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Abstract As one of the most adopted distributed video coding approaches in the lit-
erature, Wyner–Ziv (WZ) video coding is not yet on par with the motion-compensated
predictive coding solutions with respect to rate–distortion (RD) performance. One
of the essential reasons lies in the absence of reliable knowledge of the correlation
statistics between source and side information. Most of the existing works assume
a probability distribution of the statistical dependency to be Laplacian, which is not
accurate but computationally cheap. In this paper, a correlation estimation based on
Gaussian mixture model is proposed for the band-level correlation noise of discrete
cosine transform domain Wyner–Ziv codec. The statistics of the correlation noise
betweenWZ frame and corresponding side information is analyzed by considering the
temporal correlation and quantization distortion. Accordingly, the model parameters
for correlation noise are estimated offline and utilized online in consequent decoding.
The simulation results of Kullback–Leibler divergence show that the proposed model
has higher accuracy than the Laplacian one. Experimental results demonstrate that the
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WZ codec incorporated with the proposed model can achieve very competitive RD
performance, especially for the sequence with high motion contents and large group
of picture (GOP) size.

Keywords Correlation noise · Quantization · Wyner–Ziv coding · Rate–distortion ·
Gaussian mixture model · Wireless sensor network

1 Introduction

Due to the limited battery power, individual nodes in wireless multimedia sensor net-
work (WMSN) [3] have low processing capability, which calls for lightweight signal
processing and compression algorithms [28]. However, the traditional video coding
solutions, represented by the ISO/IEC MPEG and ITU-T H.26x standards, rely on
a highly complex encoder and cannot meet the processing capability requirements
of nodes [4,5]. Meanwhile, the traditional predictive coding architecture is prone to
suffering from distortion in wireless environment. Confronting the challenges of mul-
timedia communications in wireless sensor network (WSN), there is an urgent demand
for decreasing the computational energy consumption involved in compressing video
streams in WMSN applications.

To meet the requirements of WMSN, distributed video coding (DVC) is the right
paradigm of video coding which can provide such a low complexity encoder. Based on
Slepian–Wolf and Wyner–Ziv information theorems [38], Wyner–Ziv video coding,
as one of the popular techniques in DVC, can achieve efficient data compression by
incorporating source statistics partially or fully in decoder. Recently,WZ video coding
has attracted considerable attention [2,16,22] as its relative low complexity encoder.
Specifically, in WZ codec, a flexible allocation of complexity [17,34] between the
encoder and the decoder is exploited which is well suitable for WMSN applications.
Two major approaches toward WZ video coding have been reported as pixel- and
transform-domain schemes in literature, e.g., [1]. Although the pixel-domain codec is
simpler regarding to the computational complexity, the transform-domain codec per-
forms better in terms of coding efficiency despite a cost of slightly higher complexity.

According to its principle, coding efficiency of DVC is generally achieved by utiliz-
ing the correlation statistics between source and side information (SI) [8,37,41]. Either
Turbo [10] or low-density parity-check (LDPC) [39] in WZ codec needs exploit the
correlation noise statistics to initialize the decoding algorithm by providing likelihood
estimates for the source bits. In particular, high coding efficiency critically relies on the
capability of modeling the statistics of the correlation noise. Usually, the dependency
is characterized by the residue N = X − Y modeled by a Laplacian distribution with
zero mean [8,11,18,25,37], where X is an input frame to be recovered and Y is SI at
the decoder. However, it will be much challenging to accurately model the correlation
noise statistics since the source is unavailable at the decoder and the absence of SI
usually occurs at the encoder. Moreover, the non-stationary characteristics of video
signals and occlusions or illumination changes are the major factors impacting on
the correlation noise statistics. In fact, the current assumption that the distribution of
residuals complies with a Laplacian is not always satisfied and, more often, the Lapla-
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cian model significantly differs from the true correlation noise distribution [23]. To
improve the coding performance, thus, correlation noise statistics between the source
and SI needs to be estimated as accurately as possible. To this end, this paper aims to
apply a more general model to fit the correlation noise.

It has been proved that Gaussian mixture model (GMM) is general enough to
approximate different kinds of probabilistic distributions [26,29] and good at fitting
multivariate signals as well. In transform domain WZ codec, the model parameters
can be estimated at band-level or coefficient-level before Slepian–Wolf decoding. Yet
it is more often of adopting band-level estimation since it can offer powerful statistical
support [8]. That is, we assume all the coefficients in the same band follow the same
probabilistic distribution.

In this context, the major contribution of this paper is to improve the performance
for discrete cosine transform (DCT)-domain Wyner–Ziv coding (TDWZ) where the
statistical dependency between the source and side information can be accurately
characterized by means of GMMs. By considering the temporal correlation and quan-
tization term, our proposed model, termed as correlation estimation based on GMM
(CEGMM), can better characterize the correlation noise statistics. In particular, a
GMM for band-level correlation noise is trained offline and thereafter utilized online
to compute the conditional probability during LDPC decoding. A more reasonable
two-component GMM model across all the DCT bands is trained by CEGMM for
its strong capability of representing the relationship among these bands. Moreover,
CEGMM takes the quantizing term into account so that the model is more practical
than some of existing methods [8,11,18,25,37]. Then, we modify the DISCOVER [6]
decoder by integrating the proposed CEGMM instead of Laplacian assumption. For a
fair comparison, we do not change the processing on the side information generation.
That is, no change at the encoder is made by our proposed DVC scheme w.r.t. classic
DVC. Accordingly, the proposed DVC maintains low encoding complexity as well.

The rest of this paper is organized as follows. Section2 reviews the related works
on correlation noise statistics estimation and also provides the motivation of this work.
In Sect. 3, we present the band-level correlation estimation based on GMM. The per-
formance of CEGMM integrated in WZ codec is evaluated on estimation accuracy
and RD performance in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Review on Correlation Noise Modeling

In DVC, the coding efficiency is mainly determined by the quality of side information
and the accuracy in modeling the dependency between the source and the correspond-
ing side information [8,38]. The finermodel for the dependencymeans that fewer accu-
mulated syndrome bits are required to be sent to the decoder, resulting in better RDper-
formance. In this section, we first briefly review the background and then introduce the
motivation on characterizing the dependency called correlation noise model (CNM).

Figure1 illustrates the TDWZcodec architecture [1]with our proposedmodel of the
correlation noise, referred in the later discussion. At the encoder, the video sequence
is partitioned into WZ frames and key frames. As the conventional way, the key
frames are processed by exploiting H.264/AVC intra codec through DCT transform
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Fig. 1 Architecture of the DCT-domain Wyner–Ziv video coding with CEGMM

and quantization processing. For WZ frames, a 4× 4 block-wise DCT is first applied
and theDCT coefficients are grouped into different bands, which are quantized into the
symbol stream. Then, the bit-planes of each band quantized symbols are extracted and
fed into LDPC encoder, where the parity information is obtained. These syndrome
bits are stored into a buffer to be sent on fixed amounts upon the decoder request.
On the other hand, motion compensated frame interpolation (MCFI) is adopted to
generate the SI (i.e., Y ) with the previously decoded key frame and theWZ frame [41]
at the decoder. Given a group of picture (GOP) size of 2, we denote the previous and
next temporally adjacent key frames by X̂B and X̂F, respectively. YDCT is obtained by
applying DCT over Y , which is the estimate corresponding to X̂DCT. In the optimal
reconstruction given the output of LDPCdecoder and SI [37], theCNMplays a key role
in WZ video decoding. YDCT is not only fed into the module of correlation estimation
to help LDPC decoder to decode the compressed stream, but also used to reconstruct
the WZ frame in a minimum-mean-squared-error (MMSE) optimal way.

Some early works aim at modeling the probability distribution of correlation noise
(CN) in TDWZ. In an earlier work [17], the error or residue N = X − Y is offline
exploited to model the dependency. However, it is unrealistic in practice because the
original information is unavailable at the decoder and the lack of SI occurs at the
encoder whilst. Then, the residue between the adjacent motion compensated frames
replaces the error to model the correlation noise statistics [8].

Let (x, y) be the spatial coordinate within the current frame, (dxB, dyB) and
(dxF, dyF) denote the associated backward and forward motion vector, respectively.
According to the previous work [8,11,18,25,37], a motion compensated residue R
between forward and backward interpolation is regarded as a realistic solution for
modeling correlation noise instead of an unrealistic offline residue,

R(x, y) = X̂B(x + dxB, y + dyB) − X̂ F (x + dxF, y + dyF). (1)

In general, the motion-compensated residue DCT coefficient is modeled as Lapla-
cian random variables [21] and its probability distribution is defined as follows:

f (R) = exp
(
−√

2 |R − μ| /σ
)

/
√
2σ, (2)

where μ is the mean value and σ 2 is the variance of the residue.
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Since the luminance of each pixel varies along with time and space, the parame-
ter σ is likely to change over different parts of an image. This means that the actual
DCT coefficient distribution will be affected by the change of σ 2 in different gran-
ularity levels [8,11,18,21,25,37]. Then, in order to obtain a more accurate model,
many methods have been proposed to estimate the parameters under the Laplacian
assumption. For the pixel- and transform-domain WZ video codec, Brites and Pereira
[8] proposed an online estimation of the CN model parameters in the decoder by
exploiting the correlation within different levels of granularity: frame-, block-, and
pixel-levels. Experiments show that the higher the estimation granularity is, the better
the RD performance is. Deligiannis et al. [11] demonstrated that the CN distribution
is dependent on the realization of the SI, then the authors further proposed a new
technique by incorporating into a unidirectional spatial-domain DVC system. Mys et
al. [25] improved the correlation noise estimation by taking into account the effect of
quantization noise in intra frames. Results indicate that average Wyner–Ziv bit-rate
reductions are up to 19.5% (Bjφntegaard delta metric) for coarser quantization. By uti-
lizing cross-band correlation to estimate the model parameters, Huang [18] proposed
an improved noise model for TDWZ. Compared with the model at coefficient-level,
the new statistics model is more robust and improves the RD performance for high
bit-rates amounting to 0.5 dB.

Recently, the progressive refinement methods are proposed to estimate the model
parameters. Fan et al. [15] proposed a novel transform-domain adaptive correlation
estimation method, in which the model parameter, i.e., the variance at band-level,
is learned in a progressive way. In [31], a progressive correlation noise refinement
method is proposed for transform-domain Wyner–Ziv coding. The parameter is con-
tinuously updated during the decoding process. Based on the accuracy of the side
information, the correlation estimation method is proposed by differentiating blocks
within a frame [14]. In [36], the correlation noise statistics estimation is processed
jointly with belief propagation based LDPC decoding. By exploiting the spatial cor-
relation and quantization distortion, Skorupa et al. [30] developed a correlation model
that is able to adapt the changes of the content and coding parameters. Instead of
assuming Slepian–Wolf enocoded bit-planes to be memoryless source, Toto-Zarasoa
et al. [32] considered a predictive correlation model together with a Gilbert–Elliott
(GE) memory source. In [12], a side-information-dependent (SID) model, rather than
side-information-independent (SII), of correlation channel is proposed to improve
the Wyner–Ziv coding performance. A cross-band based adaptive noise model is pro-
posed for TDWZvideo coding [19] and the noise residue is successively updated.More
recently, Deligiannis et al. proposed a novel correlation channel estimation method
designed for generic layered WZ coding [13].

In the above work, people usually assume that the probability distribution of CN
belongs to the Laplacian family, however, it has been found that the Laplacian family
is inaccurate in modeling dependency because the actual distribution of the DCT
coefficients differs from the Laplacian distribution in some cases [21,33]. The major
reason why the Laplacian distribution is used in modeling dependency is due to the
simplicity of the Laplacian function in deriving mathematical formulations for the
correlation noise statistics. In a nutshell, the inaccurate assumption motivates us to
find new models to better characterize the statistics.
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During the creation process of side information, MCFI is carried out based on the
assumption that the motion is translational and linear over time among temporally
adjacent frames [14]. Yet this assumption is not always true. Moreover, the key frames
used for interpolating are unavoidably contaminated by quantization noise. Thus, the
correlation noise is non-stationary [36], which is mainly caused by two factors such as
the incoherent motion field and quantization noise [25] in key frames. These multiple
factors motivate this paper to apply a GMM to describe the correlation noise.

3 Band-Level Correlation Estimation Based on Gaussian Mixture Model

The Laplacian model does not fit certain distributions well, while other models, such
as generalized Gaussian distribution [21], fail to be a good tradeoff between model
accuracy and computational complexity.Nevertheless, it is suggested that theGaussian
family is a realistic model in practice. To this end, GMM is introduced here for the
correlation noise statistics with its universality. GMM is a statistically mature model
defined as a mixture of components, each of which is a Gaussian probability distrib-
ution [40]. We have witnessed the success of this model in different domains [27]. It
is naturally expected GMM is able to model the correlation noise well in this work.

3.1 The Motivation

Let (x, y) be the spatial coordinate within one frame and the correlation noise at
location (x, y) be N (x, y) = X (x, y) − Y (x, y), which is assumed to be determined
by a probabilistic density function

p(N (x, y)) = p(NMV(x, y), NQ(x, y)). (3)

Generally, N can be regarded as the result yielded by two factors, NMV and NQ.
Next, we detail why these two factors can affect the distribution of the correlation
noise. First, motion compensated interpolation (MCI) is adopted to generate the side
information at the decoder [6]. In MCI, a motion vector field is usually obtained by
motion estimation. Unfortunately, the motion vector is hard to be accurately estimated
without the original frame at the DVC decoder. Specifically, the motion field close to
the true motion is estimated by backward X̂B and forward X̂F. This case will become
worse for the video sequence with high motion. Under such circumstances, the motion
vector is definitely different from the true one, which results in larger error in the side
information and further affects the correlation noise. Here, we let NMV denote the
noise caused by the erroneous motion vector, and NQ the noise component introduced
by the reconstructed key frames with quantization noise during the process of motion
compensation interpolation. At the decoder with the absence of original frames, the
case will get worse due to the noise sources NQ during the process of motion compen-
sation interpolation. InmostWZcodec solutions, forward and backward interpolations
usually do produce the block artifacts which make contributions to NQ.

Because of the presence of multiple noise sources, many simple noise models
naturally fail to characterize the correlation noise statistics well. Laplacian family
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Fig. 2 Residue histogram for AC4 band of Soccer

noise models are widely used in modeling noise process in video coding [8,37,38,
41]. Figure2 shows a scenario where a Laplacian distribution wrongly models the
correlation noise statistics.

Actually the correlation noise is a complicated random process and dynamically
changes over time due to the varying video contents. For example, in a recent work
[42], the authors decomposed the transmission error into the error caused by motion
vectors and another one caused by prediction residue loss under packet-loss environ-
ment. Based on the definition of correlation noise in the previous work [17], we take
the ideal channel case into account in this paper, i.e., the error-free channel, for evalu-
ating the accuracy of the new model. It is worth noting that this work is different from
our prior work [24] in several aspects. We apply statistical learning theory to accu-
rately analyze the factors influencing the correlation noise. In particular, we propose
a more reasonable two-component model to describe the correlation noise statistics.
To validate the efficacy of our approach, more extensive experiments of the test video
sequences are carried out.

3.2 The Model

Generally, when there are many possible random components, it is more natural to
model the probability of the noise generating process as multi-mode by a mixture
density function [40] which, for example, depends on the coherence of motion field
and the energy of prediction residue,

p(N ) = p(NMV, NQ) =
∑
i

p(Ni
MV|Ni

Q)p(Ni
Q), (4)

where i indexes the possible modes or mixture components. Then, the modeling prob-
lem is transferred into describing the distribution of multivariate stochastic variables,
specifically two stochastic variables, in which each one obeys a Gaussian distribution.

However, the noise process N is unavailable in practice due to the absence of the
original frame at the decoder. Thus, we have to use the transformed residue R obtained
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from Eq. (1) to model the correlation noise instead. As usual, a 4×4 DCT is applied on
WZ frame, thus the transformed coefficients of WZ frame are grouped into 16 bands,
denoted by Rk (k = 0, . . . , 15). There may exist dependency among these bands. In
order to effectively model the noise process across bands, we consider the random
vector R = (R0, R1, ..., R15)

T and model its probability distribution by the classic
GMM in the following form:

p(R) =
M∑

m=1

πmN (R|µm, �m) with
M∑

m=1

πm = 1, (5)

where {πm ≥ 0}Mm=1 are the mixing weights of M components which sums to one
totally and each N (R|µm, �m) (m = 1, ..., M) is the Gaussian probability density
function defined as

N (R|µm, �m) = 1

(2π)d/2|�m |1/2 exp

(
−1

2
(R − µm)T�−1

m (R − µm)

)
(6)

with µm as the mean and �m the covariance matrix, respectively. d is the dimension
of random vector R in the distribution function.

As argued in (3), there assumably exist two major noise sources NMV and NQ.
Thus, it is reasonable to use a mixture model (5) with only two Gaussian components,
each of which models one of major noise sources. For the sake of simplicity, we write
out the proposed model of the Gaussian mixture distribution as follows:

p(R) = π1N (R|µ1, �1) + π2N (R|µ2, �2). (7)

The model parameters defined in (7) are Θ = (π1, π2,µ1,µ2, �1, �2). Given a
set of K training data D = {Ri }Ki=1, the logarithm of the likelihood function [35] can
be written as

L(Θ) =
K∑
i=1

log
(
π1N (Ri |µ1, �1) + π2N (Ri |µ2, �2)

)
. (8)

Maximizing L(�) w.r.t. � according to (8) is very hard due to the log of a sum-
mation, however, in order to guarantee an increasing log-likelihood from iteration to
iteration, the expectation-maximum (EM) algorithm [35] is usually applied to GMM
parameter estimation.

3.3 Model Fitting Using Generalized EM

To avoid the sensitivity to initialization of EM algorithm, a greedy learning technique,
similar to [35], is adopted to obtain model (7). In our case, the missing data is the
Gaussian cluster, i.e., the band coefficients cluster, to which the data points belong.
We predict values to fill in for the missing data (the E-step), calculate the maximum
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Fig. 3 Sample frames for testing sequences

likelihood parameter estimates with this data (the M-step), and repeat until a stopping
criterion is met. Considering the paper limitation, we here omit the intermediate EM
process. (Please refer to [35] for the details.)

In order to decrease the computational complexity in practical decoding, we fit
the model at offline stage and then the model parameters are used to calculate the
soft-input information [6]. In our model training, the training data are collected from
several WZ frames. For example, for frequency band k, the residue of WZ frames
coming from different sequences are grouped to form the training set. As illustrated in
Fig. 3, the training sequences in this research include Foreman, Soccer, Football, Hall
Monitor, Carphone, and Coastguard, which covers low and high motion contents.
To figure out the model parameters, we randomly select 10 WZ frames from each
sequence and 60 frames in total are used as training set. Each band data is grouped by
collecting the DCT coefficients within the same frequency band along all the training
samples. Given 16 bands, we ensure each band includes approximate 100,000 data
to train GMM parameters. For the initialization of the model parameter, we apply
the mean value of source data for initializing the mean of the mixture components.
As for the covariances of the components, the individual covariance matrices for the
components are created by adding different small positive numbers to the eigenvalues
of the estimated source covariance matrix. The weight is initialized to be 0.5. When
using EM algorithm to estimate model parameter, 20 iterations are run to achieve
convergence at least. The iteration threshold of EM algorithm is set 1e−5 for stopping
the iteration.

Once the model has been trained, we build up a 16-element lookup table at the
decoder, which can be done offline. For the sake of simplicity, we only use the diagonal
elements of �1 and �2 as the variances of individual bands. When calculating the
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conditional probability within LDPC decoding, the model parameter of correlation
noise in each frequency band is found through the lookup table.

4 Experimental Results

In this section, we perform several experiments on some classic video sequences,
such as Foreman (without the Siemens logo), Soccer, HallMonitor, Carphone, and
Coastguard, to evaluate the performance of CEGMM. These video sequences cover a
variety of contents which are helpful to obtain meaningful and representative results.
Their spatial resolution is Quarter common intermediate format (QCIF) and the GOP
length is typically selected as 2, 4, and 8, respectively. The frames of test sequences are
chosen as follows, 299 frames for Foreman, 329 frames for HallMonitor, 299 frames
for Coastguard, 382 frames for Carphone, and 299 frames for Soccer. The frame rate
of all test sequences is 30Hz.

First, we verify the accuracy of correlation estimation via applying CEGMM and
Laplacian model, respectively. Then, the RD performance is compared with the differ-
ent correlation estimation methods integrated into a DVC system. The state-of-the-art
DISCOVER codec and several standard video coding solutions, such as H.263+ Intra,
H.264/AVC Intra, and H.264/AVC Inter No Motion, are exploited as benchmark for
performance comparison. Although H.263+ Intra is not with the best performance
among the available Intra codecs, it is still widely used as an acceptable benchmark
in WZ coding literature. H.264/AVC Intra is the most efficient Intra coding stan-
dard which encodes H.264/AVCmain profile without exploiting temporal redundancy,
while the H.264/AVC Inter No Motion does exploit the temporal redundancy in IBIB
structure without any motion estimation.

To fairly compare the performance of our method to DISCOVER codec, we adopt
the similar process of side information and reconstruction as specified in [7,9,20] in our
experiments. Similar to the previous literature, only the luminance data is considered
for evaluation in all of the experiments.

4.1 Evaluation of The Model Accuracy

Thedifference between twoprobability distributions canbe evaluated by theKullback–
Leibler (K–L) divergence, which is popular for verifying the accuracy of different
models [33],

KL(p||q) =
∫

p(x) log2(p(x)/q(x))dx, (9)

where p is the actual probability density function (PDF) and q is the modeling PDF. In
this experiment, we use the histogram of the residue instead of true PDF because the
original frame is unavailable at the decoder. The GOP length is fixed as 2. As the lower
band coefficients conserve majority energy in a frame, we only give the K–L results
for the bands from DC to AC7. A small K–L divergence means a good modeling.
Table 1 shows the divergence between the real PDF and the proposed GMMmodeling
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Table 1 K–L divergences of two models for the bands DC to AC7 of the sequences

Model DC AC1 AC2 AC3 AC4 AC5 AC6 AC7

Foreman

Laplacian 0.089874 0.076229 0.121264 0.156922 0.147241 0.204272 0.536842 0.073582

GMM 0.029159 0.041795 0.037046 0.059698 0.049863 0.062125 0.176621 0.04774

Soccer

Laplacian 0.07329 0.180744 0.132247 0.119882 0.17737 0.076989 0.177669 0.113129

GMM 0.027391 0.031723 0.036303 0.049572 0.060764 0.033322 0.079919 0.058289

HallMonitor

Laplacian 0.229777 0.259666 0.103524 0.1255 0.138912 0.205425 0.201605 0.183249

GMM 0.022357 0.038524 0.026195 0.042771 0.032082 0.051645 0.061955 0.056873

Carphone

Laplacian 0.050924 0.142395 0.205634 0.203662 0.237339 0.398695 0.37894 0.394379

GMM 0.017598 0.036001 0.051244 0.055992 0.062186 0.083519 0.096483 0.098783

for several test cases.We can observe, from the table, that the proposedmodel matches
the real PDF much better than Laplacian model in most bands.

Figures4, 5, and 6 show the PDF of the residual bands and their approximations
given by Laplacian and the proposed GMM for Carphone, Soccer, and Foreman,
respectively. The tested frames contain relative complex motion contents. The PDF
fitted by Laplacian has long tails, leading to a slowly decaying compared to the actual
distribution at each band. From the figures, the actual DCT coefficient band has a
small tail and its distribution cannot be well approximated by a zero-mean Laplacian
distribution, however, this is the assumption used in many previous works [8,11,
37,38]. In contract, the PDF using CEGMM presents similar behavior as the actual
distribution, for which the tail of the density decays faster.

4.2 Evaluation on RD Performance

After verifying the model accuracy, we will test the RD performance of our DVC sys-
tem incorporatingCEGMMin this section.TheRDscores are computed corresponding
to different values of quantization matrices [9] used at the encoder. In particular, the
quantization parameters (QP) used to quantize the key frames are chosen as in Table
2. In addition, the plotted RD curves include the average rate and distortion measured
for both the key frames and the WZ frames.

The experimental results for the sequences are shown in Figs. 7, 8, and 9. Compared
to the Laplacian model employed in DISCOVER codec, CEGMM achieves a better
and more consistent performance in all the cases. Figure7 presents the RD charts for
Coastguard and Foreman, respectively, whose contents include the well behaved and
high motion scenes. When the GOP length is 2, the RD gain obtained by the proposed
model is relatively small for high bit-rate case up to 0.48dB since the quality of side
information after frame interpolation is good enough.With the GOP length increasing,
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Fig. 4 The PDF of the residual band and theirs approximations by Laplacian and the proposed GMM for
Carphone (frame 182)
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Fig. 5 The PDF of the residual band and their approximations by Laplacian and the proposed GMM for
Soccer (frame 286)

the quality of side information degrades and leaves much room for improvements of
RD performance. From Figs. 8 and 9, it is observed that the good RD gains can be
achieved by our proposedmethod. As for themore complexmotion sequences, such as
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Fig. 6 The PDF of the residual band and theirs approximations by Laplacian and the proposed GMM for
Foreman (frame 152)

Table 2 Quantization parameters for key frames in different RD points, QCIF at 30Hz

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Foreman 40 38 38 34 34 32 29 25

Soccer 44 43 41 36 36 34 31 25

HallMonitor 37 36 36 33 33 31 39 24

Coastguard 38 37 37 34 33 31 30 26

Soccer and Foreman, with the Laplacian assumption, the decoder usually needs more
bits to correct the error to achieve a satisfactory error ratio. Thus, compared to the
Laplacianmodel integrated in DISCOVER codec, the proposed CEGMMoutperforms
up to 2.23dB for Foreman and 2.41dB for Soccer at a GOP size of 8, respectively. For
the lowmotion sequence, such asHall monitor, our RD gain is consistently achievable
though the improvement is not as significant as for complex video sequences. This
is reasonable due to, as the high quality of the SI is achieved, the effect of accurate
correlation estimation on the RD performance decreases. As for the gain against the
DISCOVER codec, it can be explained by the reduction of the LDPC decoder in
requiring fewer accumulated syndrome bits to correct the estimation errors.

In addition, RDperformance of the proposedmethod is also evaluated by comparing
with that of other three standard coding solutions. From the results, we conclude that
the WZ codec based on CEGMM outperforms H.264/AVC Intra for the sequences
with the low motion content, especially for the longer GOP length. However, it is
only better than the H.264/AVCNoMotion codec forCoastguard approximately 1dB
at most. The gap between WZ codec and the standard video codecs has been much
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Fig. 7 RD performance for Coastguard and Foreman at GOP = 2
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Fig. 8 RD performance for the different sequences at GOP = 4

shortened for the sequences with high motion content, such as Foreman and Soccer.
As for Foreman at GOP 8, our RD curve is close to H.264/AVC Intra, while that
of Soccer is close to H.263+ Intra. However, our RD performance for high motion
content sequence is inferior to H.264 No Motion, especially with a larger GOP size.

4.3 Complexity Evaluation

Finally, the decoding algorithm complexity measured by CPU running time for
CEGMM is compared to that of the benchmark DISCOVER [6] in Table 3. The
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Fig. 9 RD performance for the different sequences at GOP = 8

execution time of DISCOVER is obtained using the executable code, as found on the
DISCOVERwebsite. Since our proposed method is only intergraded into the decoder,
the encoding complexity is as same as DISCOVER. It is well known that the execu-
tion time is highly dependent on the conducted hardware and software platforms. In
our experiments, the simulation is carried out on an ×86 machine with a Intel core
processor at 2.13GHz with 3.0GB of RAM. In Table3, three decoding complexity
comparison is provided according to different quantization matrices at GOP 2 at a
frame rate of 15Hz. In addition, a suitable optimized for speed is applied compared
with the traditional DISCOVER decoder.

From the results, it is observed that the proposed method consumes less execution
time than DISCOVER codec. This is due to the fact that the parameter learning is
conducted offline, so that the time taken by the decoding is not much higher than
DISCOVER. Contrary to the demanding operations of side information creation and
LDPC decoding, the computational time of the estimation of correlation noise is
relatively limited [12]. In light of this point, the decoding time mainly relies on the
LDPC decoding. In other words, one can expect a less computational complexity can
be achieved by fewer LDPC decoding iterations. In our work, the reduction of the
decoding time can be owed to the two factors, i.e., the quantization term and the
mixture model for the residual data. As a result, the LDPC decoder requires fewer
feedback channel requests and decoding operations.
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Table 3 Decoding time for test sequences at 15Hz (unit: s)

Index Foreman HallMonitor Soccer Coastguard

DISCOVER CEGMM DISCOVER CEGMM DISCOVER CEGMM DISCOVER CEGMM

Q1 508.56 413.97 295.15 279.21 240.67 210.83 723.66 659.98

Q3 709.72 577.71 475.67 449.03 371.01 352.00 1,010.78 921.83

Q5 1,290.25 1,058.01 820.48 772.07 605.84 530.72 1,771.77 1,617.62

5 Conclusion and Future Work

In this paper, a GMM-based correlation estimation is proposed to characterize the
band-level correlation noise statistics in TDWZ by simultaneously considering the
temporal correlation and quantization distortion. The difference between WZ frame
and its corresponding side information is first analyzed, and the noise in transformed
coefficients in each band is characterized by a two-component Gaussian mixture dis-
tribution. The results of K–L divergence show that CEGMM has better accuracy than
the Laplacian version. Experimental results also show that an improvement on RD
performance is achieved against the Laplacian model in DISCOVER codec, espe-
cially for high motion content sequences and longer GOP length. Compared with the
alternative standard video coding solutions, theWZ codec with CEGMMoutperforms
H.264/AVC Intra coding for the sequences with lowmotion content. However, the RD
performance for high motion content sequence is inferior to H.264 No Motion cod-
ing, especially with a larger GOP size. Therefore, our future work includes further
improvements targeting at higher coding efficiency.
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