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Abstract This paper deals with the problem of robust stabilization and non-fragile
robust control for a class of uncertain stochastic nonlinear time-delay systems that
satisfy a one-sided Lipschitz condition. The parametric uncertainties are assumed to
be real time-varying and norm bounded. Based on the one-sided Lipschitz condition
including useful information of the nonlinear part, a new stability criterion for this
class of nonlinear systems is provided. A memoryless non-fragile state-feedback con-
troller is designed to guarantee robust stochastic stability of closed-loop systems. The
approach of linear matrix inequalities is proposed to solve the robust stability for sto-
chastic nonlinear systems with time-varying delay, and to obtain new delay-dependent
sufficient conditions.Numerical examples are given to illustrate the validity and advan-
tages of the proposed theoretical results.

Keywords Delay-dependent criteria · Stochastic time-delay system · One-sided
Lipschitz condition · Asymptotical stability · Non-fragile state feedback

1 Introduction

During the last decades, the stability analysis of uncertain stochastic time-delay
systems satisfying some special nonlinearities has become very important due to the
fact that nonlinearities are inherent characteristics of many dynamic systems such
as biological systems, air pollution systems, and electrical networks. In the exist-
ing literature, the nonlinearities were restricted to satisfying the case of boundedness
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condition. And the nonlinear part was regarded as the unknown disturbance in the
stability analysis [1,9,10,18,21,26–28,32,33]. Reference [21] considered the robust
stability problems for a class of stochastic time-delay interval systems with nonlinear
disturbances. A model transformation of the systems was used to solve the robust
stabilization problem, and a memoryless state-feedback controller was designed to
stabilize the closed-loop system. Non-fragile guaranteed cost control for uncertain
stochastic systems with time-invariant delay and nonlinearity was studied in [26,27],
and delay-independent/delay-dependent results ensuring the system robust stability
had been obtained. Both the robust H∞ control of uncertain stochastic systems with
time-varying delay and nonlinearity have been investigated in [18], and also a memo-
ryless non-fragile state-feedback controller guaranteeing stochastic stability and pre-
scribed H∞ performance of the closed-loop system was obtained. The robust sta-
bility of linear time-varying discrete delay systems with nonlinear perturbations by
using a decomposition technique of the delay term matrix and an integral inequal-
ity was studied in [6]. The problem of state-feedback inverse optimal stabilization
in the probability sense for high-order stochastic nonlinear system has been in [11],
and an optimal state-feedback controller with respect to meaningful cost function-
als was designed, which guarantees that the equilibrium of the closed-loop system
is globally asymptotically stable in the probability sense. A delay-dependent crite-
rion for robust stability was studied by using the relation between x(t − τ(t)) and
x(t) − ∫ t

t−τ(t) ẋ(s)ds together with the free-weighting matrices in [22]. A sufficient
condition for exponential stability in mean square for uncertain stochastic systems
with a multiple time-delay was obtained by applying both a descriptor model transfor-
mation of the system and Moons inequality for bounding cross terms in [2]. Sufficient
conditions to the robust exponential stability for both nonlinear stochastic systems and
linear stochastic systems were presented in [8]. A delay-dependent sufficient condi-
tion of robust H∞ control was presented by using cone complementarity linearization
algorithm for a class of uncertain neutral stochastic systems with mixed delays in
[19]. In [20], authors established a global asymptotical mean square stability criterion
for stochastic time-delay genetic regulatory networks based on a delay fractioning
approach.

On the other hand, a useful one-sided Lipschitz condition was introduced in [4].
Since the nonlinear part satisfying the one-sided Lipschitz condition canmake positive
contributions to the stability of systems, one-sided Lipschitz condition was introduced
to solve the observer design problem for nonlinear systems [7,24,31]. Inspired by
the above work, we investigate the robust stability for one-sided Lipschitz stochastic
nonlinear systems.

In this paper, applying a Lyapunov–Krasovskii functional combined with the lin-
ear matrix inequality (LMI) technique, we develop a new delay-dependent stability
criterion based on a one-sided Lipschitz condition and a quadratic inner-boundedness
condition. Two main contributions of this paper are as follows: 1© the one-sided Lip-
schitz condition is extended to time-delay systems, and 2© the less conservative sta-
bility conditions of uncertain stochastic nonlinear time-delay systems are developed
in terms of LMI, and a non-fragile state-feedback controller which can guarantee the
robust stability of the closed-loop systems is designed. Numerical examples are given
to show the validity of the proposed method.
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We work on the complete probability space (Ω,F ,P) with the filtration Ft{t≥0}
satisfying the usual conditions. Rn and Rm×n denote, respectively, the n-dimensional
Euclidean space and the set of all m × n real matrices. C2,1(Rn × R+;R+) denotes
the family of all nonnegative functions V (x(t), t) on R

n × R+ that are continu-
ously twice differentiable in x and once differentiable in t . Let τ > 0 and denote
by C([−τ, 0];Rn) the family of continuous functions ϕ from [−τ, 0] to R

n with
the norm ‖ϕ‖ = supθ∈[−τ,0] |ϕ(θ)|, where ‖ · ‖ is the usual Euclidean norm in R

n .
< ·, · > stands for a Euclidean inner product on the corresponding Euclidean norm. In
the matrix, (i, j) denote (i, j)-block element of the matrix. E(x) stands for the expec-
tation of stochastic variable x , BT represents the transposed matrix of B, moreover,[
A B
∗ D

]

=
[
A B
BT D

]

. I denotes the identity matrix of a compatible dimension.

2 Preliminaries

Consider the following stochastic time-delay systems described in the Itô’s form:

dx(t) = [(A + ΔA(t))x(t) + (Aτ + ΔAτ (t))x(t − τ(t)) + f (x(t), x(t − τ(t)))

+ Bu(t)]dt + [(H + ΔH(t))x(t) + (Hτ + ΔHτ (t))x(t − τ(t))]dω(t),
(1a)

x(t) = ϕ(t), t ∈ [−τ, 0], (1b)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

p is the control input, τ(t) is the unknown
time-varying delay satisfying 0 ≤ τ(t) < τ and τ̇ (t) ≤ d with real constants τ, d.
f (x(t), x(t − τ(t))) ∈ R

n is a nonlinear function with respect to the state x(t) and the
delayed state x(t − τ(t)), f (0, 0) = 0. ϕ(t) ∈ C([−τ, 0];Rn) is a continuous vector-
valued initial function, and ω(t) is a one-dimensional Brownian motion satisfying

E[dω(t)] = 0, E[dω(t)]2 = dt.

Here A ∈ R
n×n, Aτ ∈ R

n×n, B ∈ R
n×p, H ∈ R

n×n, andHτ ∈ R
n×n are known real

constant matrices of appropriate dimensions. Moreover, ΔA(t),ΔAτ (t),ΔH(t), and
ΔHτ (t) are unknownmatrices representing time-varying parameter uncertainties, and
assumed to be in the form

[
ΔA(t) ΔAτ (t)
ΔH(t) ΔHτ (t)

]

=
[
E1
E2

]

F(t)
[
G1 G2

]
, (2)

where E1, E2,G1, and G2 are known real constant matrices and F(t) is an unknown
time-varying matrix function satisfying

F(t)TF(t) ≤ I, ∀t.

The parameter uncertaintiesΔA(t),ΔAτ (t),ΔH(t), andΔHτ (t) are said to be admis-
sible if both (2) and (3) hold.
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Remark 1 Uncertain stochastic time-delay systems in the form of (1) is widely used
in many real applications [16,23]. We know that time-delay and uncertainties often
destroy the stability of systems [12,15,29,30]. It is observed that, in system (1), para-
meter uncertainties, Itô-type stochastic disturbances, and time-delay are considered
simultaneously. The aim of this paper is to discuss the robust stochastic stabilization
of system (1).

We first introduce the following several definitions and lemmas.

Definition 1 The nonlinear function f (x, y) is said to be one-sided Lipschitz, if there
exist α1 and α2 ∈ R satisflying

〈 f (x, y), x〉 ≤ α1x
Tx + α2y

Ty, (3)

for ∀x, y ∈ R
n , where constant α1 and α2 are positive, zero or even negative, which

are called the one-sided Lipschitz constant for f (x, y) with respect to x and y.

Remark 2 The one-sided Lipschitz condition is different from the standard one.
Reviewing the definition of classical Lipschitz condition [14], that is, for nonlinear
function f (x(t), x(t − τ(t))) ∈ R

n with zero initial conditions, there is a constant
c > 0 such that

‖ f (x(t), x(t − τ(t)))‖ < c(‖x(t)‖ + ‖x(t − τ(t))‖), (4)

where c is Lipschitz constant. Note that while the Lipschitz constant must be positive,
the one-sided Lipschitz constant may be non-positive. Any Lipschitz function is also
one-sided Lipschitz, but the converse is not true [5]. From the definition of the one-
sided Lipschitz condition, we can see that the one-sided Lipschitz constant can be non-
positive, the nonlinear part is able to contribute to the stability of nonlinear systems. For
example, the system ẋ = x is unstable, but for the system ẋ = x − 4x/(1+ cos2(x)),
we can choose the Lyapunov function V (x) = x2, the derivative is given by V̇ =
2x ẋ = 2x2 + 2〈−4x/(1 + cos2(x)), x〉 < −2x2. Therefore, V (x) < 0 ensures the
stability of nonlinear systems ẋ = x − 4x/(1 + cos2(x)).

Definition 2 The nonlinear function f (x, y) is called quadratic inner-boundedness in
the region C, if for any x, y ∈ C there exist β1, β2, γ ∈ R such that

f (x, y)T f (x, y) ≤ β1x
Tx + β2y

Ty + γ 〈x, f (x, y)〉. (5)

Lemma 1 (Schur Complement) For a given symmetric matrix X =
[
X11 X12

XT
12 X22

]

,

the following conditions are equivalent:

(a) X < 0;
(b) X11 < 0, X22 − XT

12X
−1
11 X12 < 0;

(c) X22 < 0, X11 − X12X
−1
22 XT

12 < 0.
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Lemma 2 [17] Let G, H and F(t) be real matrices of appropriate dimensions with
F(t) satisfying F(t)TF(t) ≤ I . Then, for any scalar ε > 0, we have

GF(t)H + HTF(t)TGT ≤ εGGT + ε−1HTH.

3 Main Results

Let h(t) = F(t)[G1x(t) + G2x(t − τ(t))], z(t) = Ax(t) + Aτ x(t − τ(t))
+ f (x(t), x(t − τ(t))) + Bu(t) + E1h(t), then the system (1) can be rewritten as

{
dx(t) = z(t)dt + (Hx(t) + Hτ x(t − τ(t)) + E2h(t)]dω(t)

h(t)Th(t) ≤ (G1x(t) + G2x(t − τ(t)))T(G1x(t) + G2x(t − τ(t)))
. (6)

Next, we will deal with the problem of robust stability for uncertain stochastic time-
varying delay systems (6) with u(t) = 0 by constructing the appropriate Lyapunov–
Krasovskii functional and introducing free-weighting matrix. A new delay-dependent
stability criteria is derived for a stochastic asymptotic stability of the zero solution of
this system by using a Lyapunov stability theorem.

Theorem 1 Consider the stochastic time-delay system (6) with u(t) = 0. The nonlin-
ear function f (x(t), x(t − τ(t))) holds (3) and (5). For given scalars τ and d, if there
exist matrices P > 0, Q1 > 0, Q2 > 0, Mi > 0, (i = 1, 2, 3), and Ni (i = 1, 2) of
appropriate dimensions and positive scalars ε1 > 0, ε2 > 0, ε3 > 0 satisfying the
following LMIs:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1,1) (1,2) 0 (1,4) PE1 + HTPE2 ATR M̄1

∗ (2,2) (2,3) 0 HT
τ PE2 AT

τ R M̄2

∗ ∗ (3,3) 0 0 0 M̄3
∗ ∗ ∗ −ε3 I 0 R 0
∗ ∗ ∗ ∗ ET

2 PE2 − ε1 I ET
1 R 0

∗ ∗ ∗ ∗ ∗ −τ−1R 0
∗ ∗ ∗ ∗ ∗ ∗ −M̄

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (7)

⎡

⎢
⎢
⎣

−M1 0 0 0
∗ −M2 0 −N1
∗ ∗ −M3 0
∗ ∗ ∗ −R

⎤

⎥
⎥
⎦ < 0,

⎡

⎢
⎢
⎣

−M1 0 0 0
∗ −M2 0 0
∗ ∗ −M3 −N2
∗ ∗ ∗ −R

⎤

⎥
⎥
⎦ < 0, (8)

with

(1,1) = PA + ATP + Q1 + Q2 + HTPH + ε1GT
1G1 + ε2α1 I + ε3β1 I,

(1,2) = PAτ + HTPHτ + ε1GT
1G2 + NT

1 ,

(1,4) = P − 1
2ε2 I + 1

2ε3γ I,
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(2,2) = −(1 − d)Q1 + HT
τ PHτ + ε1GT

2G2 + ε2α2 I + ε3β2 I − N1 − NT
1 ,

(2,3) = NT
2 ,

(3,3) = −Q2 − N2 − NT
2 ,

M̄ = diag{τ−1M1, τ
−1M2, τ

−1M3},
M̄1 = [M1 0 0], M̄2 = [0 M2 0], M̄3 = [0 0 M3], then the null solution of the

stochastic time-delay system (6) is asymptotically stable in the mean square.

Proof Choose the following Lyapunov–Krasovskii functional:

V (x(t), t) = xT(t)Px(t) +
∫ t

t−τ(t)
xT(s)Q1x(s)ds +

∫ t

t−τ

xT(s)Q2x(s)ds

+
∫ 0

−τ

∫ t

t+θ

zT(s)Rz(s)dsdθ. (9)

By using Itô’s formula [13], we obtain the stochastic differential as

dV (x(t), t) = LV (x(t), t)dt + 2xT(t)P(Hx(t) + Hτ x(t − τ(t)) + E2h(t))dω(t),
(10)

where

LV (x(t), t) = 2xT(t)P[Ax(t) + Aτ x(t − τ(t)) + f (x(t), x(t − τ(t))) + E1h(t)]
+ xT(t)Q1x(t)−(1 − τ̇ (t))xT(t − τ(t))Q1x(t−τ(t))+xT(t)Q2x(t)

− xT(t − τ)Q2x(t − τ) + [Hx(t) + Hτ x(t − τ(t)) + E2h(t)]T
× P[Hx(t) + Hτ x(t − τ(t)) + E2h(t)] + τ [Ax(t) + Aτ (t − τ(t))

+ f (x(t), x(t − τ(t))) + E1h(t)]TR[Ax(t) + Aτ (t − τ(t))

+ f (x(t), x(t − τ(t))) + E1h(t)] −
∫ t

t−τ

zT(s)Rz(s)ds.

Taking the expectation of both sides of (10), we can obtain the following formula [3]:

EdV (x(t), t) = ELV (x(t), t)dt. (11)

Specifically, we have the following equations by using the Leibniz–Newton formula:

2xT(t − τ(t))N1

(

x(t) − x(t − τ(t)) −
∫ t

t−τ(t)
z(s)ds

−
∫ t

t−τ(t)
(Hx(s) + Hτ x(s − τ(s)) + E2h(s))dω(s)

)

= 0, (12)
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2xT(t − τ)N2

(

x(t − τ(t)) − x(t − τ) −
∫ t−τ(t)

t−τ

z(s)ds

−
∫ t−τ(t)

t−τ

(Hx(s) + Hτ x(s − τ(s)) + E2h(s))dω(s)

)

= 0, (13)

where Ni (i = 1, 2) are arbitrary matrices with appropriate dimensions. And using the
properties of the stochastic integral ( see Theorem 1.5.8 in [13]), we know that

E

{

xT(t − τ(t))N1

∫ t

t−τ(t)
(Hx(s) + Hτ x(s − τ(s)) + E2h(s))dω(s)

}

= 0,

E

{

xT(t − τ)N2

∫ t−τ(t)

t−τ

(Hx(s) + Hτ x(s − τ(s)) + E2h(s))dω(s)

}

= 0.

This way, adding the left sides of Eqs. (12) and (13) on toLV (x(t), t), then Eq. (11)
becomes

EdV (x(t), t) = ELV̂ (x(t), t)dt, (14)

where

LV̂ (x(t), t) =LV (x(t), t) + 2xT(t − τ(t))N1(x(t) − x(t − τ(t)) −
∫ t

t−τ(t)
z(s)ds)

+ 2xT(t − τ)N2(x(t − τ(t)) − x(t − τ) −
∫ t−τ(t)

t−τ

z(s)ds).

On the other hand, by using the one-sided Lipschitz and the quadratically inner-
bounded conditions (3) and (5), we obtain the following inequality:

α1x
T(t)x(t) + α2x

T(t − τ(t))x(t − τ(t)) − xT(t) f (x(t), x(t − τ(t))) ≥ 0, (15)

β1x
T(t)x(t) + β2x

T(t − τ(t))x(t − τ(t)) − f (x(t),

x(t − τ(t)))T f (x(t), x(t − τ(t))) + γ xT(t) f (x(t), x(t − τ(t))) ≥ 0. (16)

Using the S-procedure in [25], we can see that LV̂ (x(t), t) < 0 is implied if there
exist positive scalars ε1 > 0, ε2 > 0, and ε3 > 0 satisfying

LV̂ (x(t), t) + ε1(G1x(t) + G2x(t−τ(t)))T(G1x(t) + G2x(t−τ(t)))−ε1h
T(t)h(t)

+ ε2α1x
T(t)x(t) + ε2α2x

T(t − τ(t))x(t − τ(t)) − ε2x
T(t) f (x(t), x(t − τ(t)))

+ ε3β1x
T(t)x(t) + ε3β2x

T(t − τ(t))x(t − τ(t)) − ε3 f (x(t), x(t − τ(t)))T

× f (x(t), x(t − τ(t))) + ε3γ x
T(t) f (x(t), x(t − τ(t))) < 0. (17)
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Moreover, the following formula holds for any positive definitematrixM1(M2, M3)

of appropriate dimensions:

τ xT(t)M1x(t) −
∫ t

t−τ

xT(t)M1x(t)ds = 0. (18)

We decompose the integration interval [t − τ, t] into two subintervals, that is [t −
τ, t − τ(t)] and [t − τ(t), t], and combined with Eq. (18) we can gain the following
inequality by rearranging Eq. (17):

ξT(t)Σξ(t) + τ [Ax(t) + Aτ x(t − τ(t)) + f (x(t), x(t − τ(t))) + E1h(t)]TR[Ax(t)
+ Aτ x(t − τ(t)) + f (x(t), x(t − τ(t))) + E1h(t)]

+
∫ t−τ(t)

t−τ

ηT(t, s)�η(t, s)ds +
∫ t

t−τ(t)
ηT(t, s)Πη(t, s)ds < 0, (19)

where ξ(t) = [
xT(t) xT(t − τ(t)) xT(t − τ) f T(x(t), x(t − τ(t))) hT(t)

]T
, η(t, s)

= [
xT(t) xT(t − τ(t)) xT(t − τ) zT(s)

]T
, and

Σ =

⎡

⎢
⎢
⎢
⎢
⎣

(1,1) (1,2) 0 (1,4) PE1 + HTPE2

∗ (2,2) (2,3) 0 HT
τ PE2

∗ ∗ (3,3) 0 0
∗ ∗ ∗ −ε3 I 0
∗ ∗ ∗ ∗ ET

2 PE2 − ε1 I

⎤

⎥
⎥
⎥
⎥
⎦

,

Ξ =

⎡

⎢
⎢
⎣

−M1 0 0 0
∗ −M2 0 −N1
∗ ∗ −M3 0
∗ ∗ ∗ −R

⎤

⎥
⎥
⎦ , Π =

⎡

⎢
⎢
⎣

−M1 0 0 0
∗ −M2 0 0
∗ ∗ −M3 −N2
∗ ∗ ∗ −R

⎤

⎥
⎥
⎦ ,

with

(1,1) = PA+ATP+Q1+Q2+HTPH+ε1GT
1G1+ε2α1 I +ε3β1 I +τM1,

(1,2) = PAτ + HTPHτ + ε1GT
1G2 + NT

1 ,

(1,4) = P − 1
2ε2 I + 1

2ε3γ I,
(2,2) = −(1−d)Q1+HT

τ PHτ +ε1GT
2G2+ε2α2 I+ε3β2 I−N1−NT

1 +τM2,

(2,3) = NT
2 ,

(3,3) = −Q2 − N2 − NT
2 + τM3,

andM1, M2, M3 are arbitrary symmetricmatrices. By utilizing Lemma 1 again, we see
that ξT(t)Σξ(t)+τ [Ax(t)+ Aτ (t−τ(t))+ f (x(t), x(t−τ(t)))+ E1h(t)]TR[Ax(t)
+ Aτ (t − τ(t)) + f (x(t), x(t − τ(t))) + E1h(t)] < 0 in Eq. (19) is equivalent to the
LMI
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1,1) (1,2) 0 (1,4) PE1 + HTPE2 AT M̄1

∗ (2,2) (2,3) 0 HT
τ PE2 AT

τ M̄2

∗ ∗ (3,3) 0 0 0 M̄3
∗ ∗ ∗ −ε3 I 0 I 0
∗ ∗ ∗ ∗ ET

2 PE2 − ε1 I ET
1 0

∗ ∗ ∗ ∗ ∗ −τ−1R−1 0
∗ ∗ ∗ ∗ ∗ ∗ −M̄

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (20)

where (1, 1) = PA + ATP + Q1 + Q2 + HTPH + ε1GT
1G1 + ε2α1 I + ε3β1 I,

(2, 2) = −(1 − d)Q1 + HT
τ PHτ + ε1GT

2G2 + ε2α2 I + ε3β2 I − N1 − NT
1 , (3, 3)

= −Q2 − N2 − NT
2 , M̄ = diag{τ−1M1, τ

−1M2, τ
−1M3}, M̄1 = [M1 0 0], M̄2

= [0 M2 0], and M̄3 = [0 0 M3], the other notations are defined as Eq. (19). Pre-
and post-multiplying Eq. (20) by diag{I, I, I, I, I, R, I }, we readily obtain the LMI
(7). Combining withΞ < 0,Π < 0, we find thatELV̂ (ξ(t), t) < 0, i.e., it guarantees
the asymptotic stability of the system (6) in the mean square.

If uncertain parameters ΔA(t) = ΔAτ (t) = ΔH(t) = ΔHτ (t) = 0 in systems (1),
then the system is simplified to the following deterministic stochastic system:

dx(t) = [Ax(t) + Aτ x(t − τ(t)) + f (x(t), x(t − τ(t)))]dt
+ [Hx(t) + Hτ x(t − τ(t))]dω(t), (21a)

x(t) = ϕ(t), t ∈ [−τ, 0], (21b)

The following conclusion of the robust asymptotic stability is obtained by Theorem 1
for the deterministic stochastic system (21).

Corollary 1 Consider the stochastic time-delay system (21). The nonlinear function
f (x(t), x(t−τ(t))) holds (3) and (5). For given scalars τ and d, if there exist matrices
P > 0, Q1 > 0, Q2 > 0, Mi > 0(i = 1, 2, 3), and matrices Ni (i = 1, 2) of
appropriate dimensions and positive scalars ε2 > 0, ε3 > 0 satisfying the following
LMIs: ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1,1) (1,2) 0 (1,4) ATR M̄1

∗ (2,2) (2,3) 0 AT
τ R M̄2

∗ ∗ (3,3) 0 0 M̄3
∗ ∗ ∗ −ε3 I R 0
∗ ∗ ∗ ∗ −τ−1R 0
∗ ∗ ∗ ∗ ∗ −M̄

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (22)

⎡

⎢
⎢
⎣

−M1 0 0 0
∗ −M2 0 −N1
∗ ∗ −M3 0
∗ ∗ ∗ −R

⎤

⎥
⎥
⎦ < 0,

⎡

⎢
⎢
⎣

−M1 0 0 0
∗ −M2 0 0
∗ ∗ −M3 −N2
∗ ∗ ∗ −R

⎤

⎥
⎥
⎦ < 0, (23)

with
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(1,1) = PA + ATP + Q1 + Q2 + HTPH + ε2α1 I + ε3β1 I,
(1,2) = PAτ + HTPHτ + NT

1 ,

(1,4) = P − 1
2ε2 I + 1

2ε3γ I,
(2,2) = −(1 − d)Q1 + HT

τ PHτ + ε2α2 I + ε3β2 I − N1 − NT
1 ,

(2,3) = NT
2 ,

(3,3) = −Q2 − N2 − NT
2 ,

M̄ = diag{τ−1M1, τ
−1M2, τ

−1M3}, M̄1 = [M1 0 0], M̄2 = [0 M2 0], and M̄3 =
[0 0 M3], then the null solution of the stochastic time-delay system (21) is asymptot-
ically stable in the mean square.

Remark 3 If τ̇ (t) is unknown, then a delay-dependent and rate-independent sufficient
conditions are provided by setting Q1 = 0 in Theorem1. Moreover, it is worth men-
tioning that new stability criteria reduce the computational cost. Making use of the
LMI toolbox of MATLAB, we can solve feasibility problem of a new criterion easily.

4 Non-fragile Robust Stabilization Problem

In the previous section, we discussed the stability of uncertain stochastic one-sided
Lipschitz nonlinear time-delay systems (1) with u = 0, and presented a sufficient con-
dition in the form of LMIs which make the null solution of the system asymptotically
stable in the mean square. In this section, we will design a non-fragile state-feedback
controller u(t) = (K + ΔK (t))x(t) guaranteeing robust stability for the closed-loop
systems with parameter uncertainties and time delay. In the state-feedback controller,
K is the controller gain, and ΔK (t) represents the gain perturbations with the follow-
ing assumption:

ΔK (t) = E3F(t)G3, (24)

where E3 and G3 are known real constant matrices with appropriate dimensions.

Theorem 2 Consider the stochastic time-delay system (6). The nonlinear function
f (x(t), x(t − τ(t))) satisfies (3) and (5). For given scalars τ and d, if there exist
matrices P > 0, Q1 > 0, Q2 > 0, Mi > 0, (i = 1, 2, 3), and matrices Ni (i = 1, 2)
of appropriate dimensions and positive scalars ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0, and
σ > 0 satisfying the following LMIs:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1,1) (1,2) 0 (1,4) PE1 + HTPE2 ATR M̄1 J1 0
∗ (2,2) (2,3) 0 HT

τ PE2 AT
τ R M̄2 0 0

∗ ∗ (3,3) 0 0 0 M̄3 0 0
∗ ∗ ∗ −ε3 I 0 R 0 0 0
∗ ∗ ∗ ∗ ET

2 PE2 − ε1 I ET
1 R 0 0 0

∗ ∗ ∗ ∗ ∗ −τ−1R 0 0 L1

∗ ∗ ∗ ∗ ∗ ∗ −M̄ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −J 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (25)
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⎡

⎢
⎢
⎣

−M1 0 0 0
∗ −M2 0 −N1
∗ ∗ −M3 0
∗ ∗ ∗ −R

⎤

⎥
⎥
⎦ < 0,

⎡

⎢
⎢
⎣

−M1 0 0 0
∗ −M2 0 0
∗ ∗ −M3 −N2
∗ ∗ ∗ −R

⎤

⎥
⎥
⎦ < 0, (26)

with

(1,1) = PA + ATP + Q1 + Q2 + HTPH + ε1GT
1G1 + ε2α1 I + ε3β1 I

+ 2ε4GT
3G3,

(1,2) = PAτ + HTPHτ + ε1GT
1G2 + NT

1 ,

(1,4) = P − 1
2ε2 I + 1

2ε3γ I,
(2,2) = −(1 − d)Q1 + HT

τ PHτ + ε1GT
2G2 + ε2α2 I + ε3β2 I − N1 − NT

1 ,

(2,3) = NT
2 ,

(3,3) = −Q2 − N2 − NT
2 ,

M̄ = diag{τ−1M1, τ
−1M2, τ

−1M3},
M̄1 = [M1 0 0], M̄2 = [0 M2 0], M̄3 = [0 0 M3],
J = diag{ 12σ I, ε4 I, σ I }, J1 = [PBPBE3PB],
L = diag{ε4 I, σ I }, L1 = [RBE3RB],

then the closed-loop system is asymptotically stable in the mean square with the non-
fragile state-feedback controller K = σ−1BTP.

Proof By using the controller u(x) = σ−1BTPx(t), and let z(t) = (A + B(K
+ ΔK (t)))x(t) + Aτ x(t − τ(t)) + f (x(t), x(t − τ(t))) + E1h(t), the system (6) can
be rewritten as

{
dx(t) = z(t)dt + (Hx(t) + Hτ x(t − τ(t)) + E2h(t)]dω(t)

h(t)Th(t) ≤ (G1x(t) + G2x(t − τ(t)))T(G1x(t) + G2x(t − τ(t)))
. (27)

Similar to Theorem 1, ELV̂ (ξ(t), t) < 0 is guaranteed by the matrix inequality
Ω < 0, where

Ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1,1) (1,2) 0 (1,4) PE1 + HTPE2 (1, 6) M̄1

∗ (2,2) (2,3) 0 HT
τ PE2 AT

τ R M̄2

∗ ∗ (3,3) 0 0 0 M̄3
∗ ∗ ∗ −ε3 I 0 R 0
∗ ∗ ∗ ∗ ET

2 PE2 − ε1 I ET
1 R 0

∗ ∗ ∗ ∗ ∗ −τ−1R 0
∗ ∗ ∗ ∗ ∗ ∗ −M̄

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (28)

with

(1,1) = P(A + BK ) + (A + BK )TP + Q1 + Q2 + HTPH + ε1GT
1G1

+ ε2α1 I + ε3β1 I + PBE3F(t)G3 + GT
3 F

T(t)ET
3 B

TP,

(1,2) = PAτ + HTPHτ + ε1GT
1G2 + NT

1 ,

(1,4) = P − 1
2ε2 I + 1

2ε3γ I,
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(1,6) = ATR + KTBTR + GT
3 F

T(t)ET
3 B

TR,

(2,2) = −(1 − d)Q1 + HT
τ PHτ + ε1GT

2G2 + ε2α2 I + ε3β2 I − N1 − NT
1 ,

(2,3) = NT
2 ,

(3,3) = −Q2 − N2 − NT
2 ,

M̄ = diag{τ−1M1, τ
−1M2, τ

−1M3}, M̄1 = [M1 0 0], M̄2 = [0 M2 0], and
M̄3 = [0 0 M3]. Noting condition (24), we have

Ω = Ω̄ + Ē F̄ Ḡ + ĒT F̄TḠT + K̄ R̄ + R̄T K̄T, (29)

where

Ω̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1,1) (1,2) 0 (1,4) PE1 + HTPE2 (1, 6) M̄1

∗ (2,2) (2,3) 0 HT
τ PE2 AT

τ R M̄2

∗ ∗ (3,3) 0 0 0 M̄3
∗ ∗ ∗ −ε3 I 0 R 0
∗ ∗ ∗ ∗ ET

2 PE2 − ε1 I ET
1 R 0

∗ ∗ ∗ ∗ ∗ −τ−1R 0
∗ ∗ ∗ ∗ ∗ ∗ −M̄

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (30)

with

(1,1) = P(A + BK ) + (A + BK )TP + Q1 + Q2 + HTPH + ε1GT
1G1

+ ε2α1 I + ε3β1 I
(1,6) = ATR.

The other notations are defined in Eq. (28), and Ē = {(PBE3)1,1, (RBE3)6,2} denotes
a block matrix with appropriate dimensions whose all nonzero blocks are the (1,1)-
block PBE3, the (6,2)-block PBE3 and all other blocks are zero matrices. Similarly,
Ḡ = {(G3)1,1, (G3)2,1}, K̄ = {(KT)1,1} and R̄ = {(BTR)1,6}. According to Lemma
2, for any scalars ε4 > 0 and σ > 0, we have

Ω < Ω̄ + ε−1
4 Ē ĒT + ε4Ḡ

TḠ + σ K̄ K̄T + σ−1 R̄T R̄. (31)

Let K = σ−1BTP . By using the Schur Lemma, Ω̄ + ε−1
4 Ē ĒT + ε4ḠTḠ + σ K̄ K̄T

+ σ−1 R̄T R̄ < 0 if LMI (25) is satisfied.

5 Numerical Examples

In order to illustrate the flexibility and less conservative nature of the proposed results,
we present numerical examples in this section.

Example 1 [6] Consider the stochastic nonlinear time-delay system (1) with A

=
[−1.2 0.1
−0.1 −1

]

and Aτ =
[−0.6 0.7

−1 −0.8

]

. We consider these two situations for

comparison:

System I: Let f (x(t), x(t − τ(t))) =
[

0.1
sin2 x2−2

x1(t − τ(t))
0.1

sin2 x1−2
x2(t − τ(t))

]

.
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Table 1 Allowable upper
bounds of τ for different d, a1,
and a2

System System I System II
d d = 1.1 d = 1.1

Cao and Lam [5] – –

Han [9] – –

Zuo and Wang [6] 0.735 0.714

Zhang et al. [7] 1.028 1.209

Corollary 1 2.2487 1.2734

Since −0.1 < 0.1
sin2 x2−2

x2(t) < −0.05, we have f (x(t), x(t − τ(t)))T f (x(t), x(t

− τ(t))) ≤ 0.01xT(t − τ(t))x(t − τ(t)) and 〈 f (x(t), x(t − τ(t))), x(t)〉 ≤ 0.5xT(t)
x(t) + 0.005xT(t − τ(t))x(t − τ(t)), i.e., α1 = 0.5, α2 = 0.005 in Eq. (3). It can
be found that f (x(t), x(t − τ(t))) is quadratic inner-boundedness with γ = 5, β1
= −2.5, β2 = −0.015.

System II:Let f (x(t), x(t−τ(t))) =
[ 0.1

(2−√
2) sin2 x1−2

x1(t)+ 0.1
(2−√

2) sin2 x2−2
x1(t−τ(t))

0.1
(2−√

2) sin2 x2−2
x2(t)+ 0.1

(2−√
2) sin2 x1−2

x2(t−τ(t))

]

.

Since −0.05
√
2 < 0.1

(2−√
2) sin2 x2−2

x2(t) < −0.05, we have f (x(t), x(t

− τ(t)))T f (x(t), x(t − τ(t))) ≤ 0.01xT(t)x(t) + 0.01xT(t − τ(t))x(t − τ(t)), and
〈 f (x(t), x(t − τ(t))), x(t)〉 ≤ 0.45xT(t) x(t) + 0.0025xT(t − τ(t))x(t − τ(t)), i.e.,
α1 = 0.45 and α2 = 0.0025 in Eq. (3). It can be found that f (x(t), x(t − τ(t))) is
quadratic inner-boundedness with γ = 5, β1 = −2.24, and β2 = 0.0025.

We can obtain the allowable upper bound of time-delay τ by Corollary 1 for the
two above systems. In the literature, a nonlinear function is assumed to be bounded in
the form: ‖ f (x(t), x(t − τ(t)))‖ < c1‖x(t)‖ + c2‖x(t − τ(t))‖, where c1 and c2 are
positive real constants.We can see that f (x(t), x(t−τ(t))) is a Lipschitz functionwith
Lipschitz constant c = max{c1, c2} when f (x(t), x(t − τ(t))) is known. Because the
nonlinear part is able to contribute to the stability of nonlinear systems with negative
one-sided Lipschitz constant, the methods introduced in this paper expand the range of
feasible solution. The allowable upper bound of τ on the basis of the stability criteria
in this paper and in [1,6,28,33] are listed in Table1. It is seen that the criteria of [1,6]
fail when d > 1, but our method still works. Comparing the maximal allowable value
of the time-delay, it is seen from Table1 that our results are less conservative than the
ones in the existing references.

Example 2 Consider the uncertain stochastic nonlinear time-delay system (1) with

A =
[−2 0.1
0.5 0.48

]

, Aτ =
[

1 0.5
−0.8 −0.2

]

, B =
[
1
2

]

, H =
[
0.2 0.1
0 0.3

]

,

Hτ =
[−0.1 0.5

−0.5 0.2

]

, E1 =
[
0.1 0
0 0.1

]

, E2 =
[
0.2 0
0 0.2

]

, G1 =
[
0.3 0
0 0.3

]

,

G2 =
[
0.1 0
0 0.1

]

, E3 = [
0.5 0.5

]
, G3 =

[
1 0
0 1

]

.
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Fig. 1 State response trajectories for the open-loop systems
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Fig. 2 State response trajectories for the closed-loop systems

For a nonlinear function f (x(t), x(t − τ(t))) in System II and d = 1, we solve
LMI (25) and (26) to obtain the maximum allowable bound τ = 1.0831. Hence, for
any time delay τ satisfying 0 < τ ≤ 1.0831, there exists a non-fragile state-feedback
controller such that the closed-loop system is asymptotically stable in themean square.
For this example, if we choose the time-delay as τ = 0.2, according to Theorem 2,
we can obtain a set of solutions as follows:

P =
[
2.0060 −0.7109

−0.7109 0.4135

]

, Q1 =
[
1.3055 −0.1193

−0.1193 0.9815

]

, Q2 =
[
2.4912 −0.0422

−0.0422 1.9912

]

,

R =
[
7.7136 −2.3326

−2.3326 3.0880

]

, N1 =
[
5.0804 −0.0880

−0.0880 3.0065

]

, N2 =
[
1.2431 −0.3190

−0.3190 1.0327

]

,

ε1 = 7.0568, ε2 = 293.2912, ε3 = 70.9524, ε4 = 1.9531, σ = 25.7089.

Wecan obtain the desired state-feedbackmatrix K = σ−1BTP = [
0.0294 0.0040

]
.

For the sake of the simulation, the initial conditions have been chosen as x(0)
= [1 − 1]T. State response trajectories for the open-loop and closed-loop systems
are given. In Figs. 1 and 2, we see that the proposed methods are effective.
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6 Conclusions

We have investigated the robust stability for stochastic nonlinear time-delay systems.
Both one-sided Lipschitz condition and a quadratic inner-boundedness condition are
introduced to stochastic nonlinear time-delay systems. Unlike the methods in the
existing literature, the new stability condition extracts more useful information of the
nonlinear part using the one-sided Lipschitz condition. Delay-dependent sufficient
condition has been proposed by constructing an appropriate Lyapunov–Krasovskii
functional and using the free-weighting matrices method. We have constructed a
memoryless non-fragile state-feedback controller to guarantee the closed-loop sys-
tem asymptotical stability. Numerical examples have illustrated the advantages and
effectiveness of our results, and shown that the proposed method is less conservative.
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