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Abstract This paper is concerned with the problem of state feedback H, stabi-
lization of discrete two-dimensional switched delay systems with actuator saturation
represented by the second Fornasini and Marchesini state-space model. Firstly, the
saturation behavior is described with the help of the convex hull representation, and
a sufficient condition for asymptotical stability of the closed-loop system is proposed
in terms of linear matrix inequalities via the multiple Lyapunov functional approach.
Then, a state feedback controller is designed to guarantee the Hy, disturbance attenua-
tion level of the corresponding closed-loop system. Finally, two examples are provided
to validate the proposed results.
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1 Introduction

Two-dimensional (2-D) systems are gaining momentum due to their extensive appli-
cations such as in signal processing, linear image processing, multi-dimensional dig-
ital filtering, electricity transmission, energy exchange processes and process control
[15,32,36]. 2-D systems are different in a sense from one-dimensional (1-D) systems,
since information is propagated along two independent directions. 2-D systems can be
represented by different models such as the Rosser model, Fornasini and Marchesini
(FM) model and Attasi model [1,20,39]. Several significant results on the issues of
stability analysis and controller synthesis of 2-D systems are available in the litera-
ture (see for instance [4,9,25,33,34,37,41,47] and the references therein). Moreover,
researchers in [13,22,23] presented useful results on stability and controller design of
linear repetitive process.

In practical control systems, time delay is inevitable. For instance, time delay exists
if there is transmission of information between different parts of the system. Time delay
may greatly influence the stability of a system and sometimes may give rise to periodic
oscillations in the system. Stability and stabilization of 1-D delayed systems were well
addressed in [38,40,46]. The problems of stability analysis and controller design of
2-D systems with time delay have been investigated in [6,19,44,48]. The H, control
problem of 2-D systems with and without delays was studied in [24,45].

On the other hand, the actuator may be subject to saturation due to the existence
of physical, technological or even safety constraints [8]. Actuator saturation may
degrade the system performance and even lead to instability. The issues of stability
and stabilization of 2-D systems with state or actuator saturation have been addressed
in [7,10,14,30,35].

In past few decades, control community has paid considerable attention to switched
control systems, because such systems are not only academically challenging but also
practically important [31]. A switched system belongs to a special class of hybrid sys-
tems which consist of several subsystems described by differential/difference equa-
tions, along with a switching law specifying the switching between subsystems.
Recently, the stability of 2-D switched systems via common Lyapunov function and
multiple Lyapunov function approaches has been studied by Benzaouia et al. [2,3].
The stability and stabilization of 2-D switched systems were investigated by utiliz-
ing the average dwell time approach [27-29,42]. State feedback and output feedback
H stabilization problems of 2-D switched delay-free systems were investigated in
[16,17]. Moreover, the dynamic output feedback H, stabilization problem for 2-D
switched systems with constant delay was investigated in [18]. However, to the best of
our knowledge, the issue of control for 2-D switched systems with time-varying delay
and actuator saturation has not been fully investigated, which motivates our current
study.

In this paper, the Hy, control problem of 2-D discrete switched systems with time-
varying delay and actuator saturation represented by the second FM model is studied.
Main contributions of this paper can be summarized as follows: (1) A new delay-
dependent stability condition of 2-D switched delayed systems is derived by utilizing
the multiple Lyapunov functional approach; and (2) H, disturbance attenuation per-
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formance of the 2-D switched delay systems in the presence of actuator saturation is
developed and the corresponding controller gains are obtained.

The remainder of this paper is organized as follows. In Sect. 2, problem formulation
and some necessary lemmas are given. In Sect. 3, main results are presented. In Sect.
4, two examples are given to show the effectiveness of the proposed results. In Sect.
5, concluding remarks are given.

Notations: Throughout this paper, the superscript “7” denotes the transpose, and
II-]l denotes the Euclidean norm. I represents the identity matrix with appropriate
dimension. The set of all nonnegative integers is represented by Z . sat (-) denotes
the saturation function, and diag {a;} denotes a diagonal matrix with the diagonal
elementsa;, i = 1,2, ..., n. X! denotes the inverse of X. The asterisk * in a matrix
is used to denote the term that is induced by symmetry. The />-norm of a 2-D signal
w(i, j) € R", i, j € Z4,is given by

lwly = | D> [wh G, Hw, )]

i=0 j=0

We say w(i, j) belongs to > {[0, c0), [0, 00)} if |w], < co.

2 Problem Formulation and Preliminaries

Consider the following discrete 2-D switched delay system with actuator saturation
in the second FM model:

x4+ 1,7+ = AT i+ )+ AT+ 1))
FAS T i —dy Gy, j+ 1)

o(i+1,j) o(i,j+1)

+ASST D i 1, j — da(j) + BS w(i, j+ 1)
+BY D 41, )
o(i,j+1) o(i+1,))

JrE1 sat(u(i, j + 1)) + E2 sat(u(@ + 1, j)), (la)
2G, j) = G Ix (i, j)+ L7 Dw i, j) + F7Dsat(u(, j)),  (1b)

where x (i, j) € R" is a state vector, w (i, j) € R? is the noise input which
belongs to I {[0, o0), [0, c0)}, u(i, j) € R™ is the control input, and z(7, j) € RS
is the controlled output. i and j are integers in Z;,.o(i,j) : Zy X Zy —
N = {1,2, ..., N} is the switching signal with N being the number of subsystems.
Ak, AR AR AR BE, BX, EX, EX GF, LK and F*, k € N, are constant matri-
ces with appropriate dimensions. d; (i) and d»(j) are delays along the horizontal and
vertical directions, respectively, and satisfy

di <d(i) <di,dy < do(j) < do, 2
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where d1, dy, d» and d> represent the lower and upper bounds on the horizontal and
vertical directions, respectively.

Remark 1 When there is only one subsystem, i.e., N = 1, system (1) reduces to the
following 2-D system

xG+1Lj4+D)=AxU,j+D)+Ax(@+1,))+Anx@ —di(Q),j+1)
+Apx(@+1,j —d2(j)) + Biw(, j + 1) + Bow(i + 1, j)
+Esat(u(, j + 1)) + Ezsat(u(i + 1, j)), (3a)
z(i, j) = Gx (i, j)+ Lw (i, j) + Fsat(u(i, j)). (3b)

Therefore, the addressed system (1) can be viewed as an extension of 2-D systems to
switched systems.

For system (1), we consider a finite set of initial conditions, that is, there exist
positive integers z; < 0o and z2 < oo such that

x(, j)=hij, YO<j<zi, i=—d,—di+1,...,0,
x(i, jy=vj, YO<i<z, j=-dp,—dr+1,...,0,
hoo = voo, o

x(i,j)=0, Vj>zy, i=—dy,—d;+1,...,0,
x(i,j) =0, Vi>z, j=-dsy—dr+1,...,0,

where h;; and v;; are given vectors.
The saturation function sat (-) : R™ — R™ is defined as

sat (1) = [sat (u;) sat (u) - -- sat (um)]? . 4)

where u = [ujuy --- u,]’ € R™, and sat (ug) = sign (ug) min {1, |ug|}, s =
1,2,...,m.

Implementing the control law u (i, j) = K o@Dy (i, J) to system (1) leads to the
following closed-loop system:

x4 1+ D) = AT x4+ )+ AT 41, )

+ATC D —di (), j+ 1)
+ AT D i 41, j —da () + BV w4 1)

+B7 T w41, )

+E7 I Vsar (kI Dx i, j 4 1)

+E; M D say(kO D x i 41, ), (5a)
2G, j) = GZUDx (i, j) + L°CDw (i, j) + FODsat (K"(i’j)x . )

(5b)
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Let E be the set of all diagonal matrices in R with diagonal elements that are
either 1 or 0. For example, if m = 2, then

E:{Dl,Dz,D3,D4}=[[8 8:|’ [8 (1):|’ [(1) 8:|’ [(1) (1):|]

There are 2" elements D, in E, and for every p = 1,...,2", D; =1, —Dpis
also an element in E.

For a positive definite matrix P € R"*" and a scalar § > 0, an ellipsoid 2 (P, §)
is defined as:

Q(P,8) = {x(i,j) eR":xG, )T Px @, )) 55}.
For a matrix H € R™*", the polyhedral set L (H) is defined as:
LH)={x@, j)eR" :|Hix (G, )l <1, s=12,....m}.

where H is the sth row of the matrix H.

Remark 2 In this paper, the switch among different modes can be assumed to occur
at each of the sampling points of i or j. It should be observed that the value of o (i, j)
only depends upon i + j (see the Refs. [3,42]).

Definition 1 [1] System (5) with w(i, j) = 0 is asymptotically stable under switching
signal 0 (i, j),if lim x(i, j) =0.
i+j—00

Definition 2 System (5) is said to have a prescribed Hy, disturbance attenuation level
y under switching signal o (7, j), if it satisfies the following conditions:

(1) When w(i, j) = 0, system (5) is asymptotically stable;
(2) Under zero boundary condition, it holds that

IZI13 2
Jo= sup —= <y, (6)
0£G, jek lwll;

where [1Z]13 = lzG, j+ DI3 + llzG + 1, Hl3 and w]3 = llw@,j+ D3
+ llwG + 1, )3

Lemma 1 [5] For a given matrix S = |:ng1 ?21|, where S11 and Sy are square
12 922

matrices, the following conditions are equivalent:

(1) S <0;

(2) Si1 <0, S — SLS;'S12 < 0;
(3) S <0, Si1 — S1285, ST, < 0.
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Lemma 2 [26] Given K € R™*" and H € R™*", then
sat (Kx (i, j)) € co{(D,,K +D;H)x(i,j), b= 1,2,...,2m} )
forall x (i, j) € R" satisfying |Hsx (i, j)| < 1 fors =1,2,..., m, where H; is the

sth row of the matrix H and co{-} is the convex hull.

When x(i, j) € L (Ha(i'-/)), it follows from Lemma 2 that

sat (K"(i’j)x q, j)) € co {(D,,K"(i’j) + D,,*H"(’Vf))x G ),
p=12...2"}, 8)

then substituting (8) into system (5) and noticing the relationship between convex com-
bination and its vertex, we can obtain the following representationfor p = 1,2, ..., 2"

XG+1,j+1) =A(l’[(,i’j+1)x(i,j+1)+Ag;i+1’j)
FAGETD i —dy (i), j+ 1)
FAST D i 1, j —da () + BV wi, j+ 1)
+B3 T i+ 1, ), (92)
26, ) =G5 xG, )+ L7 Dw G, j), (9b)

x(+1,))

where

A«lr[(ji»jJrl) - Aflr(i,j+1) + E;r(i,jJrl)DpKa(i,jJrl) + E;T(iijrl)D;Ha(i,j-&-l)’
o(i+1j) _ 4oG+lj) o(i+1,7) i+1,j o(i+1.j) - i+1,j
Ag, T = A7 + E; D,k 4 ES D, HOTD,

0(i)) _ ol ) = g0 (e
G, = GoU)) 4 pol .I)DPKU(I Dy pod J)DPHU(I D,

3 Main Results

In this section, we focus upon the controller design of 2-D discrete switched system
(1) to ensure the asymptotical stability and H, performance of the closed-loop system

(5).

3.1 Stability Analysis
In this subsection, a sufficient condition for asymptotical stability of system (5) is
obtained via the multiple Lyapunov functional approach.

Theorem 1 Consider system (5) with w(i, j) = 0, if there exist symmetric posi-

tive definite matrices Pk, P,f, On, Quv, Wy, Wy, R, Ry, X = |:* 1 X12:|’ Y =
22
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Yin Yo . | N | Noy _|Sn .
|:* Y22i| and any matrices N1 = |:Nl2i|’ Ny = |:N22]’ ST = |:S12i|’ S =

S$21

and H* with appropriate dimensions, k € N, such that

S22

[T 0 Tiz 0 —Nu 0 ALPf+PH Vdi(Al - DRy JdATR,

* Ty 0 Tay 0 =Sy AY(PF+PH  VdiAY R,  Vdao(AY — DR,

* % Iz 0 —Npn 0 AlPF+PhH fAle,, Vb AL R,

x ok ox Tw 0 —Sp ALPF+PH  VdiAlLR, VAL R,

x % x x =W, 0 0 0 0 <0,

EE S x* =W, 0 0 0

* ok ok ok * * _(Pflf + Pk 0 0

* * * * * * * —Ry, 0
S * * % * % * * —Ry _

p=12,..., 2" Vk,l € N, (10)
[x N X N Y S Y S

* Ry =0, * Ry =0, * Ry =0, * Ry =0, (11)

k k k
@(pf+Pi1)cL(HY), ke, (12)
where

Ty =—Pp+ Wy +(d —di + 1)Qs + Nii + N, +di X11,

T2 =—Pl+Wy+(d—do+1)Qy + S11 + ST} + oY1y,

33 ==0n+Nn+Nj = Nio= N +diXn, Tus=—0y+ S+ 5, — Si2
ST, + do Yo,

Ti3 = Nf, = Nit + Not +diX12, T = =Si1 + S, + S21 + doYo,

then the system is asymptotically stable for all switching sequence o (i, j) and initial
states satisfying T(¢n, ¢y) < 1, where

T(@n, $0) = B (M2 e (P} + dimax (Qn) + i Amax Wi) + Trdmax (Qn)
+TopAmax (Rp)) + ¢12;(r]§1€%({)\max(l)f)} + d_Z)Lmax(Qv) + C?Z)Lmax(Wv)
+T1vAmax (Qv) + T2vAmax (Rv)), (13)

and

22
¢n = max an( i, DIl ¢o=max D |x(i, —&)l,
~d<5<012;

—di <& < <0

Tip = 0~5(d1 —d)(dy — 1+d)), v = 0.5d,(1 +dy),
Ty = 0.5(d2 — dy)(da — 1 +d,), T2y = 0.5d2(1 + o).
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N
Proof Whenx(i, j) € N Q(P/f—i—Pf, 1), it can be obtained from (12) that x (7, j) €
k=1
L (Hk), Vk € N, then by Lemma 2, we get (8).
At first, we consider the following Lyapunov candidate functional
Vi, j) = Vot . ) = VI )G )+ Vi G i) (14)
with

i—1
VEG §) =xG DT PExG D+ D x DT Onx(r )

r=i—d; (i)
i—1 —d; i—1

+ D xt D Wax D+ D D xn DT Qx(r )
r=i—d, s=—d+17=i+s

0 i—1

+ > > e )R j), YkeN,

S=7(21 41 r=i+s—1

j—1 Jj—1
VPG, ) =xG DT PExG p+ D 2@ 0T Quxl )+ D x0T Wox(in )
1=j=d2(j) 1=j—d

—dy  j-1

+ > D x0T Qux(i 1)

s=—dy+11=j+s
0 j—1
+ > D 8G.0TRSG. 1, VkeEN,
s=—da+11=j+s—1
nr, ) =xr+1,))—xrj), 8G.1)=xGt4+1)—x(@,1).

Without lose of generality, it is assumed that the kth and the /th subsystems are
activated at points (i + 1, j 4+ 1) and (i, j + 1), respectively. The increment AV (i +
1, j + 1) along the trajectory of system (5) with w(i, j) = 0 satisfies,Vx(i, j) €

N
N Q(Pf+ P, 1,
k=1

AVGE+ 1L, j+D)=Vra+1,j+ D+ V2 +1,j+1)
VG D = VG L) <xG+1, i+ DTPAxG 41, + 1)
—x(i, j+ DT PlxG j+ 1) +xG, j+ DT QuxG, j+ 1)

—x(i —d (i), j+ DT Qnx(i —di (i), j+ 1)
i—d,
+ D> x DT Qux(r D+ xG A+ D Wax (L j+ 1)
r=i+1—d;
—x(i —dy, j+ D Wix(i —di, j+ 1)+ d —d)xG, j+ D"
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i—d,
xOpx(i, j+ 1= D xt.j+DTOnx(rj+1)
r=i+1-d;
_ i—1
+dinG, j+ D" RinG, j+1) = D 0@ j+ D RunG, j+ 1)
r:i—d_l
+x+ 1L, j+DTP G+ 1, i+ D) —xG+1, DT PG+ 1, )
Fx(i+ 1, HTOux + 1, j) —x( + 1, j —da())T Qux(i + 1, j — da(j))

j—d,
+ D x4 L0TQuxG+ L) +xG+ 1, ) Wox( +1, )
t=j+1—ds
—x(i+1,j—d) Wox(i + 1, j —dy) + (dr — dp)x(i + 1, j)"
j—d,
xQux(i + 1, j) — Z xi+ 1,07 0uxi+1,1)
t=j+1-d;

j—1
+d28G +1, HTRSG + 1, j) — Z SG+ 1,0 TRSG+1,1)

t=j—d>
< _max e "o o7+ Phox. )

i—1
+dinG, j+ D RunG, j+1D— D @ j+ D Run(r, j+ 1)

r:i—jl
j—1
+dd+ 1, DTRSG+1, )= D S+ 1L,DTRSG+ 1,0, (15
t=j7£?2
where
T
16 ) = DT e DT
T
Gy =[x+ DT xG+1, )T 26 —di@), j+DT]
T
x2i. ])_[x(l‘l'l j= () 3G —di j+ D xG+1,j -]

o

lag{W11, W2, — O, — Qu, —Wh, =Wy}, Wy =—P}
+Wh + (di —di + 1)Qh,
U= =P+ Wy + (= dr+ D0y, © =], 4, 4l 4l 00].

The following equations hold for any matrices N~ [%” :| , Np = [%21 :| , 81 =
12 22

Sn and $; = $a1 with appropriate dimensions:
S12 S22
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i—1
0=2¢1 G, )" Ni [x (G, j+D)—=x(i—di(D), j+D— D n@j+1D],
L r=i—di(i)
(16)
[ i—dy (i)—1
0=2¢1 G, )H" N2 [x (=i (i), j+D=x(i—=d, j+D— D nrj+D],
| r:i—zzl
(17
_ .
0=20G, HT St | x(+1, H=x (i+1, j—da(j— D 8G+10],
L 1=j—dz(j)
(18)
i J=da (1
0=20G, HT Sa | x (i+1, j—dr(j)—x(i+1, j—d)— D 8G+1,0],
L 1=j—d>
(19)

where

0, H' =xG,j+ D" xi —di@), j+ D',
o6 N =ki+1, )" x0+1,j—da(i)'].
On the other hand, for any matrices X = Xu X1 >0andY = Yir Vi >0,
* X2 * Yp

the following equations hold:

i—1

O0=diti (i, N" Xen G, p— D o N" Xe G, )

r=i—d (i)
i—di(i)—1
- 2 aG) Xap, (20)
r=i7(31
j—1
0= N Yol - D, @) Yo )
t=j—da(j)
J—da(j)—1
DRI R X)) @1)
1=j—dy

Adding the terms on the right-hand sides of Eqgs. (16-21) to (15) allows us to write
(15) as
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AViIi+1,j+1 < max {X(i, N, j)}
p=12,.,2m

94y

’i [41 i, J) ]T[ ][cl i, J) ]
0 n(r,j+1) * n(r,j+1)
Ui l[cl Q. ) ]T[ [cl Q. ) }

n, j+1)

r,j+1 ]
) ]T[ ch(m) }
S+ 1,1) S+ 1,1)

Fl—l

Jj— dz(]) 1

1=j— d2(1)|:

oG 1Y $S][ad)
8G+1,1) Ry ||sG+1,0 |
t=j— dz
where W, = W 4+ O (P} + PHO + [ =, ][d‘Rh ?zzR }[21 %],

Si=[Al, —1 A, Al Al 00|, za=[al, b, -1 Al Al 0 0]
Applying Lemma 1, it follows from LMI (10) that ¥, < 0, and from (11), we have
N
AVGi+1,j+1) <0, Vx(,j) e il Q(PF+ PE, 1. (22)

For any r > z = max(z1, z2), it follows from (3) that V*(0,r) = V(r,0) = 0,
then summing up terms on both sides of (22) from r — 1 to 0 with respect to j and 0
to r — 1 with respect to i, one gets

D Va ) =Vvion+viar—D+vie -2+ +vie -1
i+j=r
+VEE0) + VYO0, 1)+ VA, r = D+ VPQr —2) 44+ VU —1,1)
+VV(r,0)
< VRO r =)+ V0. r =D+ VU r—2)+ V', r—2)
+o Ve - 1,00+ VY (r —1,0)
= > V<< > VA (23)

i+j=r—1 i+j=z
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It can be obtained from (23) that

D V. j) < V(0.0)+ V"0, 1)+ V¥(1,0)
it+j=1

1 1
= > V"0, )+ D VG, 0)
j=0 i=0

21 22
D VRO, )+ D VG0,
j=0 i=0

D V) < D VG, )+ Vi0,2) + Vy(2,0)

i+j=2 i+j=1
< V(0,0) 4+ V"0, 1)+ V¥(1,0) + V"(0,2) + V’(2,0)

21 22
D VO, )+ D V. 0).
j=0 i=0

IA

A

IA

Similarly, we can get, Vi + j =r € Z,,
x(i, HT (7T + PIED)x(, j)
< D VG
i+j=r
21 22
<D VHO, j)+ D VUG 0)
j=0 i=0
=< ¢;2,(1;<n€3}z,‘{)tmax(ij)} + d_l)\max(Qh) + d_l)\max(Wh) + T1hAmax (Qn)
+ Tonhmax (R)) + 67 (Max{Amax (Py)} + doAmax (Qu) + dahmax (W)

+ T1pAmax (Qv) + T20Amax (Ry))
= T(én, ¢v)-

If T(pn, dv) < 1, then x(i, )T (Pr* + P,X)x(i, j) < 1 is satisfied for all k € N.
Therefore, all the trajectories of x (7, j) starting from T(¢y,, ¢,) < 1 will remain within
ﬂ,ﬂvzl Q (P/f + Plﬂ‘, 1). Moreover, system (5) with w(i, j) = 0 is asymptotically stable
for any switching sequences and initial conditions satisfying T(¢, ¢,) < 1.

This completes the proof. O

3.2 Hy, Performance Analysis

In this subsection, H, performance analysis of system (5) with w (7, j) satisfying
lwl, < « is developed.
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Theorem 2 Let o and y be given scalars. If there exist symmetric positive defi-

. . X111 X
nite matrices Pf, Py, Qn, Qv, Wi, Wy, Ry, Ry, X = [*“ XZ} >0, Y =

Yii Yo . | Nnt | N .
|:* Y22i| > 0, and any matrices N = |:N12i|,N2 = |:N22i|’S1 =

|:§11 j| , Sy = |:§21 ] and H* with appropriate dimensions, k € N, such that
12 22

Ty 0 I3 0 =Ny 0 GTLE 0 Ty Tio \/cTzAllTpRv ]

x T 0 Tos 0 =S 0 GTL! 1y Vdyp ARy Ty

* % I3 0 —Np 0 0 0 T3 JVaiAllR, VAR,

* % % Igyy 0 —=S» 0 0 49 \/‘TlAlde R \/‘TQA% Ry

* * * * =W 0 0 0 0 0 0

* * * * * —Wy 0 0 0 0 0 <0,

* * * * * * 77 0 "9 \/L?lB{TRh \/ZB{TRU

* * * * * * * I'gg I'gg \/L?lBéTRh \/LTQBéT Ry

* * * * * * * * —Tgg 0 0

* * * * * * * * * —Ry 0
S * * * * * * * * * —Ry i

p=12...2" VkleN, (24)
]z [ R]ee [F Rl [ R]Re @5)
@(pf+Pi+y2?) cL(BY), ken. (26)

where

T =G G — P+ Wi+ d —d; + 1)Qi+ Nt + N} +di Xu1,
Ty =G Gl = Py+ Wy + (o —dy + DQy + S11 + [, + oY1,
[77 =Tgg = L'TL — 21,
Lo = APy + PY), Tag = AL (Py + PY). T39 = APy + P),
Tao = AIL(P + PY). Ty = B{" (P} + P). Tgg =By (Py + P}),

F99=P;]f+Pf,

Flo = V(AT — DRy, Too = \Jdo(A — DRy,

then system (5) has a prescribed Hy disturbance attenuation level y for all switching
sequence o (i, j) and initial states satisfying T(¢pn, ¢y) < 1, where T(¢pp,, ¢y) is given
by (13).
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N
Proof When x(i, j) € N Q(PF + Pk, 1+ y%a?), it can be obtained from (26)
k=1

that x(i, j) € L (Hk) , Yk € N, then by Lemma 2, we get (8). Since (10-12) can
be deduced from (24-26), by Theorem 1, we can obtain from (24-26) that system
(5) with w(i, j) = 0 is asymptotically stable for any switching sequences and initial
conditions satisfying T (¢, ¢p) < 1.

To establish the Hy, performance of system (5), we consider

Y@, j)=AVG+1,j+1)+26 HT26, ) —yroei, HTod, j), 27)
where  Z(i, j) = [zG, j+ DT zG +1, j)T]T and  w(i, j) =
[wii, j+ DT wi+1,HT]".

Following the procedure of the proof of Theorem 1, Vx (i, j) € m}](\/:l Q(P}],‘ + Pf, 1
+ y2a2), we can obtain

vi.p s max {760 ¥706 )

=1,2,-
i—1 .o a7 _ r .
- Z ;l(lv.]) X N] Cl(l,])
. R .
o Lo wn] L Rl nej 4]
i—d1()—1T . 97 r ..
B ‘lf oG, ) X N6 G))

0+ D] L* Rel|nG,j+1)]

r=i—d

! [Cz(i » 1y sl]'gz(i,ﬁ ]

Zd: SG+1,0] L* R]|sG+1,0)

Jj—

_ ZJ X)) T|:Y S
i s+ 1,1 * Ry
t=j—dy

0. j) } 08)
| 3G+ 1,0)

where
T _
%G, ) =[G )T e HTwi )T] . & =[5 8],
: U el pk o phg o 5.7 5.7 [diRy O
b, =0 +6 (Ph—i—Pv)@—i—[El 22][0 dzR}[zlzz]

=[z B! BY]. L =[% B! B, V¥ =diag{¥, I';7,ss}.
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By Lemma 1, LMI (24) is equivalent to \flp < 0, and from (25), we have
Y@G, j))=AVG+1,j+ D) +zG )HTzG, j) —y>wa, )HTwd, j) <0, (29)
that is
2, NT2G, ) — v, DTG, j) < —AVE+ 1, j+ 1. (30)

For any ||w|l, < «, we obtain from (30) that

D VA< D VG D+ V> z=max@). (D)
i+j=r i+j=z

It follows from T(¢p, #y) < 1 and (31) that x(i, /)T (PF + PX)x(i, j) < 1+ y%a?,
Vk € N. Thus, all the trajectories of system (5) starting from T(¢y, ¢p) < 1 will
N
remain within N Q(P/f + Plf‘, 1+ p2a?).
k=1
On the other hand, we can obtain form (31) that

Z @G, HTEG ) — v, HToa, j)) < Z (—AVGE+1,j+1). (32)
i+j=0 i+j=0

Under zero boundary conditions, it can be obtained from (32) that

- -
DN ) < D yrwa, T, ), (33)
i+j=0 i+j=0
which implies
1215 < > w3 .
This completes the proof. O

3.3 Hy Controller Design

In this subsection, a sufficient condition for finding the controller gains is obtained in
terms of LMIs.

Theorem 3 Consider system (1), for given scalars o and y, and matrices J >
0, U > 0 and Z > 0; if there exist symmetric positive definite matrices

X1 X Yny
k k _ 11 A12 _ 11 r12
Pha PU’ Qh7 QU’ Wha WUa Rh5 RU7 X - [* X22}9 Y - [* Yzz} and any

: Ni Naj S $21
matrices KX, Hk, Ny = , No = , 81 = and Sy =
! [le] : N2 ! Si2 . [522]
with appropriate dimensions, k € N, such that (25) and the following LMIs hold:

Birkhauser



2182 Circuits Syst Signal Process (2015) 34:2167-2192

Ty 0 ;s 0 —Nyy O 0 0 ATy \/dTAllZ 0 GITT

¥ T 0 Ty 0O —S; 0 0 Al N Ay G0

* % Ty 0 —Np 0 0 0 AL V@Al JhAl o o

* % x I'yg 0 —=S» O 0 AiiTz \/‘TIAZE \/ZAZE 0 0

* % ox k=W, 0 0 0 0 0 0 0 0

* ok ok % * =W, 0 0 0 0 0 0 0

« % % % o« % —y2 0 BT J&BT J&BT o LT |<0,

* * * * * * * 7)/2 1 BéT \/dTIBéT ds BéT L' 0

* ok ok ok * * * * V3 0 0 0 0

EE S * * * * * N 0 0 0

* ok k% * * * * * * Vs 0 0

* * * * * * * * * * * -1 0
L * * * * * * * * * * * * —1 i
p=1,2,...,2" VkleN, (34)
Z PhklfPff}ZO’ keN, s=1,2,....m, (35)

where
A\, = A+ E\D,K' + E{D, H', A, =AY+ E\D,K' + E{D, H',

Y =\ di(AL = D). Y =day (AT — 1), w3 =TT(Pf+ PHT -2,

Y =UTRU —2U, ys=Z"R,Z-2Z, n=1/1+y%?),

G\, =G+ F'D,K'+ F'D, H', k.leN.
then the closed-loop system (5) has a prescribed Hoo disturbance attenuation level y
for all switching sequence o (i, j) and initial states satisfying T(¢pp, ¢y) < 1, where
T(¢n. bv) is given by (13).
Proof By Lemma 1, (35) is equivalent to (26). Pre- and post-multiplying (24) by
diag {I, 1,1,1,1,1,1,1, (P,]l‘ + Pllf)_l, (Rp)~ L, (Rv)_l} and applying Lemma 1, we
obtain

[T 0 T3 0 =Ny 0 0 0 ATy VoAl o 6T
« T 0 T 0 =Sy 0 0 AT V@Al g, G oo
* % I3 0 —Np O 0 0 Aff] \/JTAZTI \/ZAfiT] 0 0
x % % Ty 0 —S» 0 0 AL V&AL JhaAlL o o
* * * * =Wy 0 0 0 0 0 0 0 0
* ok ok %k * Wy 0 0 0 0 0 0 0
I T * x =y 0 BllT \/LT]B{T /ZB{T 0o LT |<0,
* * * * * * * —y2I BéT \/dleér \/aTzBéT L' o
* % % % * * * x s 0 0 0 0
* * * * * * * * * Vs 0 0 0
* * * * * * * * * * 1/_/5 0 0
* * * * * * * * * * * -1 0
L * * * * * * * * * * * * -1 |
p=12...,2" Vk/Il€eN, (36)

where Y3 = (P + P ™", = (Ry) ™" and ¥s = (Ry) ™"
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For any matrices J > 0, U > 0 and Z > 0, we have

JTPF+ PYT =20 —(PF+ PHTY, UTRU =20 — (R,
ZTR,Z > 27 — (Ry) ™\

Then (36) holds if (34) is satisfied.
This completes the proof. O

Remark 3 Some previous results on Hy, controller design of 2-D switched systems
can be seen in [16—18]; however, time-varying delay and actuator saturation, which
add difficulties in designing the controller, were not taken into account in these papers.
In the present paper, a new Lyapunov functional, which can lead to less conservative
results, is proposed to deal with the time-varying delay, and the convex hull technique
is utilized to handle the actuator saturation.

Remark 4 Tt should be noted that the conditions (25), (34) and (35) are in the form
of LMIs, which can be conveniently solved via LMI toolbox or Sedumi and Yalmip
in MATLAB [5,21]. From Theorem 3, we can see that the controller gain matrices
Kk € N) can be directly obtained by solving LMIs (25), (34) and (35).

We present the procedure for construction of the desired controller as follows:

Step 1. Input the matrices AX, A%, AK A B BN EX ELX G L* and
F* Vk e N.

Step 2. Choose the appropriate parameters d, di, d,, d>, o, y and matrices J >
0,U>0,Z=>0.

Step 3. By solving LMIs (25, 34-35), one can obtain PX, PX, HX, 0y, Q,,
Wi, Wy, Ry, Ry, X, Y, N1, N2, S1, Sz and controller gain matrices Kk e N)
directly.

4 Simulation Examples

In this section, we present two examples to illustrate the effectiveness of the proposed
approach.

Example 1 Consider system (1) with parameters as follows:
Subsystem 1:

012 0 O .o o1
Ai=lo o1] A7 ANl 0 |

. [0025 0] ., [0.012
Adz_[o.024 o] Bi —[0.01 }

Bl = 0'014], E{:[i , Eé:[g'giz}, G' =[0.06 0.06],
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Subsystem 2:

»_[0 02 > [o 0 > [0 0.022
A1 _[0 0.1] 4 _[0.02 0]’ Adl_[o 0 }
> _[003 0
Ad2_[0 0.03]

, 0017 ., [0 , [002] ., [oo01
Bl_[o } 32_[0.02 CEi= oo B2T | 002 |
G? =[0.08 0.08],

12=02 F2=004, di(i)=2+sin (%) . da(j) =2 +sin (%J) .

In this example, it can be obtained that d; = 1, dy =2, d, = 1 and dy = 2. Take
a =01,y =1, J = diag{3, 3}, U = diag{22, 15} and Z = diag{30, 17}. Then
solving LMIs in Theorem 3 via LMI toolbox gives rise to

Pl 960.5559 0.0028 pl_ 174.0246 0.0011
h=10.0028  963.9219 |’ v 7 10.0011 174.0281 |’

R — 0.0348 0.0002
Y71 0.0002 0.0556 |’

P2 960.5601 —0.0111 2 1 0.6020 0.0003
=1 -0.0111 963.9559 [° "v = |0.0003 0.6015 |

R _ [ 1:5097 0.0001
h=10.0001 1.0079 |’

0, — [ 2402770 ~00003 7~ [=1.2861 —0.0001
"= -0.0003 241.6877 " "' T | ~0.0001 —0.8684 |’

Nu, — [ 1:85030.0002
12710.0002 1.2446 |

Nyp — | ~0-0030 0.0000 _[0.1651  —0.0003
21=10.0000 —0.0012 " 7”7 | -0.0003 0.1693 |

0.1048  —0.0004
Qv = |: :| s

—0.0004 0.0811

Noy — | 18097 —0.00027 o [0.0042 0.0000
271 20.0002 —1.2252 " °""T | —0.0002 —0.0072 |’

[0.0216 0.0003
| 0.0000 0.0362 |~

—0.0022 —0.0001 —0.0223 —0.0001
S = , S»= )

Si2 =

0.0001  —0.0025 —0.0001 —0.0369

[146.9101 0.0000 i|

Wi=100000 146.8795
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Fig. 1 State trajectory of x1 (i, j)

Fig. 2 State trajectory of x2 (i, j)

[-0.0047 —0.0078],

H' =[-0.0013 —0.0003], H?

~1.0114 —2.1390].

[

Figures 1 and 2 depict the trajectories of the two states x1 (i
tively. The corresponding switching signal is represented by Fig. 3

states are

K? =

’

K'=[-0.0072 —0.0023]

j)and x2(i, j), respec-

3

where the initial

>

, V0<j<10,i=0,

:IT
T
] ,V0<i<10, j=0,

1
5(j+1)

1
5(j+1)

[

and the disturbance is w (i, j) = 0.1exp (—0.257 (i + j)).

x (@, J)

1

S5(i+1)

1

S5(i+1)

x (i, J)

=) Birkhéduser
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Mode

0 2 4 6 8 10 12 14 16 18 20

Fig. 3 Switching signal

Form Figs. 1, 2 and 3, it can be observed that the closed-loop system is asymptoti-
cally stable.

Example 2 Letus consider the thermal processes in chemical reactors, heat exchangers
and pipe furnaces, which can be expressed by the following partial differential equation
(PDE) [43]:

oT (x,1) T (x,1)
ax at
+ e Dsat(u(x, 1)), (37)

ag "I e, 1) + a7 50T (x, 1 — d(1))

where T'(x, t) is the temperature at x (space) € [0, xy] and 7 (time) € [0, 00), ag (X’t),
af(x’t) and ¢ " are real coefficients with o (x, r) being the switching signal, and

u(x, t) is the input function.

Digitally based control law design and implementation require the construction
of an appropriate approximation of the dynamics by difference equations. If a direct
discretization method is applied to spatiotemporal dynamics, there is the need to ensure
numerical stability by selection of the sampling period(s) [11,12]. In this paper, we
will use the Crank—Nicholson discretization method to guarantee the unconditional
numerical stability.

Introduce the following approximations

or(x,t) TG, j+1D)-TG,j) 0T, 1) TG Jj)—T>0—-1,))
ot At ’ dx Ax ’
ulx,t) ~u(,j)),

where T (i, j) =T (iAx, jAt), u(i, j) = u (iAx, jAt), At and Ax are time and
space discretization periods, respectively.
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The discrete approximation to the dynamics of (37) can be written in the form of
(1) with

i 01 ) 0o O oG, ) 00
A({(Z,]) - [ } A7 = [ A A oi.j) , Ayl = ;
00 A 1= —ag A 00
oij) _ |0 oy _ [0 oy _ [0 0
E, = |:0 j| . E; - |:e"("f)At :| s Ap = |:0 —a(]w’])At :

and lim are first-order derivative

Ax—0

Since the limits lim
At—0

when At and Ax are infinitely small, the discretizations of aTgf 1) and aTa(;’t) are
consistent. Moreover, the discretization of the above PDE will converge to the true
solution if the resulting difference equation is stable [11,12].

Now we assume that the 2-D switched system has two subsystems with aé =
2,a} =3,a] =02,a} =03, ¢! =1,d0t) = 1+sin(%), e* = 1.5. The
time and space discretization periods are chosen as Ax = 0.3 and Ar = 0.2. By
considering the Hy, disturbance attenuation, the thermal process is modeled in the
form of (1) with parameters as follows:

TG, j+D-=T3.)) T, )-TG(—=1,))
At Ax

Subsystem 1:

01 0 0 00 00
A%Z[o 0] Aé:[0.6 0.07] Afl“:[o o}’ Agﬂ:[o —0.04]

, E}:[O } E;=[8.2 ] G'=[0.01 0.03], L'=03,

Subsystem 2:

» o1 > [0 o0 > 00 » 00
=10 o]’ A2_[0.6 0.27] Adl—[o o] Ad2—[o —0.06:|’
0.01
=[5
0 9

B2 = 0'1] E%:[g}, E%:[gj], G2 =[0.03 004], L>=0.1,

0
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Take « = 0.1, y = 1, J = diag{3, 3}, U = diag{22, 15} and Z = diag{30, 17},
then solving LMIs in Theorem 3 leads to

pl_ 836.5842 —0.0663 pl_ 151.9147 —0.0339
=1 -0.0663 842.4002 |° "v ~ | —0.0339 151.8327 |’

[0.0331 0.0047 ]
| 0.0047 0.0534 |

p2 _ 8365847 —0.0667 1 . _ [0.6163 0.0043
b= —0.0667 842.4990 | v T [ 0.0043 0.4656 |’

[1.5779 0.0006 ]
| 0.0006 0.8604 |°

0, — | 2089666 ~0.00027 =~ [—1.3381 —0.0005
"= -0.0002 210.9341 | "' T | ~0.0005 —0.7457 |’

[1.9287 0.0007 _ [—0.0042 0.0000
0.0007 1.0685 |* "' T [0.0000 —0.0010 |’

w. _ [0-1277  —0.0079
"= -0.0079 0.1417 |’

0.0768 —0.0077 —1.8767 —0.0006
0y = [ } , Np= [ } ,

R, =

Ry, =

Nip =

—0.0077 0.0538 —0.0006 —1.0519

[—0.0042 —0.0048 ]
| —0.0019 —0.0096 |

[0.0261 0.0024] ( ~_ [0.0026 0.0025
0.0038 0.0379 |* °*' = {0.0007 —0.0017 |

[—0.0263 —0.0036 ]
| —0.0030 —0.0384 |’

_ [128.2301 0.0004 .
Wi = | 0.0004 128.1792] H'=[-0.5314 0.0842],

H? =[-0.2045 —0.0127],
K'=[-2.9025 0.6451], K*=[-19294 —0.2250].

Si=

Si2 =

S =

Choosing the initial states

T
.. 1 1 . .
x(l’]):[—ZO(j—H) —20(j+1)] , Y0=j=<10,i=0,
)= b | . Yo<i<10, j=0
x(.))=|2arn 26D | =r=1U =0

and the disturbance w (i, j) = 0.1 exp (—0.257 (i + j)), state trajectories of x1 (i, j)
and x> (7, j) are shown in Figs. 4 and 5, respectively, and Fig. 6 shows the switching
signal. It can be seen from Figs. 4, 5 and 6 that the resulting difference equation is
asymptotically stable, which implies that the true solution of the above PDE asymptot-
ically converges to zero. This demonstrates the effectiveness of the proposed method.
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Fig. 5 State trajectory of x2 (i, j)
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5 Conclusions

This paper has investigated the state feedback H, stabilization problem of 2-D dis-
crete switched systems with actuator saturation. A new sufficient condition for asymp-
totical stability of the closed-loop system has been obtained. A state feedback H
controller has been proposed such that the closed-loop system is asymptotically stable
and achieves a prescribed disturbance attenuation level y. Two examples have been
provided to show the effectiveness of the proposed approach.
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