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Abstract This paper presents an implementation of a weak signal detector using a
Duffing oscillator on field programmable arrays (FPGAs) for the real-time detection
of weak signals in noisy environments. The proposed implementation has combined
the efficiency of weak signal detection by chaotic oscillators in noisy environments
with the advantages of hardware implementation to achieve an efficient weak signal
detector. To optimize the performance versus area, we have used VHDL. A novel state
detector, phase trajectory autocorrelation, has been introduced for the state detection
of the Duffing oscillator. As an experiment, the Duffing oscillator has been imple-
mented on a Cyclone IV GX FPGA. In this paper, in addition to the structure and
resource utilization of the design, experimental results are presented to demonstrate
the effectiveness of the proposed implementation.

Keywords FPGA implementation · Weak signal detection · Duffing oscillator ·
Autocorrelation · Chaotic oscillator · Hardware implementation · Real-time

1 Introduction

Currently, the real-time detection of weak signals in noisy environments is a growing
demand for most of applications that involve certain types of signal detection. Some
particular examples of such applications are fault detection, industrial measurements,
communications, radar, and sonar [5–8,12,20].

Although there are some conventional methods for detecting weak signals [25],
immunity to noise has been unsuccessfully sought for decades, as these methods do
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not offer the expected results in noisy environments. Chaos theory is an approach that
can feasibly achieve these demands.

After Edward Lorenz introduced chaos theory [11], it became widespread in many
applications. Because of immunity to noise while being sensitive to a special weak
signal, chaotic oscillators have been used in applications that involve weak signal
detection. Wang [19] proved validity of this method in the presence of strong noise.
He obtained experimental results with low SNR and conducted a quantitative study
on detection and estimation of weak signals using Duffing oscillators (DUOS) [18].

After proving the validity of this method, more studies were performed on the
efficiency of this method in applications that involve weak signal detection. This
method was considered for machinery fault detection [12], communications [24],
EEG analysis [23], GPS receivers [4], sonar detection and target identification [22],
metal detection [21] and much more.

Today, one of the most common chaotic oscillators used in such applications is
the DUOS [19], which is a non-linear second-order differential equation. In non-
linear dynamic systems, a small change in the parameters of the system or the initial
conditions may lead to qualitative changes in the system state [10]. This phenomenon
forces the state of the chaotic oscillator to change from the chaotic state to the periodic
state by applying a weak signal with a specified frequency that is in the sensitivity
range of the oscillator.

The DUOS is sensitive only to a very narrow range of frequencies and phase delays
[19], and in most applications, the frequency and phase delay of the weak signal
are completely unknown or at least known without sufficient accuracy. Therefore,
detecting a weak signal with an unknown frequency and a phase delay requires an
array of oscillators.

The software implementation of an array for non-real-time applications or for detec-
tion of a weak signal with very low frequency is usually acceptable. However, when
the performance is a critical requirement or the weak signal is of high frequency,
software-implemented arrays require large amount of computational resources.

In addition to the applications that require real-time execution, there are some appli-
cations that require hardware solutions for weak signal detection. All these reasons
together justify the hardware implementation of the chaotic oscillators for weak signal
detection.

The main goal of this article is to design a practical solution for fault detection in
inductionmotors. In this application, the frequency of target signal, as a fault indicator,
depends on the variable slip of the motor. So, its frequency lies in the specified rang
and therefore an array of oscillators is required for detecting the fault signal. In this
regard, the attempt has been made to implement the DUOS in a way that requires low
resources so that it can be useable in the array. Introducing a novel method called phase
trajectory autocorrelation (PTA) instead of the largest Lyapunov exponent (LLE) is
one of the things that we have done beside other optimizations to approach this goal.

Some related works on the FPGA implementation of chaotic oscillators are: Hard-
ware Implementation of the Rössler Chaotic System for Securing Chaotic Communi-
cation [16], Real-time hardware implementation of a new Duffing’s chaotic attractor
[15], An FPGA Real-time Implementation of the Chen’s Chaotic System for Securing
Chaotic Communications [14].
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In References [14] & [16] hardware chaotic oscillators are presented for secure
communications based on the single Rossler chaotic and Chen’s chaotic system and
Ref. [15] introduces a real-time FPGA implementation of a three-scroll chaotic attrac-
tor using Runge–Kutta 4th order (RK4) numerical solver, But these approaches have
never been used in any applications.

As is known, there has been no implementations about weak signal detection by
chaotic oscillators. Employment of weak signal detection has some important require-
ments such as high precision of calculation that none of the mentioned implementa-
tions has considered it before.Most of thementionedworks have sufficed to implement
only a single chaotic oscillator without using it for a special application. Also, they
are different in the purpose of implementing, selected chaotic oscillator, methods of
implementation and optimizations; overally, the extent of their study is not comparable
with that of the current work.

Thus, this paper introduces an FPGA-implemented weak signal detector using a
DUOS.

This paper is organised into seven sections, as follows. In Sect. 2, the principles
of weak signal detection by DUOS are explained. In Sect. 3, the novel method of
state detection is presented with its MATLAB simulation. In Sect. 4, the structure
of the proposed hardware-implemented DUOS and the state detection method are
explained. In Sect. 5, the structure of the designed PTA block is introduced. The
results of the synthesis and experiments are presented in Sect. 6 and finally Sect. 7
gives the conclusions.

2 Principles of Weak Signal Detection Based on DUOS

As mentioned, in non-linear dynamic systems, like chaotic oscillators, a small change
in theparameters or conditionsmay force the system to changes its state. So, any change
in the state, which we call state transition, will be the indicator of parameters change.
In weak signal detection by chaotic oscillators, a periodic weak signal with special
frequency that is buried in large noise is applied to systemas a parameter.Although, any
changes in parameter leads to state transition, changes due to noise do not change the
state while any small change in weak periodic signal lead to state transition. Immunity
to noise while being sensitive to a weak signal with special frequency is the most
important properties of these method that make it reliable approach for weak signal
detection in noisy environments. Figure 1 shows the scheme of weak signal detection
by chaotic oscillator.

Accordingly, in weak signal detection by chaotic oscillators, state transition is the
indicator of weak signal. Thus, a high sensitivity and sudden transition due to the
change in a parameter of the oscillator are the main requirements for weak signal
detection by chaotic oscillators. Accordingly, any chaotic oscillator that fulfils these
two requirements can be used for this application. Holmes Duffing equation [19] is the
most common chaotic oscillator for weak signal detection because of its popularity
and sensitivity [20].

In this work, the single-well and double-well forms of the Duffing equation are
considered to select the best chaotic oscillator. For the tested parameters, single-well
form of the Duffing equation does not show the expected behaviour. For example, it



3104 Circuits Syst Signal Process (2015) 34:3101–3119

Fig. 1 Scheme of weak signal detection by Duffing oscillator

leads to order by period-halving bifurcations and does not show a sudden transition
from the chaotic state to the periodic state, but the double-well form of the Duffing
equation presents acceptable behaviour for this purpose. Based on the evaluations and
previous related research that was performed in this field [5–7,12,18–20], the Holmes
Duffing equation has been chosen for the current work. The basic form of the Holmes
Duffing equation is given in Eq. (1) [18]:

x ′′(t) + bx ′(t) − x(t) + x3(t) = γ · cos(t) (1)

In Eq. (1), γ · cos(t) and bx ′(t) are the driving force and the damping, respectively,
to remove energy conservation from the system which is essential for the system to
become chaotic.

For weak signal detection, a special form of Eq. (1) is used in which a fixed value
of 0.5 is assumed for the parameter b. In this special form of the Duffing equation,
the amplitude of the driving force γ (while ω0 = 1) can easily control the state of the
Duffing oscillator.

Thus, if t = ω0τ and b = 0.5, the Duffing equation can be re-written as Eq. (2)
[19], which can be used to detect weak signals at any frequency, such as ω0.

1

ω2
0

x ′′(ω0τ) + 0.5

ω0
x ′(ω0τ) − x(ω0τ) + x3(ω0τ) = γ · cos(ω0τ) (2)

Because Eq. (2) is derived from Eq. (1), the system is seen on another time scale.
Therefore, the dynamic properties are not changed, and the difference consists only
in the running speed [19]. Thus, the behaviour of the oscillator does not change for
different values of ω0.

In [13] and [19], the state transition of a DUOS due to the input driving force and
the other system parameters has been demonstrated by adding an external weak input
signal to the driving force, which leads to Eq. (3).

1

ω2
0

x ′′(ω0τ) + 0.5

ω0
x ′(ω0τ) − x(ω0τ) + x3(ω0τ) = γ · cos(ω0τ) + I nput (τ ), (3)
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where ω0 is the frequency of the driving force and I nput (τ ) is in the form of Eq. (4).

I nput (τ ) = a · cos((ω0 + �ω)τ + ϕ) + noise(τ ) (4)

In Eq. (4), a is the amplitude of the target signal, �ω is the difference between the
frequencies of the input signal and the driving force, and noise(τ ) is the strong noise
of the environment that is assumed to be a normally distributed white noise with 0
mean and variance of σ 2.

By assuming a = 0, the value of γ can be set to γC to force the oscillator to operate
in the critical state which means the chaotic state, but on the verge of the transition
to the periodic state. In the critical state, very small increases in the amplitude of the
driving force cause the oscillator to transition to the periodic state. In this situation,
the existence of any weak signal with a frequency identical to the frequency of the
driving force (that can play the role of increasing the amplitude of the driving force
and cause the oscillator to change its state) will be detected. Therefore, in this method,
the state transition from chaotic to periodic is the signature of weak signal detection.

Previous studies have proven the efficiency of this method in many different con-
ditions of SNR, frequency, phase delay and etc., and in most of these studies, signals
with very low SNRs have been detected by this method. A behavioural analysis of
DUOS against the critical value of γC , SNR and the frequency change are conducted
in [19]. Since in this work, no improvement scheme had been introduced to increase
the immunity to noise, no great effort was done to prove the efficiency of the method
by considering the influence of noise.

Based on our experiment and the study reported in Ref. [19], the Duffing oscillator
is able to detect weak signals, the frequency of which are very close to the reference
frequency of the oscillator (|�ω/ω0| ≤ 0.3%). This limitation justifies the use of an
array of Duffing oscillators to detect a weak signal with an unknown frequency.

Because there is no absolute analytical solution for the Duffing equation, especially
with damping and driving forces, a numerical solution of the state equation Eq. (5)
based on the RK4 and Euler methods is used in this study.{

x ′(t) = ω0y(t)
y′(t) = ω0[x(t) − x3(t) − 0.5y(t) + γ cos(ω0t) + I nput (t)] (5)

2.1 RK4

The recursive equations used for RK4 are Eqs. (6), (7) and (8):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 = h
2 f (Yn)

l1 = h
2 g(tn, Xn,Yn)

k2 = h
2 f (Yn + l1)

l2 = h
2 g(tn + h

2 , Xn + k1,Yn + l1)
k3 = h f (Yn + l2)

l3 = hg(tn + h
2 , Xn + k2,Yn + l2)

k4 = h
2 f (Yn + l3)

l4 = h
2 g(tn, Xn + k3,Yn + l3)

(6)
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K = (k1 + 2k2 + k3 + k4)/3 (7)

L = (l1 + 2l2 + l3 + l4)/3, (8)

where

f (Yn) = ω0Yn (9)

g(tn, Xn,Yn) = ω0[Xn − X3
n − 0.5Yn + γ cos(ω0tn) + I nput (tn)] (10)

and ⎧⎨
⎩

Xn+1 = Xn + K
Yn+1 = Yn + L
tn+1 = tn + h

(11)

Based on tn + h
2 term in Eq. (6), sampling period of I nput signal should be h

2 .

2.2 Euler Method

In the Euler method, K and L are calculated using Eq. (12) instead of Eqs. (6), (7),
(8) and other equations remain unchanged.

{
K = h · f (Yn)
L = h · g(tn, Xn,Yn)

(12)

3 State Detection Method

In the basic form of weak signal detection by DUOS, the state of the oscillator is
determined by observing the phase space trajectory, and the precision of this method
depends on human observation [9]. Somemethods have been suggested to increase the
accuracy of the observation and to automate the process of state detection, including
Poincare maps, FFT, the LLE, the 0–1 test, and the correlation dimension [1–3]. The
Poincare map is a qualitative method while other methods require great computational
resources.

Automatic state detection is an essential requirement for hardware implementation
of DUOS; hence, in this section, PTA is introduced as a novel state detection method
that requires fewer computational resources than LLE and other mentioned methods.

When the DUOS is in the periodic state, the frequency is equal to the frequency
of the driving force; in addition, it includes the odd harmonics of the driving force
frequency. However, when the oscillator is in the chaotic state, various frequencies are
observed in its output.

Therefore, to detect the periodic state, it is sufficient to compare each period of
the phase space variables with their previous period. The similarities between each
two consecutive periods of the phase space variables can be compared by means of a
correlation function.

The correlation coefficient between two random variables X and Y with expected
values μX , μY and standard deviations σX, σY is defined in Eq. (13).
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corr(X,Y) = cov(X,Y)

σXσY
= E[(X − μX)(Y − μY)]

σXσY
, (13)

where E is the expected value operator and cov is the covariance.
Autocorrelation is the cross-correlation of a signal with itself. Autocorrelation is a

time domain function that measures the extent to which a signal’s waveform resembles
a delayed version of itself. In other words, it gives a degree of similarity between a
signal and a lagged version of itself over successive time intervals.

The lag k autocorrelation coefficient is the simple correlation coefficient of the first
k observations, xi , i = 1, 2, . . ., k and the next k observations, xi+k, i = 1, 2, . . ., k.
The lag k autocorrelation coefficient is defined in Eq. (14).

rx (k) = E[(X − μX )(Xk − μXk )]
σXi σXk

, (14)

where Xk is related to the next k observations of X . Eq. (14), which is the lag k
autocorrelation function, can be written as Eq. (15):

rx (k) =
∑i=n1+k

i=n1 (xi − −
x1)(xi+k − −

x2)√∑i=n1+k
i=n1 (xi − −

x1)2
∑i=n1+k

i=n1 (xi+k − −
x2)2

(15)

where
−
x1,

−
x2 are respectively the mean of the first k samples and the mean of the next

k samples and n1 is an arbitrary initial point for the autocorrelation.

Themean value of phase state variables in each orbit (
−
x1,

−
x2) is zero for the periodic

state. Although this value is not zero for the chaotic state, since a threshold value and
some windowing processes were used in this method, Eq. (15) can be simplified to

Eq. (16) by assuming
−
x1 = −

x2 = 0.

rx (k) =
∑i=n1+k

i=n1 (xi · xi+k)∑i=n1+k
i=n1 (xi )2

(16)

Because of the nature of this application, the correlation function is effectively sim-
plified and optimized. This simplification is the main reason that we have introduced
PTA method.

To calculate the autocorrelation of each two consecutive periods of the phase space
trajectory, the value of k should be equal to the number of samples in one orbit.

k = 2π/ω0

h
= T0

h
, (17)

where ω0 and T0 are respectively the frequency and period of the driving force, and h
is the step size in the numerical solver.

Figure 2a shows an example of the phase space trajectory during two consecutive
cycles of the periodic state and Fig. 2b shows some consecutive cycles of chaotic state.
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Fig. 2 Examples of phase space trajectory; a in the periodic state, b in the chaotic state

It should be emphasized that in the PTA method, the continuous autocorrelation
should be calculated for each two consecutive periods.

Since in the periodic state all consecutive cycles resemble each other, the result of
Eq. 16 is almost above +0.98; on the other hand, in the chaotic state, as indicated in
Fig. 2b, although there are some consecutive cycles like 2 & 3 which differ from each
other, there are some consecutive cycles like 1 & 2 which resemble each other. So, in
autocorrelation result for the chaotic state, there should be some positive values that
incorrectly indicate periodic state. In this regard, windowing process with a threshold
value is used.

The value of rx (k) ranges from −1 to +1; +1 and −1 indicate perfect correlation
and perfect anti-correlation, respectively. In this paper, all un-correlation values are
treated as perfect anti-correlation, as shown in Eq. (18). The exact value of 0.98 does
not influence the result of PTA method and any other value that lies in the range of
0.80<Threshold<0.98 can be acceptable.{

if rx (k) ≥ 0.98 → rx (k) = +1
if rx (k) < 0.98 → rx (k) = −1

(18)

If the percentage of anti-correlation number to the total number of samples in a
window exceeds s%, this window is designated as the chaotic state. The length of the
window determines the response time of this method. Although width of the window
and parameter s can be calculated to have the best results, we have not investigated in
calculation of these parameters.

To study the efficiency of this method in detecting the state of the DUOS, the
oscillator was simulated for 36 s by RK4 under four different conditions listed in
Table 1.

In all cases, the simulation time was 36 s. During the first 18 s, there were no input
signal and in the remaining time, the input signal with the parameters specified in
Table 1 was applied to the oscillator. In this paper, the definition used for SNR is
according to the definition used in Ref. [19]. In Ref. [19], SNR is defined as the ratio
of power spectrum amplitude of the signal to noise according to Eq. (19).
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Table 1 Parameters of the
DUOS and four different
conditions of the input signal

Case A Case B Case C Case D

Input signal amplitude (a) 0.0001 0.0001 0.1 0.1

SNR (dB) −26 +14 −26 +14

ω0 50.0 Hz

b 0.5

γC 0.8254

h 5e−5

Fig. 3 Autocorrelation results before applying windowing process; a before applying threshold, b after
applying threshold

SNR = Hs(ω)

Hn(ω)

∣∣∣∣
ω=ω0

(19)

In Eq. (19), Hs(ω) and Hn(ω) are the power spectrum amplitude of the signal and
noise, respectively as Eq. (20).

Hs(ω) =
{

a2
4 ω = ±ω0
0 ω �= ±ω0

Hn(ω) = ∫ +∞
−∞ σ 2δ(τ )e− jωτdτ = σ 2

⇒ SNR = Hs (ω)
Hn(ω)

∣∣∣
ω=ω0

= a2

4σ 2

(20)

In the logarithmic form, (according to Ref. [19]), SNR in Eq. 19 becomes:

SNR = 20 log
a2

4σ 2 (dB) (21)

Figure 3a, b show the results of Eq. 16 for Case D of Table 1 respectively before and
after applying the threshold value.

According to the chaotic part of Fig. 3b, there are some +1 values in the result of
autocorrelation. So, as mentioned before, a counting or averaging method is required
to distinguish the state of oscillator from the output of autocorrelation.
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Fig. 4 Results of state detection methods; a LLE result; b PTA result (Window size = 25, s = 10 %)

Table 2 Response time of the
LLE and PTA methods to the
four cases studied

Case Response time
of LLE method (s)

Response time
of PTA method (s)

A 5.10 3.00

B 4.68 4.20

C 0.51 0.00

D 0.51 0.00

In both state detection methods (LLE and PTA), the response time is defined as
the duration between the moment the input signal is applied and the moment that it is
detected by the state detection methods.

Figure 4a, b show the responses of the LLE and PTA state detection methods to
the signals listed in Table 1, respectively. As expected, both methods show that the
oscillator is working in the critical state for the first 18 s of the simulation and it
changes its state to the periodic state when the input signal is added at the 18th s.
In the LLE method, a value greater than 5e−3 indicates that the oscillator is in the
chaotic state [17]; in the PTA method, a value of zero indicates chaotic motion and
a value of +1 indicates the periodic state. Table 2 displays the response times of the
LLE and PTA methods in the four studied cases.

As Fig. 4 and Table 2 show, the PTA method presents better response times in
comparison with LLE.

Simulation results show that the time of transition from chaotic to the periodic state
is varying for different cases. The periodic state is started sooner in Cases C and D
in comparison with Cases A and B. In this paper, we conclude that the amplitude of
the weak signal affects the time of DUOS’s transition significantly and so, the speed
of detection. It means that by increasing the amplitude of weak signals, the oscillator
needs shorter time to detect it; so it needs fewer cycles for state transition from chaotic
to periodic. Although response time of transition slightly depends on the amplitude of
weak signal, it does notmake any problems for the currentwork because of consecutive
autocorrelation.
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(a)

(b)

Fig. 5 Structure and dataflow diagram of weak signal detection using DUOS; a Structure; b Dataflow
diagram

4 Structure of the Hardware Implementation

Because the implementation of weak signal detection by the DUOS should be useable
to detect weak signals with high frequencies, achieving a higher performance is an
important aim for this implementation. Using an array of DUOSs also requires area
optimization and low power consumption. All these demands justify using VHDL for
the current implementation.

Due to complexity of interconnections between blocks, the structure of implantation
is illustrated using block diagrams in all over of the paper. The structure and dataflow
diagram of the weak signal detection using the DUOS are shown in Fig. 5.

As shown in Fig. 5, this hardware implementation includes three main parts:
1- Implementing an interface for the system. 2- Implementing the DUOS. 3- Imple-
menting the PTA method.

4.1 Test Bench and System Interface

In thiswork, aCyclone IVGXFPGAdevelopment kit runningonanEP4CGX150BF14
FPGA was used as a test bench for the implementation. The input signal was applied
to the FPGA using a real-time win32 application running on the PC system. The data
transfer between the FPGA and the PC was performed via the PCIe hard IP block of
the FPGA.
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Fig. 6 Structure of DUOS block

Using this interfacing mechanism, the developed real-time software (DRTS) is able
to send or receive any data to or from the FPGA. The mechanism of the DRTS is not
discussed in this paper. The DRTS can generate any desired input signal, as in Eq. (22),
and write its samples by a virtual sampling frequency rate to the internal registers of
the FPGA. In other words, this mechanism simulates the application of an input signal
by an ADC.

I nput (t) = Am · cos(ω0t) + noise(t) (22)

4.2 Structure of the DUOS Block

The sensitivity of the Duffing equations to the accuracy of calculations made it nec-
essary to use single precision floating-point arithmetic which was implemented by
using Altera’s floating-point library. Single precision floating-point arithmetic has a
precision of 24 bits (about 7 decimal digits) which ismore than enough for the required
accuracy.

To implement Eq. (5), the ALTFP_ADD_SUB and ALTFP_MULT megafunctions
were used, and theALTFP_CONVERTmegafunctionwas also used in the construction
of a cosine function based on a look-up table to convert the floating-point number
into an integer. The used look-up table had 4,096 entries and offered a resolution of
0.0015 radians for the cosine function, which meets the present requirements.

Figure 6 shows the structure of the DUOS block. As is shown, the DUOS consists of
some megafunctions (ALTFP_XXX) and some blocks developed using VHDL (e.g.,
the “Duffing Equation” block).

Because the ALTFP_MULT and ALTFP_ADD_SUB megafunctions used a con-
siderable amount of the logic elements of the FPGA, the implementation of the
DUOS was serialized so that only one instance of the multiplier and adder/subtractor
megafunctions was added to the design. Using one instance of the multiplier and
adder/subtractor implies that only one operation of multiplication and one operation
of addition/subtraction can be handled at a time. This limitation led to the serialization
of the whole process of DUOS. For example, to calculate y′(t) in Eq. (5), serialization
was performed in five steps, as depicted in Table 3 cos(ω0t))was calculated separately,
and the last step was transferred to the numerical solver block.

The same process was performed for the “Numerical solver” block. The number
of required steps for the whole process depends on the used numerical solution. For
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Table 3 Example of the serialized form to calculate y′(t) in Eq. (5) (the highlighted operations show the
operations that are running in the ordered steps)

Step 1 Step 2 Step 3 Step 4 Step 5

x2 = x × x 0.5 × y x × (1 − x2) γC × cos(ω0t) x−x3 + 0.5y+I nput
+ γC · cos(ω0t)

1 − x2 0.5y
+ I nput

x(1 − x2) + 0.5y
+ I nput

Table 4 Serialized form of the Euler method (the highlighted operations show the operations that are
running in the ordered steps)

Step 1 Step 2 Step 3

ALTFP_CONVERTER ← θ L = Duf_res × ω0h ω0h × i trnum

Duffing eq. ← x, y i trnum = 1 + i trnum ynew = y + L

Step 4 Step 5

ALTFP_CONVERTER ← ω0h × i trnum i f (θI nteger overflowed)then itrnum = temp

K = ω0h × y

temp = i trnum − 4,096/2π xnew = x + K

θ = ω0h × i trnum

the Euler method, the process was separated into five steps, as shown in Table 4. One
of the steps of the Euler method (Step 1 part 2: “Du f f ing eq. ← x, y”) consisted
of the five sub-steps mentioned in Table 3. By applying the same process, the RK4
method was separated into 23 steps, and four of its steps themselves consisted of five
sub-steps, as mentioned in Table 3.

In the implementation of the “Duffing equation” and “Numerical solver” blocks, the
processes mentioned in Tables 3 and 4 shared the samemultiplier and adder/subtractor
megafunctions. Thus, as shown in Fig. 6, the controller unit was considered to provide
the sharing mechanism.

5 Structure of PTA Block

As in the structure of the DUOS, the calculations of the PTAmethod were serialized to
use only one instance of themultiplier and adder/subtractor megafunctions. Therefore,
a controller unit was dedicated to the control of the process. Themain steps to compute
the PTA are shown in Table 5.

Figure 7a shows the structure of the PTA block. Similar to the DUOS, it consists of
some megafunctions (ALTFP_XXX) and a control unit developed using VHDL. For
clarity, the process by which the controller unit of this section was designed is shown
in Fig. 7(b).

The input data of this process is the phase space variables, and the output is the
result of PTA, which is valid at the end of each orbit. The controller unit has been
designed to reset the latches at the beginning of every orbit.
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Table 5 Serialized steps of the PTA (the highlighted operations show the operations that were running in
the ordered steps)

Step 1 Step 2 Step 3 Step 4

FIFO → xi xi+kl × xi
xi+kl → FIFO

n1+a+1∑
i=n1

(xi .xi+kl )

=
n1+a∑
i=n1

(xi .xi+kl ) + xi .xi+kl

n1+a+1∑
i=n1

(xi .xi+kl )

× 1∑n1+a+1
i=n1 (xi )2

x2i = xi × xi
n1+a+1∑
i=n1

(xi )
2

=
n1+a∑
i=n1

(xi )
2 + x2i

1

/ n1+a+1∑
i=n1

(xi )
2

(a)

(b)

Fig. 7 The structure and calculation process of PTA block; a Structure; b Calculation process

6 Hardware Results

In this section, the hardware output results of the weak signal detection using the
DUOS, resource utilization and the maximum operation frequency are presented.
Similar to the simulation, the oscillator was configured to operate in the critical state,
and the noisy signal was applied to the oscillator. Table 6 summarises the weak signal
detector configurations and the input signal specifications.

Figure 8 shows the phase trajectory of the DUOS to the applied noisy signal corre-
sponding with Table 6 using the Euler method. Because the phase trajectory obtained
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Table 6 Parameters of the
DUOS during the experiments ω0 50.0 Hz

b 0.5

γC

Euler 0.7887

RK4 1.1050

h 5e−5

Am(0 ≤ t < 18) 0

Am(18 ≤ t ≤ 36)

Case S 5e−4

Case L 1e−1

SNR −66.02 dB

Clock frequency 125 MHz

Fig. 8 Experimental results for the phase trajectory of DUOS with Euler method; a Case S from second 0
to 21, b Case S from second 21 to 36, c Case L from second 0 to 19, d Case L from second 19 to 36

for theRK4methodwas similar to that obtained for the Eulermethod, it is not depicted.
As Fig. 8a, c indicate, before applying the noisy signal, the DUOS was operating in
the chaotic state, and, after application of the signal, the DUOS changed its state to
periodic (Fig. 8b, d).

The final output of the weak signal detector, which was the output of the PTA,
is shown in Fig. 9, which demonstrates that the output results of both the Euler and
RK4 numerical solvers used for the oscillators are approximately equal; the time of
detection was not a fixed value and varied in each test.

As shown in Fig. 9, the time of detection highly depends on the amplitude of weak
signal.
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Fig. 9 Result of PTA for both Small (5e−4) and Large (1e−1) amplitude; a Euler method and b RK4
method

The maximum clock frequency and the resource utilization for weak signal detec-
tion are reported for both area and speed optimizations in Table 7. For clarity, Table 8
shows the same values for each block separately.

Due to the serialization mentioned before, the oscillator and the state detector
required a fixed number of clocks to present a valid result. Table 9 summarises the
latency and required time for each iteration. The minimum iteration time, which was
the smallest step size of the numerical solvers, is calculated by Eq. (23).

Minimum iteration time (µs) = Latency (Clock)

FMAX (MHz)
(23)

Furthermore, theDUOSwith theRK4numerical solver should have better accuracy;
however,whenusing a small step size of h = 5e−5, nodifferenceswere observed in the
accuracy of detection results between the Euler and RK4 implementations. For larger
step sizes used in the numerical solver, this difference in accuracy became significant,
but for a small step size achieved in the hardware implementations (a minimum step
size of 578 ns), the difference between the accuracy of the Euler and RK4methods can
be neglected. According to the significant differences in the resource utilization, the
minimum iteration time between the Euler and RK4 implementations, and equality of
the results due to the small step size, it can be concluded that the Euler implementation
can be appropriate for most applications, especially when the frequency of the weak
signal is low. However, to detect weak signals of high frequency, the RK4 method is
more appropriate.
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Table 8 Resource utilization and the maximum clock frequency of the DUOS and PTA blocks

Optimization Combinational
functions

Dedicated logic
registers

FMAX (MHz) DSP block

Osc. PTA Osc. PTA Osc. PTA Osc. PTA

Euler RK4 Euler RK4 Euler RK4

Speed 2,237 3,976 1,927 1,353 1,576 2,139 152.28 159.34 155.69 7 29

Area 1,974 2,867 1,882 1,271 1,494 1,601 142.33 136.09 144.89

Table 9 The output latency and
the minimum required time for
each iteration of the DUOS and
PTA blocks

Optimization Latency (Clock) Minimum iteration time
(μ s)

DUOS PTA DUOS PTA

Euler RK4 Euler RK4

Speed 88 352 44 0.578 2.209 0.283

Area 0.618 2.587 0.304

7 Conclusions

In summary, a high-performance FPGA implementation for weak signal detection
using a DUOS was presented using VHDL. First, the DUOS was implemented to
detect the existence of the weak signal. Then, a novel method was introduced and
implemented to detect the state of the DUOS.

The DUOS was implemented by two different numerical methods, the Euler and
RK4 methods. The Euler method implementation was more appropriate due to its
lower resource utilization and better performance. As an important modification, the
whole process was serialized to achieve a lower usage of the FPGA resources, which
is essential for hardware implementation.

The efficiency of theweak signal detection by chaotic oscillators and the advantages
of hardware implementation make this work a valuable tool for the real-time detection
of weak signals in noisy environments.
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