to be exponentially mean-square stable if there
exist two constants α > 0 and β > 0 such that

E‖e(t)‖2 ≤ αe−βt sup−2c2≤η≤0E‖φ(t)‖2,

where φ(·) is the initial function of system (8) defined as e(t) = φ(t), t ∈ [−c2, 0].

Definition 2.2 The master system (1) and the slave system (2) are said to be exponen-
tially mean-square synchronized if system (8) is exponentially mean-square stable.
The main purpose of this paper is to design a controller with the stochastic sampling
to achieve exponentially mean-square synchronization of the master system (1) and
slave systems (2). In other words, we are interested in finding a gain matrix K such
that the error system (8) is exponentially mean-square stable.
The following lemmas will be used for providing the main results.

Lemma 2.1 (Lower bounds lemma [16]) Let f1, f2, . . . , fN : Rm → R have posi-
tive values in an open subset D ∈ Rm. Then, the reciprocally convex combination of
fi over D satisfies

min
{αi |αi>0,

∑
i αi=1}

∑
i

1

αi
fi (t) =

∑
i

fi (t) + max
gi j

∑
i 	= j

gi j (t),

subject to

{
gi j : Rm → R, g j,i (t)

Δ= gi, j (t),

[
fi (t) gi, j (t)
gi, j (t) f j (t)

]
≥ 0

}
.

3 Main Results

In this section, sufficient conditionswill be established to the control synthesis assuring
the synchronization between the master system (1) and slave system (2). First rewrite
system (8) as the following

ė(t) = Ae(t) + Hg(De(t), x(t)) + δ0KCe(t − τ1(t)) + (1 − δ0)KCe(t − τ2(t))

+ (δ(t) − δ0)(KCe(t − τ1(t)) − KCe(t − τ2(t))). (9)

Theorem 3.1 For the given constants c1 > 0, c2 > 0, δ0, the system (8) is expo-
nentially mean-square stable if there exist matrices P > 0, Q1 > 0, Q2 > 0, R1 >

0, R2 > 0, symmetric matrix T1, T2 and any appropriate dimensional matrix G, L
such that the following LMIs hold
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Ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12 T1 (1 − δ0)LC
∗ Ω22 R1 − T1 0 0
∗ ∗ Ω33 R2 − T2 T2
∗ ∗ ∗ Ω44 R2 − T2
∗ ∗ ∗ ∗ −Q2 − R2
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Ω16 P − G + ATGT

0 δ0CTLT

0 0
0 (1 − δ0)CTLT

0 0
−2S HTGT

∗ c21R1 + (c2 − c1)2R2 − G − GT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (10)

[
R1 T1
∗ R1

]
≥ 0,

[
R2 T2
∗ R2

]
≥ 0, (11)

Ω11 = GA + ATGT + Q1 − R1 − 2DTK1SK2D,

Ω12 = R1 − T1 + δ0LC,

Ω16 = DT(K1 + K2)S + GH,

Ω22 = −2R1 + T1 + T T
1 ,

Ω33 = −Q1 + Q2 − R1 − R2,

Ω44 = −2R2 + T2 + T T
2 .

Moreover, the sampled-data controller gain is given by K = G−1L.

Proof Choose the following Lyapunov–Krasoskii functionals

V (et ) =
3∑

i=1

Vi , (12)

where

V1 = eT(t)Pe(t),

V2 =
∫ t

t−c1
eT(s)Q1e(s)ds +

∫ t−c1

t−c2
eT(s)Q2e(s)ds,

V3 = c1

∫ 0

−c1

∫ t

t+α

ėT(s)R1ė(s)dsdα + (c2 − c1)
∫ −c1

−c2

∫ t

t+α

ėT(s)R2ė(s)dsdα,

Define the infinitesimal operator L of V (et ) as follows:

LV (et ) = lim
h→∞

1

h
E {V(et+h |et ) − V(et )}. (13)
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Calculating E{V(et )} along the trajectory of system (9) yields

E{LV1} = E{2eT(t)Pė(t)}, (14)

E{LV2} = E
{
eT(t)Q1e(t) + eT(t − c1)(Q2 − Q1)e(t − c1))

−eT(t − c2)Q2e(t − c2))
}

, (15)

E{LV3} = E
{
ėT(t)(c21R1 + (c2 − c1)

2R2)ė(t) − c1

∫ t

t−c1
ėT(s)R1ė(s)ds

−(c2 − c1)
∫ t−c1

t−c2
ėT(s)R2ė(s)ds

}
. (16)

According to Lemma 2.1 we get

E
{
−c1

∫ t

t−c1
ėT (s)R1ė(s)

}

= E
{

−c1

∫ t−τ1(t)

t−c1
ėT(s)R1ė(s)ds − c1

∫ t

t−τ1(t)
ėT(s)R1ė(s)ds

}

≤ E
⎧⎨
⎩−

(
c1

c1 − τ1(t)

) (∫ t−τ1(t)

t−c1
ė(s)ds

)T

R1

(∫ t−τ1(t)

t−c1
ė(s)ds

)

−
(

c1
τ1(t)

) (∫ t

t−τ1(t)
ė(s)ds

)T

R1

(∫ t

t−τ1(t)
ė(s)ds

)}

≤ E
{

−
[
e(t − τ1(t)) − e(t − c1)

e(t) − e(t − τ1(t))

]T [
R1 T1
∗ R1

] [
e(t − τ1(t)) − e(t − c1)

e(t) − e(t − τ1(t))

]}
.

(17)

and

E
{
−(c2 − c1)

∫ t−c1

t−c2
ėT(s)R2e(s)ds

}

= E
{

−(c2 − c1)
∫ t−τ2(t)

t−c2
ėT(s)R2ė(s)ds − (c2 − c1)

∫ t−c1

t−τ2(t)
ėT(s)R2ė(s)ds

}

≤ E
⎧⎨
⎩−

(
c2 − c1

c2 − τ2(t)

)(∫ t−τ2(t)

t−c2
ė(s)ds

)T

R2

(∫ t−τ2(t)

t−c2
ė(s)ds

)

−
(

c2 − c1
τ2(t) − c1

) (∫ t−c1

t−τ2(t)
ė(s)ds

)T

R2

(∫ t−c1

t−τ2(t)
ė(s)ds

)}

≤ E
{

−
[
e(t − τ2(t)) − e(t − c2)
e(t − c1) − e(t − τ2(t))

]T [
R2 T2
∗ R2

] [
e(t − τ2(t)) − e(t − c2)
e(t − c1) − e(t − τ2(t))

]}
.

(18)
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It should be noted that when τ1(t) = 0 or τ1(t) = c1, we have
∫ t
t−τ1(t)

ė(s)ds = 0 or∫ t−τ1(t)
t−c1

ė(s)ds = 0, respectively. So, the relation (17) still holds. When τ2(t) = c1

or τ2(t) = c2, we have
∫ t−c1
t−τ2(t)

ė(s)ds = 0 or
∫ t−τ2(t)
t−c2

ė(s)ds = 0, respectively. Thus,
the relation (18) is also satisfied.
According to the Eq. (5), we obtain the following inequality for any S =
diag{s1, s2, . . . , sm} > 0,

− E
{
2

n∑
i=1

si
[
gi (di e(t), x(t)) − k−

i di e(t)
] [
gi (di e(t), x(t)) − k+

i di e(t)
]} ≥ 0,

(19)

This can be written as

E
{
−2gT(De(t), x(t))Sg(De(t), x(t)) + 2eT(t)DT(K1 + K2)Sg(De(t), x(t))

−2eT(t)DTK1SK2De(t)
}

≥ 0. (20)

According to the error system (9), the following equation holds for any appropriate
dimensions matrix G

E
{
2

[
eT(t)G + ė(t)G

]
[−ė(t) + Ae(t) + Hg(De(t), x(t))

+ δ0KCe(t − τ1(t)) + (1 − δ0)KCe(t − τ2(t))]
}

= 0 (21)

Let

ξT(t) =
[
eT(t), eT(t − τ1(t)), e

T(t − c1), e
T(t − τ2(t)),

eT(t − c2), g
T(De(t), x(t)), ė(t)

]

and considering (14)–(21), we have

E {L(et )} ≤ E
{
ξT(t)Ωξ(t)

}
.

We obtain immediately from (10) that E {LV (et )} < 0, which implies a sufficient
small constant ε > 0 such that

E{LV (et )} < −εE
{
‖e(t)‖2

}
.

Then, using a similar method to the proof of Lemma 1 in [19], it easy to know that
the augmented system (8) is exponentially mean-square stable, which completes the
proof. ��
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Remark 3.1 In the proof of Theorem 3.1, a similar Lyapunov functional [4,19] is con-
structed. However, instead of using the Jenson integral inequality and free-weighting
matrix method in [4,19], the lower bound lemma is employed to derive a stability cri-
teria for the system (8). As pointed out in [16], the usage of the lower bound lemma can
provide less conservative results than Jenson integral inequality and can also reduce
the calculation than by using free-weighting matrix method.

4 Numerical Examples

In this section, two numerical examples are given to show the validity and effectiveness
of the proposed design method.

Example 4.1 Consider the master–slave synchronization of two identical Chua’s cir-
cuits via stochastic sampling control. We take the following representation of Chua’s
circuit system: ⎧⎪⎨

⎪⎩
ẋ1 = a(x2(t) − h(x1(t))

ẋ2 = x1(t) − x2(t) + x3(t)

ẋ3 = −bx2(t)

(22)

with the nonlinear characteristics of Chua’s diode

h(x) = m1x1(t) + 1

2
(m0 − m1) (|(x1(t) + 1| − |x1(t) − 1|)

and parameters m0 = −1/7,m1 = 2/7, a = 9, b = 14.28.
It can be found that the system can be represented in Lur’e form with

A =
⎡
⎣−am1 a 0

1 −1 1
0 −b 0

⎤
⎦ , H =

⎡
⎣−a(m0 − m1)

0
0

⎤
⎦ ,

C = D = [1 0 0],

with f (x1(t)) = (1/2)(|x1(t) + 1| − |x1(t) − 1|) belongs to the sector [0, 1].
It is well-known that this system is unstable [27]. Our purpose is to design a state-

feedback controller such that the closed-loop system is exponentially mean-square
stable. It is assumed that α = 0.8, based on Theorem 3.1, we can obtain the upper
bound of c2 for different c1, which is shown in Table 1.When c1 = 0.05, for various α,
the upper bound of c2 was given in Table 2. Assume that the initial values of the master
system and the slave system are x(0) = [0.1 0.5 −0.3]T and y(0) = [−0.1 0.4 0.2]T,
the response curves of the uncontrolled error signals are shown in Fig. 1.

Table 1 The maximum
allowable bound c2 for different
values of c1 (where α = 0.8 )

c1 0.01 0.02 0.04 0.06 0.1 0.15 0.20

c2 0.93 0.87 0.75 0.65 0.47 0.22 Infeasible
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Table 2 The maximum
allowable bound c2 for different
values of α (where c1 = 0.05 )

α 0.1 0.5 0.6 0.7 0.9

c2 0.29 0.46 0.56 0.73 3.13

0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

3

4

t

e(
t)

e(1)
e(2)
e(3)

Fig. 1 The uncontrolled error signals in Example 4.1

Fig. 2 The stochastic parameter δ(t) in Example 4.1

In order to show the effectiveness of this method, taking c1 = 0.1, c2 = 0.38. Fig. 2
displays the stochastic parameters δ(t). By solving the LMI given by Theorem 3.1,
we obtain the parameter of the desired controller gain matrix as follows

K = [−4.2336 − 1.0953 3.2528]T.

For the above gain matrix K , the response curves of the controlled error signals are
given in Fig. 3, which shows that the synchronization error is tending to zero. It means
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Fig. 3 The controlled error signals in Example 4.1

Fig. 4 The control input u(t) in Example 4.1

that the slave system can be synchronized successfully to the master system by control
inputs, which are shown in Fig. 4.

Example 4.2 Consider themaster–slave systems (1–3)with the following parameters:

A =
⎡
⎣−1 0 0

0 −1 0
0 0 −1

⎤
⎦, H =

⎡
⎣ 1.2 −1.6 0
1.24 1 0.9
0 2.2 1.5

⎤
⎦,

C = D =
⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦,
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Table 3 The maximum
allowable bound c2 for different
values of c1 (where α = 0.9 )

c1 0.01 0.03 0.05 0.07 0.09 0.1

c2 3.78 3.56 3.14 2.80 2.47 Infeasible

Table 4 The maximum
allowable bound c2 for different
values of α (where c1 = 0.05 )

α 0.1 0.5 0.6 0.7 0.9

c2 0.20 0.30 0.36 0.46 1.72

which implies the Lur’e system reduces to a neural network with three neurons. Fur-
thermore, the neuron activation functions are f (x1(t)) = 1

2 (|xi (t) + 1| − |xi (t) −
1|), i = 1, 2, 3. From Theorem 3.1, the maximum sampling interval c2, can be
obtained for a variety of cases, as listed in Tables 3 and 4. Based on Theorem 3.1,
when α = 0.9, c1 = 0.01 and c2 = 3.78, the corresponding controller is

K =
⎡
⎣−1.3941 0.2297 0.8098

−0.6147 −1.4445 −0.8466
0.5984 −1.4366 −2.0750

⎤
⎦ ,

The initial states of the master and slave system are chosen as x(0) = [0.1 0.2 −
0.1]T and y(0) = [0 0.2 0]T, respectively. For the above gain matrix K , the response
curves of the controlled error signals are given in Fig. 5, which implies the error system
is tending to zero. It means that the slave system can be synchronized successfully to
the master system by control inputs, which are shown in Fig. 6. And the stochastic
parameters δ(t) is shown in Fig. 7.

Fig. 5 The controlled error signals in Example 4.2
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Fig. 6 The control input u(t) in Example 4.2

Fig. 7 The stochastic parameter δ(t) in Example 4.2

5 Conclusion

In this paper, the master–slave synchronization problem of Lur’e systems with proba-
bilistic sampled-data control has been investigated via a input-delay approach. Based
on Lyapunov–Krasosvkii stability theory, mean-square exponential synchronization
criteria has been derived by using lower bounds lemma. Furthermore, the sampled-
data controller can be derived by solving a set of LMIs. Finally, the effectiveness of
the proposed method has been demonstrated via two numerical examples.
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