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Abstract A novel diffusion normalized least-mean-square algorithm is proposed for
distributed network. For the adaptation step, the upper bound of the mean-square
deviation (MSD) is derived instead of the exact MSD value, and then, the variable step
size is obtained by minimizing it to achieve fast convergence rate and small steady-
state error. For the diffusion step, the individual estimate at each node is constructed
via the weighted sum of the intermediate estimates at its neighbor nodes, where the
weights are designed by using a proposed combination method based on the MSD at
each node. The proposed MSD-based combination method provides effective weights
by using the MSD at each node as a reliability indicator. Simulations in a system
identification context show that the proposed algorithm outperforms other algorithms
in the literatures.
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1 Introduction

Adaptive filtering algorithms arewidely used for signal processing in practical systems
[1,8,9,16]. Recently, diffusion adaptive filtering algorithms over distributed network
have beenwidely studied [4,5,12,19,20]. These algorithms for distributed network are
useful in many applications such as wireless sensor networks, distributed cooperative
sensing and so on [6,11].

In the adaptive filtering algorithms, the step size governs the convergence rate and
the steady-state error. To meet the conflicting requirements of fast convergence rate
and small steady-state error, the step size needs to be controlled. In the literatures,
various schemes for controlling the step size have been proposed [2,17], and they are
expanded to diffusion adaptive filtering algorithm recently [7,10,14,15].

In the diffusion adaptive filtering algorithms, a set of nodes in the network coop-
erates to estimate an unknown system. That is, each node of the network can share
and fuse information at its neighbors through a combination method. The combination
method determines weights connecting each node to its neighbor nodes. Therefore,
the performance of the diffusion algorithms depends a lot on the design of the combi-
nation method. From this point of view, many algorithmsmainly focused on designing
the combination method by utilizing the network topology and/or statistics such as
the signal-to-noise ratio (SNR) conditions. General combination methods are shown
in Table 1. Among them, the uniform [4] and the metropolis [20] methods are based
solely on topology of the distributed network. Therefore, they are sensitive to the net-
work characteristics such as SNR conditions. To determine the weights by considering
the network characteristics, the relative degree-variance method [5] is proposed. In
this method, the estimate of every neighbor is weighted proportionally according to its
inverse of noise variance. Thus, combination weights for the nodes that has the larger
measurement noise will be smaller than other nodes.

This paper proposes a variable step size scheme and a combination method by
analyzing the mean-square deviation (MSD) for the diffusion normalized least-mean-
square (D-NLMS) algorithm. The MSD analysis is carried out based on [3,13,18].
For the adaptation step, the upper bound of the MSD is derived by analyzing the
behavior of the MSD propagation instead of the exact MSD value because it cannot
be obtained directly. The variable step size is obtained by minimizing the upper bound
of the MSD at next iteration. The step size could be optimally controlled from the
variable step size, and it yields improved performance in terms of the convergence

Table 1 Combination methods

Method Combination coefficients al,k
Uniform [4] 1/nk
Metropolis [20] 1/max(nk , nl )

Relative degree-variance [5]
nlσ

−2
v,l

∑
m∈Nk

nmσ−2
v,m

In all cases, al,k = 0 if l /∈ Nk , and ak,k is chosen such that
∑N

l=1 al,k = 1 for all k
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Fig. 1 A distributed network
with N nodes. At every i , node k
takes a measurement {dk,i , uk,i }
and generates an estimate wk,i
in cooperation with its neighbor
set Nk

rate and the steady-state error. The upper bound of the MSD and the optimal step size
are reciprocally updated from each others at every iteration. For the diffusion step, a
new combination method based on the MSD is proposed to overcome drawbacks of
existing combination methods. The MSD at each node is used as its own reliability
indicator because it represents preciseness of estimation and contains information
that how much the estimate at each node is reliable. In the proposed MSD-based
combination method, the combination weights can be determined adaptively because
the MSD at each node is iteratively updated by using the recursion of the upper bound
of the MSD that is derived in the adaptation step. Therefore, it provides more intuitive
and effective weights than existing methods. The proposed variable step size and the
MSD-based combination method provide performance improvement of the algorithm.
The performance of the proposed algorithm is verified by simulations.

2 Diffusion Least-Mean-Square Algorithms

Consider a distributed network with N nodes (Fig. 1). The global system has an FIR
vector wo ∈ RM×1. At every node k and time instant i , the desired signal dk,i is
represented as

dk,i = uTk,iw
o + vk,i , (1)

where uk,i denotes the white Gaussian input vector; vk,i is the measurement noise that
is assumed to be identically distributed and statistically independent of the input vector.
It is assumed that vk,i has a zero-mean white Gaussian distribution with variance σ 2

v,k .
The adapt-then-combine (ATC) scheme [5] has been introduced in the literature for

the diffusion least-mean-square (D-LMS) algorithm. By assuming that only intermedi-
ate estimates at each node are exchanged without their measurement data, the D-LMS
algorithm is given as following two steps : the adaptation and the diffusion steps.

In the adaptation step, each node updates an intermediate estimate as

ψk,i = wk,i−1 + μk,iuk,i
(
dk,i − uTk,iwk,i−1

)
, (2)

where wk,i is an individual estimate of wo, ψk,i is an intermediate estimate, and μk,i

is a local step size at node k. In the diffusion step, each node computes an individual
estimate from weighted sum of intermediate estimates of its neighbor nodes as
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wk,i =
N∑

l=1

al,kψ l,i . (3)

The al,k is the weight connecting node k to its neighbor node l ∈ Nk , where Nk is
set of neighbor nodes for node k including itself and nk is the degree at node k (the
number of neighbor nodes for node k). The weight al,k can be formed using several
combination methods in Table 1.

3 Variable Step Size Diffusion Normalized Least-Mean-Square Algorithm
with MSD-Based Combination Method

The D-NLMS algorithm can be easily formulated as an extension of the D-LMS
algorithm which solves its sensitivity to the input data. Based on the conventional
normalized least-mean-square (NLMS) algorithm [8] with consideration about the
distributed network, the D-NLMS algorithm is given by

(Adaptation Step)

ψk,i = wk,i−1 + μk,i

uk,i
(
dk,i − uTk,iwk,i−1

)

uTk,iuk,i
, (4)

(Diffusion Step)

wk,i =
N∑

l=1

al,kψ l,i . (5)

In this section, the variable step size is derived for the adaptation step to establish the
fast convergence rate and small steady-state estimation errors. Furthermore, for the
diffusion step, a new combination method interprets the MSD as a reliability indicator
and adopts it to determine the weights for the intermediate estimates.

3.1 The Adaptation Step : MSD Analysis and Variable Step Size

In the adaptation step, the step size μk,i is adjusted by minimizing the MSD which is
defined as

p̂k,i � E
(

˜ψ
T
k,i

˜ψk,i |Uk,i

)
= Tr(P̂k,i ), (6)

pk,i � E
(
w̃T
k,i w̃k,i |Uk,i

)
= Tr(Pk,i ), (7)

where ˜ψk,i = wo −ψk,i and w̃k,i = wo −wk,i are the intermediate and the individual

weight error vectors, Pk,i = E
(
w̃k,i w̃T

k,i |Uk,i

)
, P̂k,i = E

(
˜ψk,i

˜ψ
T
k,i |Uk,i

)
, Uk,i =

{uk, j |0 ≤ j < i}, and Tr(·) is the trace of the matrix. The update Eq. (4) can be

described in terms of ˜ψk,i and w̃k,i as
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˜ψk,i = Fk,i w̃k,i−1 − μk,ivk,iuk,i
(
uTk,iuk,i

)−1
, (8)

where

Fk,i =
(

I − μk,iuk,i
(
uTk,iuk,i

)−1
uTk,i

)

. (9)

To describe the transient behavior of the MSD, the input vector uk,i is considered as
a given quantity because Pk,i is a conditional expectation associated with uk,i . If the
dependencies of ˜ψk,i−1 and vk,i are neglected, P̂k,i is obtained as follows:

P̂k,i = Fk,iPk,i−1FT
k,i + μ2

k,iσ
2
v,kuk,i (u

T
k,iuk,i )

−2uTk,i . (10)

Then, recursion of the MSD is derived by taking the trace of both sides of Eq. (10) as
follows:

Tr
(
P̂k,i

) = Tr
(
FT
k,iFk,iPk,i−1

)
+ μ2

k,iσ
2
v,k

(
uTk,iuk,i

)−1
. (11)

In this recursion, Tr
(
FT
k,iFk,iPk,i−1

)
satisfies the relation according [13] as

(−2μk,i + μ2
k,i )λ1(Pk,i−1) + Tr(Pk,i−1),

≤ Tr
(
FT
k,iFk,iPk,i−1

)

≤ (−2μk,i + μ2
k,i )λM (Pk,i−1) + Tr(Pk,i−1), (12)

where λ j (Pk,i−1) is the j th largest eigenvalue of the Pk,i−1. Since λM (Pk,i−1) ≤
Tr(Pk,i−1)/M , there exists a positive constant β ≥ 1 such that

λM (Pk,i−1) � Tr(Pk,i−1)

βM
. (13)

For white Gaussian input case, all diagonal elements of Pk,i−1 have the same value
because the elements in the input vector are independent to each other. Therefore,
Pk,i−1 can be simplified with only one element pk,i−1/M such as pk,i−1/M × I.
Then, above equation can be simply rewritten as

λM (Pk,i−1) = pk,i−1

M
. (14)

That is, the value of β can be set to 1 for the white Gaussian input case. On the other
hand, when the input vector is correlated, the condition number of matrix Pk,i−1 will
be worse. So, differences have arisen between the eigenvalues. In this case, β should
be properly selected to compensate the effects of the bad condition number of Pk,i−1.
From above discussion and inequality in (12), Eq. (11) can be written as

p̂k,i ≤
(

1 − 2μk,i − μ2
k,i

βM

)

pk,i−1 + μ2
k,iσ

2
v,k

uTk,iuk,i
. (15)
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From Eq. (15), the upper bound of the intermediate MSD is recursively determined
by using the individual MSD at previous iteration. By minimizing the upper bound of
p̂k,i in (15) with respect to μk,i , the variable step size that most largely decreases the
MSD of the intermediate estimate can be chosen. According to

∂ p̂k,i
∂μk,i

= 2μk,i − 2

βM
pk,i−1 + 2μk,iσ

2
v,k

uTk,iuk,i
, (16)

the variable step size for the best performance at node k and time instant i is obtained
as follows:

μk,i = pk,i−1uTk,iuk,i

pk,i−1uTk,iuk,i + βMσ 2
v,k

. (17)

The proposed step size contains regularization effects because of βMσ 2
v,k term in the

denominator. Therefore, the proposed algorithm canmaintain its performance even for
badly excited input signals. Furthermore, the step size can reduce the computational
complexity because it is obtained by minimizing the scalar recursive Eq. (15) for the
MSD instead of the matrix recursion. By using the proposed variable step size, the
proposed algorithm can achieve fast convergence and small steady-state estimation
error.

3.2 The Diffusion Step : MSD-Based Combination Method

In the diffusion step, the individual estimate at the node k is determined by fusing
the intermediate estimates from neighbors of node k with combination methods. As
mentioned in Sect. 1, however, general combinationmethods do not reflect the network
characteristics or are too complicated to implement in real-time process. In this section,
therefore, a new combination method based on the MSD at each node is proposed to
improve preciseness of the individual estimate.

The intermediate MSD denotes how close the intermediate estimates are to the
unknown system, so the inverse of p̂l,i can be used as the weight for ψ l,i . To satisfy
∑N

l=1 al,k = 1 as a convex parameter, the weights are defined as

al,k �
{(∑

m∈Nk
p̂−1
m,i

)−1
p̂−1
l,i , if l ∈ Nk

0, otherwise
(18)

In this proposedMSD-based combinationmethod, the node k uses p̂−1
l,i as the reliability

indicator for the node l. The key advantage of workingwith the inverse ofMSD instead
of conventional combination methods is that it directly provides information that node
has good characteristics and how much the intermediate estimate at each node is
reliable. This strategy allows each node to cooperate with only reliable information.
For example, if node l has large MSD because of the large noise of the node l, then
p̂−1
l,i becomes small. Thus, the weight for ψ l,i will be smaller than those of the other

neighbor nodes. Consequently, the MSD-based combination method can effectively
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determine which node is reliable to estimate the unknown system and will show more
improved performance than existing combination methods. By fusing ψ l,i for l ∈ Nk

through the MSD-based combination method in (18), wk,i is determined as follows:

wk,i =
N∑

l=1

al,kψ l,i

=
∑

l∈Nk

⎛

⎝
∑

m∈Nk

p̂−1
m,i

⎞

⎠

−1

p̂−1
l,i ψ l,i . (19)

To extract the relationship between the individual and the intermediateMSDs at current
iteration, (5) is developed in terms of w̃k,i and ψ̃k,i by subtracting w

o from both sides
as

w̃k,i =
∑

l∈Nk

al,kψ̃ l,i . (20)

Multiplying woT to both sides of (20) and taking expectation lead to the following
equation:

E
(
w̃k,iwoT

)
= E

⎛

⎝
∑

l∈Nk

al,kψ̃ l,iw
oT

⎞

⎠ . (21)

Assume that the intermediate and the individual weight error vectors, ψ̃k,i and w̃k,i ,
are orthogonal toψk,i andwk,i , respectively, then the following relation is established:

−E
(
w̃k,i w̃T

k,i

)
= −E

⎛

⎝
∑

l∈Nk

al,kψ̃ l,i ψ̃
T
l,i

⎞

⎠ , (22)

which is represented as

Pk,i =
∑

l∈Nk

al,k P̂l,i . (23)

Taking trace to both sides of (23) leads to

pk,i =
∑

l∈Nk

al,k p̂l,i ,

=
∑

l∈Nk

⎛

⎝
∑

m∈Nk

p̂−1
m,i

⎞

⎠

−1

p̂−1
l,i p̂l,i

= nk
∑

m∈Nk
p̂−1
m,i

, (24)

which is described with the harmonic sum of the intermediateMSD values. According
to (24), pk,i is recursively updated by using p̂l,i where l ∈ Nk . Subsequently, the
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Table 2 The proposed algorithm

reliability indicator at next iteration ( p̂−1
k,i+1) is recursively updated according to (15)

by using the pk,i at the present iteration which is updated in (24). The proposed
algorithm is summarized in Table 2.

4 Simulation Results

The computer simulations are used to confirm that the proposed algorithm provides
more precise estimates of wo than other algorithms. An unknown system is randomly
generated with 16 taps (M = 16). The SNR for the measurement at node k is defined
as follows:

SNRk � 10 log10
E(y2k,i )

E(v2k,i )
, (25)

where yk,i = uTk,iw
o. The noise variance at the node k, σ 2

v,k , is considered as known
value because it can be easily estimated during silences in practice. The MSD and the
normalized mean squared deviation (NMSD) at node k can be computed as follows:

MSDk � E
(
‖wo − wk,i‖2

)
, (26)

NMSDk � E
(
‖wo − wk,i‖2/‖wo‖2

)
. (27)
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Fig. 2 Simulated MSD learning curve (dashed gray line) and its prediction (solid black line) based on the
proposed analysis for distributed network with one node (SNR=30dB)

Fig. 3 A general distributed network with 13 nodes and the their SNR values

The network NMSD is chosen as a performance indicator that is defined as follows:

Network NMSD � 1

N

N∑

k=1

NMSDk . (28)

All simulation results are obtained by ensemble averaging over 100 trials. For fair
comparison, the best tuning parameter values of the existing algorithms are determined
after many trials. The relative degree-variance method is used in the diffusion step for
the competing algorithms because it yields the best performance. Three distributed
network topologies with the SNR values at each node are considered for simulations
in Figs. 3, 5, and 7.

A Monte Carlo simulation is carried out in Fig. 2 to discuss regarding the accuracy
of the proposed theoretical analysis to predict the MSD. Figure 2 demonstrates how
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Fig. 4 NMSD learning curves of seven diffusion algorithms for the general distributed network in Fig. 3.
α = 0.9 [10], δ = 10−4 [10], α = 0.999 [14], γ = 0.01 [14], α = 5×10−4 [15], γ = 300 [15], ε = 10−6

[7], λ = 0.8 [7], and β = 1 for the proposed algorithm

Fig. 5 A tree structure distributed network with 13 nodes and the their SNR values. In this topology, there
exist no cycle path

the proposed analysis predicts the MSD learning behavior of the D-NLMS. It shows
that the proposed approach excellently predicts the learning behavior of the practice
MSD. Therefore, proposed theoretical analysis of the MSD has enough accuracy to
derive the optimal step size and the MSD-based combination method.

Figures 4 and 6 represent the network NMSD learning curves of the conventional
D-LMS [5], the VSS-D-LMS [10], the VSS-D-LMS [14], the NC-D-LMS [15], the
OSS-D-LMS [7], and the proposed algorithms with respect to the topologies in Figs.
3 and 5, respectively. The proposed algorithm achieves the smallest steady-state error
and the fastest convergence rate among the competing algorithms, which means that
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Fig. 6 NMSD learning curves of seven diffusion algorithms for the tree structure distributed network in
Fig. 5. α = 0.95 [10], δ = 10−5 [10], α = 0.999 [14], γ = 0.01 [14], α = 5 × 10−4 [15], γ = 300 [15],
ε = 10−5 [7], λ = 0.7 [7], and β = 1 for the proposed algorithm

Fig. 7 An extremely bad distributed network with 30 nodes. At every node, k takes small measurement
except node 15. As an interference, 0 dB measurement noise is added at the node 15

the step size derived in this paper is very close to the optimal value in the concern of
the fast convergence rate on every iteration.

Figure 8 shows the network NMSD learning curves of the competing algorithms
and the proposed algorithm with respect to the topology in Fig. 7. The network topol-
ogy is ring structure, and all nodes are contaminated by white Gaussian noise with
SNR=30dB except node 15. The node 15 contains extremely bad information with
SNR=0dB, which may affect other nodes in the diffusion step. As can be seen, the
proposed algorithm establishes the fastest convergence rate and the smallest steady-
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Fig. 8 NMSD learning curves of seven diffusion algorithms for the extremely bad distributed network in
Fig. 7. α = 0.95 [10], δ = 10−3 [10], α = 0.999 [14], γ = 10−3 [14], α = 7× 10−4 [15], γ = 300 [15],
ε = 10−6 [7], λ = 0.55 [7], and β = 1 for the proposed algorithm

Fig. 9 NMSD learning curves of the D-LMS algorithm with different combination methods for the
extremely distributed network in Fig. 7. μ = 0.2 for the D-LMS, β = 1 for the proposed algorithm
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state error, where the performances of the other algorithms are degraded due to bad
information at node 15.

To confirm the effect of the proposedMSD-based combinationmethodmore clearly,
an additional simulation result is represented in Fig. 9. It represents theNMSD learning
curves of the conventional D-LMS algorithm with two different combination methods
(metropolis and relative degree-variance) and the proposed algorithms. The D-LMS
algorithm with the metropolis method is directly affected by bad information at node
15 because the combination is based only on the network topology. The D-LMS
algorithm with the relative degree-variance method shows rather flat-shaped NMSD
learning curves because it reflects the noise variance at each node as well as network
topology when determining the combination coefficients to assign the smaller weight
to the lower-SNR node. The NMSD learning curves of the proposed algorithm are
clearly flat in spite of the bad information, and it can be said that the proposed variable
step size scheme and the MSD-based combination method effectively suppress the
effect of bad information.

5 Conclusion

In this paper, the variable step size and theMSD-based combination method were pro-
posed for distributed networks. The variable step size derived byminimizing the upper
bound of theMSDprovided improvement of the filter performance in the aspects of the
convergence rate and the steady-state estimation error. Furthermore, the MSD-based
combinationmethod can provide effectiveweights between the individual estimate and
intermediate estimates by using the inverse of the MSD as a reliability indicator. The
D-NLMS algorithm with the MSD-based combination method improved the perfor-
mance against various network characteristics. Simulations showed that the proposed
algorithm outperforms the existing diffusion algorithms.
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