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Abstract This article aims to investigate the problem of robust finite-time output
feedback H∞ control for stochastic jump systems with incomplete transition rates.
Firstly, for the nominal stochastic jump systems, the sufficient conditions for the
finite-time boundedness and finite-time output feedback stabilization are developed,
respectively. Then, a robust finite-time H∞ output feedback controller is designed by
means of linear matrix inequalities. A key point of this work is to relax the special
requirement of completely known transition rates to more general form that mixes
two cases of completely known and completely unknown transition rates. Finally, a
numerical example is given to demonstrate the applicability of the main results.

Keywords Stochastic jump systems · Finite-time stabilization ·Robust H∞ control ·
Incomplete transition rates · Output feedback

1 Introduction

Owing to the existence of abrupt changes in practical applications, many systems
can be effectively modeled as stochastic jump systems, such as manufacturing sys-
tems [18], economic systems [4], communication systems [2], and so on. Similar to
a switched system [19], a stochastic jump system consists of a family of continu-
ous or discrete time subsystems and a set of Markovian chain that orchestrates the
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switching between them. Recently, stochastic jump systems have attracted consider-
able attention and a large number of results have been published. For example, please
see [11–13,15,23] and references therein. In particular, the problem of H∞ filtering
for Markovian jump singular system was considered and a weighted gain was reached
under a quantisation condition in [15]. After that, more results of filtering for discrete
time stochastic Markov jump systems were reported in [6,7,27]. Using the linear
matrix inequality approach, a number of interesting results on Markovian jump neural
networks systems with time delay have appeared in [25,26].

It is well acknowledged that stochastic stability, defined in an infinite-time interval,
is one of the crucial issues in the study of stochastic jump systems [20,30,31]. To some
extent, the stochastic stability plays a critical role in reality. However, in some cases,
the stability property in infinite time is not acceptable. For instance, the control process
of a robot arm is not allowed to be beyond some given threshold in a finite-time interval
[23]. To deal with this situation, the notion of finite-time stability was presented by
PeterDorato [8]. Later on, the finite-time stabilitywas also extended to stochastic jump
systems, and many relevant results have been derived [22]. Moreover, the transition
rates determine the performance of systems [9,14,28,29]. Usually, the assumption
that the transition rates are completely known or bounded may lead to some conserv-
ativeness. Actually, the information of transition rates might not be exactly known in
many practical control problems, because it is difficult and expensive to gain precisely
the information of transition rates or even the bounds. Thus, in recent years, much
attention has been focused on the study of stochastic jump systems with incomplete
transition rates [30,31]. The problem of robust finite-time H∞ control for stochastic
jump systemswas discussed in [16]. It is required that the bounds of transition rates are
known. [30] discussed the stochastic stabilization problem of stochastic jump systems
with partly unknown transition probabilities by the fixed weighting matrices method.
To a certain degree, the results relax the traditional assumptions that all the transition
rates or the bounds must be completely known.

In addition, when the state is measurable, the state feedback H∞ control problem
has been widely explored, and a large amount of useful and interesting achievements
have been reported in the literature [32,33]. It should be pointed out that the require-
ment of the availability of the state at each time in state feedback control is shown to be
more conservative because state is immeasurable in real world [5,10,24]. Therefore,
it is extremely imperative and significant to construct a H∞ output feedback con-
troller. Meanwhile, it is difficult to obtain the conditions in the form of linear matrix
inequalities ensuring the finite-time H∞ output feedback stabilization.

To the best of our knowledge, the synthesis issue of robust finite-time output feed-
back H∞ control for stochastic jump systems with incomplete transition rates has
not been fully investigated so far. This is mainly due to the difficulty in extending
the existing results to stochastic jump systems with incomplete transition rates. This
motivates the present study.

In this paper, we study the problemof robust finite-time output feedback H∞ control
for stochastic jump systems with incomplete transition rates. The main contribution
lies in three aspects. First, some sufficient conditions are provided to guarantee the
finite-time boundedness and finite-time output feedback stabilization. Second, a robust
finite-time H∞ output feedback controller is designed. Third, we do not introduce
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any confinement to the unknown transition rates, which is less conservative. Finally,
a practical example of a single-link robot arm system is given to demonstrate the
applicability of the main results.

Notations For real symmetric matric A, the notation A ≥ 0 (A > 0) means
that the matrix A is positive semi-definite (positive definite). AT and A−1 denote,
respectively, the transpose of a matrix A and the inverse of a matrix A. λmax(B)

(λmin(B)) is themaximum (minimum) eigenvalue of amatrix B. diag{A, B} represents
the block diagonal matrix of A and B. I is the unit matrix with appropriate dimension,
and in a matrix, the term of symmetry is stated by the asterisk ∗. Rn stands for
the n-dimensional Euclidean space, Rn×m is the set of all n × m real matrices, and
M = {1, 2, . . . , N } means a set of positive numbers. ‖ ∗ ‖ denotes the Euclidean
norm of vectors. Ln

2[0,+∞) is the space of n-dimensional square integrable function
vector over [0,+∞). � is the sample space, F is the algebra of events, and P is the
probability measure defined on F . E{·} denotes the mathematics expectation of the
stochastic process or vector.

2 Problem Formulation and Preliminaries

Consider the following stochastic jump system in the probability space (�, F , P):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t) = [(A(rt ) + �A(rt ))x(t) + (B(rt ) + �B(rt ))u(t) + Ex (rt )v(t)]dt
+ G(rt )x(t)dW (t),

y(t) = Cy(rt )x(t),
z(t) = Cz(rt )x(t) + Dz(rt )u(t) + Ez(rt )v(t),
x(t0) = x0, rt0 = r0, t = 0,

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input, v(t) ∈ Ln
2[0,+∞)

is an arbitrary external disturbance, y(t) ∈ R
p is the measure output, z(t) ∈ R

q is the
control output, W (t) ∈ R is a standard Wiener process, which is independent of the
Markovian process, x0, r0, and t0, respectively, represent the initial state, initial mode,
and initial time. {rt , t ≥ 0} is aMarkovian process which takes values in a finite space
M = {1, 2, . . . , N } with the transition rate matrix � = {πi j } (i, j ∈ M ) given by

P{rt+�t = j |rt = i} =
{

πi j�t + o(�t), i �= j,
1 + πi i�t + o(�t), i = j,

where �t > 0, and lim
�t→ 0

o(�t)

�t
= 0. πi j ≥ 0 (i, j ∈ M, i �= j ) is the transition

rates from mode i at time t to mode j at time t + �t , and
N∑

j=1,i �= j

πi j = −πi i . A(rt ),

B(rt ), Ex (rt ), Cy(rt ), Cz(rt ), Dz(rt ), Ez(rt ) and G(rt ) are known constant matrices
with appropriate dimensions. �A(rt ) and �B(rt ) represent the uncertainties in the
matrices A(rt ) and B(rt ), which satisfy

�A(rt ) = M1(rt )F(t, rt )N1(rt ), �B(rt ) = M2(rt )F(t, rt )N2(rt ), (2)
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whereM1(rt ), N1(rt ),M2(rt ), and N2(rt ) are knownmatrices with appropriate dimen-
sions, and F(t, rt ) is the time-varying unknown matrix function with Lebesgue norm
measurable elements satisfying

F(t, rt )
T F(t, rt ) ≤ I. (3)

The controller to be designed is described by the following structure

u(t) = K (rt )y(t) = K (rt )Cy(rt )x(t), (4)

where K (rt ) is the output feedback gain to be designed. Then the closed-loop system
is as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t) = [(A(rt ) + �A(rt ) + (B(rt ) + �B(rt ))K (rt )Cy(rt ))x(t)
+ Ex (rt )v(t)]dt + G(rt )x(t)dW (t),

y(t) = Cy(rt )x(t),
z(t) = (Cz(rt ) + Dz(rt )K (rt )Cy(rt ))x(t) + Ez(rt )v(t),
x(t0) = x0, rt0 = r0, t = 0.

(5)

For notational simplicity, when r(t) = i, i ∈ M, A(rt ), B(rt ), K (rt ), Ex (rt ), Cy(rt ),
Cz(rt ), Dz(rt ), Ez(rt ), �A(rt ), �B(rt ), M1(rt ), N1(rt ), M2(rt ), N2(rt ), and G(rt )
are respectively denoted as Ai , Bi , Ki , Exi , Cyi , Czi , Dzi , Ezi , �Ai , �Bi , M1i , N1i ,
M2i , N2i , and Gi .

On the other hand, the transition rates of the Markovian process are assumed to be
partly available, i.e., some elements in matrix � = {πi j } are unknown. For instance,
for the stochastic jump system (1) with four subsystems, the transition rate matrix �

may be as:

⎡

⎢
⎢
⎣

? π12 ? π14
π21 ? ? π24
π31 ? π33 ?
? ? ? π44

⎤

⎥
⎥
⎦ , (6)

where ‘?’ represents the inaccessible transition rate. For ∀i ∈ M, seeking describable
convenience, we denote M = Li

k + Li
uk , and

Li
k � { j : πi j is known, for j ∈ M}, (7)

Li
uk � { j : πi j is unknown, for j ∈ M}.

Moreover, if Li
k �= 0, Li

k is further described as

Li
k = {ki1, ki2, . . . kim}, 1 ≤ m ≤ M, (8)

where kim ∈ M represents the mth known transition rate of the set Li
k in the i th row

of the transition rate matrix �.
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Remark 1 The transition rates are required that all information are completely known
(Li

uk = 0, Li
k = M) or completely unknown (Li

k = 0, Li
uk = M) in some existing

works. Here, we consider a general form.

We now introduce some assumptions, definitions, and lemmas, which are useful in
our later development.

Assumption 1 The external disturbance v(t) is time-varying and satisfies the condi-
tion

∫ T

t0
vT (s)v(s)ds ≤ d, d ≥ 0. (9)

Definition 1 (FTS [8]) For a given constant T > 0, the stochastic jump system (1)
(u(t) = 0, v(t) = 0) is said to be finite-time stable with respect to (c1, c2, T, Hi ), if

E{xT0 Hi x0} ≤ c1 �⇒ E{x(t)T Hi x(t)} < c2, ∀t ∈ [0, T ], (10)

where 0 < c1 < c2, Hi > 0.

Definition 2 (FTB [1]) For a given constant T > 0, the stochastic jump system (1)
(u(t) = 0) is said to be finite-time bounded with respect to (c1, c2, T, Hi , d) for any
disturbance satisfying (9), if condition (10) holds with 0 < c1 < c2, Hi > 0.

Definition 3 (The Finite-Time H∞ Control) For the stochastic jump system (1), the
finite-time H∞ control problem is solvable with disturbance attenuation level γ > 0,
if there exists a output feedback controller in the form of (4), such that the following
two conditions are satisfied:

1. The stochastic jump system (1) is finite-time bounded with respect to (c1, c2, T,

Hi , d);
2. Under zero initial condition (x(t0) = 0, t0 = 0), for any external disturbance

v(t) �= 0 satisfying condition (9), the control output z(t) of the stochastic jump
system (1) satisfies

E

{ ∫ T

0
zT (t)z(t)dt

}

≤ γ 2
∫ T

0
vT (t)v(t)dt. (11)

Definition 4 [17] In the Euclidean space{Rn × M × R
+}, introduce the stochastic

Lyapunov function for the stochastic jump system (1) as V (x(t), i), and the weak
infinitesimal operator satisfies

LV (x(t), i) = lim
�t→0

1

�t
[E{V (x(t + �t ), r(t + �t ))} − V (x(t), i)]

= ∂

∂t
V (x(t), i) + ∂

∂x
V (x(t), i)ẋ(t) +

N∑

j=1

πi j V (x(t), j) (12)

+ 1

2
tr [xT (t)GT

i Vxx (x(t), i)Gi x(t)].
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Remark 2 Unlike the classical Lyapunov stability is a system property on an infinite-
time interval, the finite-time stability defines in the finite-time interval, that is, a system
is said to be finite-time stable, if once we fix a finite-time interval, the state of system
does not exceed the prescribed bound during this time interval.

Lemma 1 [21] Let T, M, F, and N be real matrices of appropriate dimension with
FT F ≤ I , then for any positive scalar ε > 0, there holds

T + MFN + NT FT MT ≤ T + εMMT + ε−1NT N . (13)

Lemma 2 Given T > 0. The stochastic jump system (1) (u(t) = 0, v(t) = 0) under
incomplete transition rates is finite-time stable with respect to (c1, c2, T, Hi ), if there
exist a positive constant α > 0, symmetric positive definite matrices Pi ∈ R

n×n, S ∈
R

p×p and symmetric matrices Qi ∈ R
n×n, such that for every i ∈ M

AT
i Pi + Pi Ai +

∑

j∈Li
k

πi j (Pj − Qi ) + GT
i PiGi − αPi < 0, (14)

Pj − Qi ≤ 0, j ∈ Li
uk, j �= i, (15)

Pj − Qi ≥ 0, j ∈ Li
uk, j = i, (16)

c1e
αT λmax(P̃i )

λmin(P̃i )
< c2, (17)

where P̃i = H−1/2
i Pi H

−1/2
i .

Proof See the Appendix. ��

Lemma 3 Given T > 0. The stochastic jump system (1) (u = 0) under incomplete
transition rates is finite-time bounded with respect to (c1, c2, T, Hi , d), if there exist
two positive constants α > 0, γ > 0, symmetric positive definite matrices Pi ∈
R
n×n, S ∈ R

p×p and symmetric matrices Qi ∈ R
n×n, such that for every i ∈ M

[
Ai

T Pi + Pi Ai + ∑
j∈Li

k
πi j (Pj − Qi ) + GT

i PiGi − αPi Pi Exi

∗ −γ 2 I

]

< 0, (18)

Pj − Qi ≤ 0, j ∈ Li
uk, j �= i, (19)

Pj − Qi ≥ 0, j ∈ Li
uk, j = i, (20)

c1λmax(P̃i ) + γ 2d

α
(1 − e−αT ) < e−αT c2λmin(P̃i ), (21)

where P̃i = H−1/2
i Pi H

−1/2
i .

Proof See the Appendix. ��
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3 Main Results

In this section, we firstly give the finite-time H∞ performance analysis for the nominal
system of the stochastic jump system (1) and then investigate the issues of robust finite-
time H∞ control.

3.1 Finite-Time Output Feedback H∞ Control

In this subsection, we construct a output feedback controller for the nominal system
of the stochastic jump system (1) with F(t, rt ) = 0 for all t ≥ 0, and then give
the finite-time H∞ performance analysis. The nominal system of the stochastic jump
system (1) is described as follows

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = [(Ai x(t) + Biu(t) + Exiv(t)]dt + Gi x(t)dW (t),
y(t) = Cyi x(t),
z(t) = Czi x(t) + Dziu(t) + Eziv(t),
x(t0) = x0, rt0 = r0, t = 0.

(22)

Under the output feedback controller (4), the closed-loop system is

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = [(Ai + Bi KiCyi )x(t) + Exiv(t)]dt + Gi x(t)dW (t),
y(t) = Cyi x(t),
z(t) = (Czi + Dzi KiCyi )x(t) + Eziv(t),
x(t0) = x0, rt0 = r0, t = 0.

(23)

Theorem 1 Consider T > 0 and v(t) satisfying (9). The stochastic jump system
(22) under incomplete transition rates is finite-time stabilizable via a output feedback
controller (4) with respect to (c1, c2, T, Hi , d) and the inequality (11) is satisfied, if
there exist two positive constant α > 0, γ > 0, symmetric positive definite matrices
Pi ∈ R

n×n and symmetric matrices Qi ∈ R
n×n, such that for all i ∈ M

⎡

⎣
�i Pi Exi (Czi + Dzi KiCyi )

T

∗ −γ 2 I ET
zi∗ ∗ −I

⎤

⎦ < 0, (24)

Pj − Qi ≤ 0, j ∈ Li
uk, j �= i, (25)

Pj − Qi ≥ 0, j ∈ Li
uk, j = i, (26)

c1λmax(P̃i ) + γ 2d

α
(1 − e−αT ) < e−αT c2λmin(P̃i ), (27)



1806 Circuits Syst Signal Process (2015) 34:1799–1824

where

�i = (Ai + Bi KiCyi )
T Pi + Pi (Ai + Bi KiCyi ) +

∑

j∈Li
k

πi j (Pj − Qi )

+ GT
i PiGi − αPi ,

P̃i = H−1/2
i Pi H

−1/2
i .

Proof By Schur complement lemma, condition (24) can be written as

⎡

⎣
�i Pi Exi (Czi + Dzi KiCyi )

T

∗ −γ 2 I ET
zi∗ ∗ −I

⎤

⎦

=
[

�i Pi Exi

∗ −γ 2 I

]

+
[

(Czi + Dzi KiCyi )
T

ET
zi

]
[
Czi + Dzi KiCyi Ezi

]
< 0. (28)

Moreover, we obtain

[
(Czi + Dzi KiCyi )

T

ET
zi

]
[
Czi + Dzi KiCyi Ezi

]
> 0. (29)

Obviously, (24) implies (18). Then based on Lemma 3, the finite-time boundedness
of the stochastic jump system (23) can be guaranteed by the above condition.

Then, for the stochastic jump system (23), choose a Lyapunov function candidate
as

V (x(t), i) = x(t)T Pi x(t). (30)

We have

LV (x(t), i) = lim
�t→0

1

�t
[E{V (x(t + �t )r(t + �t ))} − V (x(t), i)]

= ∂

∂t
V (x(t), i) + ∂

∂x
V (x(t), i)ẋ(t) +

N∑

j=1

πi j V (x(t), j)

+ 1

2
tr [xT (t)GT

i Vxx (x(t), i)Gi x(t)].

= xT (t)

[

AT
i Pi + Pi Ai +

N∑

j=1

πi j Pj

]

x(t) + xT (t)PiGiw(t)

+wT (t)GT
i Pi x(t) + xT (t)GT

i Pi (x(t), i)Gi x(t). (31)
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Due to
∑N

j=1 πi j Qi = 0 for arbitrary symmetric matrices Qi , we can write the
inequality (31) as

LV (x(t), i) = xT (t)

[

AT
i Pi + Pi Ai +

N∑

j=1

πi j (Pj − Qi ) + GT
i PiGi

]

x(t)

+ xT (t)Pi Exiv(t) + vT (t)ET
xi Pi x(t)

= xT (t)

[

AT
i Pi + Pi Ai +

∑

j∈Li
k

πi j (Pj − Qi ) (32)

+
∑

j∈Li
uk

πi j (Pj − Qi ) + GT
i PiGi

]

x(t) + xT (t)Pi Exiv(t)

+ vT (t)ET
xi Pi x(t).

Notice that πi j ≥ 0 for all i �= j , and πi i = −∑N
j=1,i �= jπi j < 0 for all i ∈ M, in

view of the inequality (24–26), we have

LV (x(t), i) ≤ αV (x(t), i) + γ 2vT (t)v(t) − zT (t)z(t). (33)

Further, multiplying (33) by e−αt yields

L[e−αt V (x(t), i)] ≤ e−αt [γ 2vT (t)v(t) − zT (t)z(t)]. (34)

Under the zero initial condition, integrating the above inequality between 0 and t , we
have

e−αt V (x(t), i) ≤
∫ t

0
e−αs[γ 2vT (s)v(s) − zT (s)z(s)]ds. (35)

Thus, the following condition holds

E

∫ t

0
e−αs zT (s)z(s)ds ≤

∫ t

0
e−αsγ 2vT (s)v(s)ds. (36)

Note that t ∈ [0, T ], it follows

E

∫ T

0
zT (s)z(s)ds ≤ γ 2eαT

∫ T

0
vT (s)v(s)ds. (37)

Therefore, (11) holds with γ̄ = √
eαT γ .

This completes the proof. ��
Remark 3 It is clearly seen that (24) is a nonlinear matrix inequality due to the exis-
tence of the nonlinear terms KT

i BT
i C

T
yi Pi and PiCyi Bi Ki . In order to solve the desired

controller Ki , we give the following result.
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Theorem 2 Consider T > 0 and arbitrary v(t) satisfying (9). The stochastic jump
system (22) under incomplete transition rates is finite-time stabilizable via a output
feedback controllerwith respect to (c1, c2, T, Hi , d)and the inequality (11) is satisfied,
if there exist three positive scalars α, γ, λ, symmetric positive definite matrices Xi ∈
R
n×n and Yi ∈ R

m×m, symmetric matrices Ri ∈ R
n×n and matrices Li ∈ R

n×m, such
that for all i ∈ M

⎡

⎢
⎢
⎢
⎢
⎣

�1i Exi XiCT
zi + CT

yi L
T
i D

T
zi XiGT

i S1i (x)
∗ −γ 2 I ET

zi 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −Xi 0
∗ ∗ ∗ ∗ −M1i (x)

⎤

⎥
⎥
⎥
⎥
⎦

< 0, i ∈ Li
k, (38)

⎡

⎢
⎢
⎢
⎢
⎣

�2i Exi XiCT
zi + CT

yi L
T
i D

T
zi XiGT

i S2i (x)
∗ −γ 2 I ET

zi 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −Xi 0
∗ ∗ ∗ ∗ −M2i (x)

⎤

⎥
⎥
⎥
⎥
⎦

< 0, i ∈ Li
uk, (39)

[−Ri Xi

∗ −X j

]

≤ 0, j ∈ Li
uk, j �= i, (40)

X j − R j ≥ 0, j ∈ Li
uk, j = i, (41)

YiCyi = Cyi Xi , (42)
[

−e−αT c2 + γ 2d
α

(1 − e−αT )
√
c1√

c1 −λ

]

< 0, (43)

λH−1
i < Xi < H−1

i , (44)

where

�1i = Xi A
T
i + Ai Xi + CT

yi L
T
i B

T
i + Bi LiCyi −

∑

j∈Li
k

πi j Ri + πi i Xi − αXi ,

�2i = Xi A
T
i + Ai Xi + CT

yi L
T
i B

T
i + Bi LiCyi −

∑

j∈Li
k

πi j Ri − αXi ,

S1i (x) =
[
√

πiki1
Xi , · · · ,

√
πikir−1

Xi ,
√

πikir+1
Xi , · · · ,

√
πikim

Xi

]

,

M1i (x) = diag{Xki1
, · · · , Xkir−1

, Xkir+1
, · · · , Xkim

},

S2i (x) =
[
√

πiki1
Xi , · · · ,

√
πikim

Xi

]

,

M2i (x) = diag{Xki1
, · · · , Xkim

},

with ki1, k
i
2, . . . k

i
m given in (8) and kir = i . Moreover, the finite-time H∞ output

feedback controller gains are given by Ki = LiY
−1
i .
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Proof If the conditions (24–27) are satisfied, it is easy to achieve that the system (22)
is finite-time H∞ output feedback stabilizable.

Firstly, pre-and post- multiplying the inequality (24) by diag{P−1
i I I } and per-

forming a congruence transformation to (24) by Xi = P−1
i , Ki = LiY

−1
i ,YiCyi =

Cyi Xi , Ri = P−1
i Qi P

−1
i , we get

⎡

⎣
�1i Exi XiCT

zi + CT
yi L

T
i D

T
zi

∗ −γ 2 I ET
zi∗ ∗ −I

⎤

⎦ < 0, (45)

where

�1i = Xi A
T
i + Ai Xi + CT

yi L
T
i B

T
i + Bi LiCyi +

∑

j∈Li
k

πi j Xi X
−1
j Xi

−
∑

j∈Li
k

πi j Ri + XiG
T
i X

−1
i Gi Xi − αXi .

Since πi i < 0,∀i ∈ M, inequality (45) is dealt with in the following two cases.
Case I: i ∈ Li

k . The inequality (45) becomes

⎡

⎢
⎢
⎣

�2i Exi XiCT
zi + CT

yi L
T
i D

T
zi XiGT

i
∗ −γ 2 I ET

zi 0
∗ ∗ −I 0
∗ ∗ ∗ 0 − Xi

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

∑
j∈Li

k , j �=i πi j Xi X
−1
j Xi 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ < 0, (46)

where �2i = Xi AT
i + Ai Xi +CT

yi L
T
i B

T
i + Bi LiCyi −∑

j∈Li
k
πi j Ri −αXi +πi i Xi .

Applying Schur complement lemma to (46) immediately gives (38).
Case II: i ∈ Li

uk . The inequality (45) turns into

⎡

⎢
⎢
⎣

�3i Exi XiCT
zi + CT

yi L
T
i D

T
zi XiGT

i
∗ −γ 2 I ET

zi 0
∗ ∗ −I 0
∗ ∗ ∗ 0 − Xi

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

∑
j∈Li

k , j �=i πi j Xi X
−1
j Xi 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ < 0, (47)

where �3i = Xi AT
i + Ai Xi + CT

yi L
T
i B

T
i + Bi LiCyi − ∑

j∈Li
k
πi j Ri − αXi .
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Using the similar proof, we can see that (39) is true.
Then, pre- and post-multiplying the inequalities (25) and (26) by P−1

i respectively
and letting Xi = P−1

i , Ri = P−1
i Qi P

−1
i , we have

Xi X
−1
j Xi − Ri ≤ 0 j ∈ Li

uk, j �= i, (48)

X j − R j ≥ 0 j ∈ Li
uk, j = i. (49)

It is clear that inequality (48) is equivalent to LMI (40). Denoting X̃i = P̃−1
i =

H1/2
i Xi H

1/2
i and taking λmax(X̃i ) = 1

λmin(P̃i )
into consideration, we conclude that

condition (27) holds. Further, the following condition

λ < λmin(X̃i ), λmax(X̃i ) < 1, (50)

guarantees that

c1
λ

+ γ 2d

α
(1 − e−αt ) < e−αt c2. (51)

It is easy to see that condition (50) implies LMI (44) and (51) is equivalent to (43).
Therefore, if LMIs (38–44) hold, the closed-loop system (23) is H∞ finite-time
bounded. The stochastic jump system (22) can be stabilized via the output feedback
controller (4) with Ki = LiY

−1
i .

This completes the proof. ��

3.2 Robust Finite-Time H∞ Control

In this subsection, a robust finite-time H∞ output feedback controller is designed to
guarantee the finite-time output feedback stabilization of the stochastic jump system
(1) with disturbance attenuation level γ > 0.

Theorem 3 Given T > 0 and v(t) satisfying (9). The problem of robust finite-time
H∞ control for the the stochastic jump system (1) with incomplete transition rates
is solvable with disturbance attenuation level γ > 0, if there exist positive scalars
α, γ, λ, ε1i , ε2i , symmetric positive definite matrices Xi ∈ R

n×n and Yi ∈ R
m×m,

symmetric matrices Ri ∈ R
n×n and matrices Li ∈ R

n×m, such that for all i ∈ M,
(40–44) and the following inequalities hold

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�1i Exi XiCT
zi + CT

yi L
T
i D

T
zi XiGT

i Xi NT
1i CT

yi L
T
i N

T
2i S1i (x)

∗ −γ 2 I ET
zi 0 0 0 0

∗ ∗ −I 0 0 0 0
∗ ∗ ∗ −Xi 0 0 0
∗ ∗ ∗ ∗ −ε1i I 0 0
∗ ∗ ∗ ∗ ∗ −ε2i I 0
∗ ∗ ∗ ∗ ∗ ∗ −M1i (x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

i ∈ Li
k, (52)
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�2i Exi XiCT
zi + CT

yi L
T
i D

T
zi XiGT

i Xi NT
1i CT

yi L
T
i N

T
2i S2i (x)

∗ −γ 2 I ET
zi 0 0 0 0

∗ ∗ −I 0 0 0 0
∗ ∗ ∗ −Xi 0 0 0
∗ ∗ ∗ ∗ −ε1i I 0 0
∗ ∗ ∗ ∗ ∗ −ε2i I 0
∗ ∗ ∗ ∗ ∗ ∗ −M2i (x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

i ∈ Li
uk, (53)

where

�1i = Xi A
T
i + Ai Xi + CT

yi L
T
i B

T
i + Bi LiCyi −

∑

j∈Li
k

πi j Ri + πi i Xi

+ ε1i M1i M
T
1i + ε2i M2i M

T
2i − αXi ,

�2i = Xi A
T
i + Ai Xi + CT

yi L
T
i B

T
i + Bi LiCyi −

∑

j∈Li
k

πi j Ri + ε1i M1i M
T
1i

+ ε2i M2i M
T
2i − αXi ,

S1i (x) =
[
√

πiki1
Xi , · · · ,

√
πikir−1

Xi ,
√

πikir+1
Xi , · · · ,

√
πikim

Xi

]

,

M1i (x) = diag{Xki1
, · · · , Xkir−1

, Xkir+1
, · · · , Xkim

},

S2i (x) =
[
√

πiki1
Xi , · · · ,

√
πikim

Xi

]

,

M2i (x) = diag{Xki1
, · · · , Xkim

},

with ki1, k
i
2, . . . k

i
m described as in (8) and kir = i . The controller gains are given by

Ki = LiY
−1
i .

Proof In (38) and (39), by replacing Ai and Bi with (Ai + �Ai ) and (Bi + �Bi ),
respectively, the following conditions are obtained

�̃1i = �1i + Xi�AT
i + �Ai Xi + CT

yi L
T
i �BT

i + �Bi LiCyi ,

�̃2i = �2i + Xi�AT
i + �Ai Xi + CT

yi L
T
i �BT

i + �Bi LiCyi ,

where

�1i = Xi A
T
i + Ai Xi + CT

yi L
T
i B

T
i + Bi LiCyi −

∑

j∈Li
k

πi j Ri + πi i Xi − αXi ,

�2i = Xi A
T
i + Ai Xi + CT

yi L
T
i B

T
i + Bi LiCyi −

∑

j∈Li
k

πi j Ri − αXi .
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We now deal with the uncertainties described as �Ai ,�Bi . By Lemma 1, there exist
scalars ε1i , ε2i such that

Xi�AT
i + �Ai Xi = Xi N

T
1i F

T
i (t)MT

1i + M1i Fi (t)N1i Xi

≤ ε1i M1i M
T
1i + ε−1

1i Xi N
T
1i N1i Xi , (54)

CT
yi L

T
i �BT

i + �Bi LiCyi = CT
yi L

T
i N

T
2i F

T
i (t)MT

2i + M2i Fi (t)N2i LiCyi

≤ ε2i M2i M
T
2i + ε−1

2i C
T
yi L

T
i N

T
2i N2i LiCyi . (55)

⎡

⎢
⎢
⎢
⎢
⎣

Xi�AT
i + �Ai Xi 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

Xi NT
1i

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎦
FT
i (t)

[
MT

1i 0 0 0 0
] +

⎡

⎢
⎢
⎢
⎢
⎣

M1i
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎦
Fi (t)

[
N1i Xi 0 0 0 0

]

≤ ε1i

⎡

⎢
⎢
⎢
⎢
⎣

M1i
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎦

[
MT

1i 0 0 0 0
] + ε−1

3i

⎡

⎢
⎢
⎢
⎢
⎣

Xi NT
1i

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎦

[
N1i Xi 0 0 0 0

]

=

⎡

⎢
⎢
⎢
⎢
⎣

ε1i M1i MT
1i 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 Xi NT
1i

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
∗ 0 0 0 −ε1i I

⎤

⎥
⎥
⎥
⎥
⎦

. (56)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

CT
yi L

T
i �BT

i + �Bi LiCyi 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2i 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

CT
yi L

T
i N

T
2i

0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

FT
i (t)

[
MT

2i 0 0 0 0 0
] +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

M2i
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fi (t)
[
N2i LiCyi 0 0 0 0 0

]

≤ ε2i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

M2i
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
MT

2i 0 0 0 0 0
] + ε−1

2i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

CT
yi L

T
i N

T
2i

0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
N2i LiCyi 0 0 0 0 0

]
.

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε2i M2i MT
2i 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 CT
yi L

T
i N

T
2i

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −ε2i I
∗ 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(57)

where

1i = Xi N
T
1i F

T
i (t)MT

1i + M1i Fi (t)N1i Xi ,

2i = CT
yi L

T
i N

T
2i F

T
i (t)MT

2i + M2i Fi (t)N2i LiCyi .

Applying Schur complement Lemma to (54) and (55) leads to (52). Then, similar to
the derivation of (52), we can easily prove that (53) holds.

Therefore, if LMIs (40–44) and (52–53) hold, the closed-loop system (5) is robust
H∞ finite-time bounded, and the stochastic jump system (1) can be stabilized via the
output feedback controller (4) with Ki = LiY

−1
i .

This completes the proof. ��
Remark 4 Notice that the condition (42) is not in the strictly linear matrix inequality
form. In order to deal with this problem, we can replace (42) by the inequality:

[−β I YiCyi − Cyi Xi

∗ −I

]

< 0. (58)
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When β is a sufficiently small positive scalar, (58) is closed to (42). The linear matrix
inequality (58) may be conservative, but we have to notice that the condition (58) can
be solved using the LMI toolbox, see [3].

Remark 5 Theorem 3 presents the sufficient condition of designing the robust finite-
time H∞ output feedback controller for stochastic jump systems with incomplete
transition rates. Note that the coupled LMIs (52–53) and (40–44) include Xi , Yi , Ri ,
Li , Hi , α, β, γ 2, λ, ε1i , ε2i , c1, c2, T , and d. Therefore, for given scalars α, λ, c1, c2,
T , and d, we can take γ 2 as the optimized variable to obtain an optimized robust finite-
time H∞ output feedback controller. The attenuation lever γ 2 can be reduced to the
minimum value that satisfies LMIs (52–53) and (40–44). The optimization problem
can be described as follows:

min
Xi ,Yi ,Ri ,Li ,Hi ,ε1i ,ε2i

ρ

s.t. LMIs

{
(52) − (53)
(40) − (44)

with ρ = γ 2.

Remark 6 By using the MATLAB LMIs Toolbox, it is straightforward to check the
feasibility of Theorem 3.

Remark 7 Time delay frequently occurs in various engineering systems, which is
usually a source of instability and often causes undesirable performance and even
makes the system out of control [25–27]. For stochastic jump systems with time delay,
we may look for an appropriate Lyapunov–Krasovskii functions. Then, the sufficient
condition, which can be easily tackled in the form of LMIs, can be obtained.

4 Simulation Results

In this section, we provide two examples to show the effectiveness of the main results
in this paper.

Example 1 The four-mode uncertain stochastic jump systemwith paraments are given
by
Mode 1

A1 =
[−2 −0.5

0 −1

]

, B1 =
[

0.6 0
−0.1 0.8

]

, M11 =
[
0.1
0.2

]

, N11 = [
0.1 0.01

]
,

M21 =
[
0.1
0

]

, N21 = [
0.2 0.01

]
, Ex1=

[
1 −0.1
0.1 1

]

, Cz1=
[
1 0
0 1

]

,

Dz1 =
[
1 0
0 1

]

, Ez1=
[
1 0
0 1

]

, G1=
[
0.1 0
0 0.1

]

, Cy1=
[
0.4 0
0 0.1

]

,
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Mode 2

A2 =
[−3 −0.5

1 −2.5

]

, B2 =
[
1 0.1
0 0.8

]

, M12=
[
0.1
0.13

]

, N12=[
0.1 0.3

]
,

M22 =
[
0.1
0

]

, N22=[
0.01 0.1

]
, Ex2=

[
1 0
0.1 1

]

, Cz2=
[
1 0
0 1

]

,

Dz2 =
[
1 0
0 1

]

, Ez2=
[
1 0
0 1

]

, G2=
[
0.2 0
0 0.2

]

, Cy2=
[−0.1 0

0 0.2

]

,

Mode 3

A3 =
[
2 −1.8
0 1.5

]

, B3=
[

1 0
0.1 1.3

]

, M13=
[
0.1
0.19

]

, N13 = [
0.2 0.15

]
,

M23 =
[
0.1
0.05

]

, N23 = [
0.1 0.11

]
, Ex3 =

[
1 0
0 1

]

, Cz3=
[
1 0
0 1

]

,

Dz3 =
[
1 0
0 1

]

, Ez3=
[
1 0
0 1

]

, G3=
[
0.1 0
0 0.1

]

, Cy3=
[
0.2 0
0 0.3

]

,

Mode 4

A4 =
[−2 −0.4

2 −1.5

]

, B4=
[
1 0
0 1

]

, M14 =
[
0.1
0.09

]

, N14=[
0.1 0.05

]
,

M24 =
[
0.2
0

]

, N24 = [
0 0.1

]
, Ex4=

[
1 0
0 1

]

, Cz4=
[
1 0
0 1

]

,

Dz4 =
[
1 0
0 1

]

, Ez4=
[
1 0
0 1

]

, G4=
[
0.2 0
0 0.2

]

, Cy4=
[
0.1 0
0 0.2

]

,

Choose the positive scalars c1 = 2, c2 = 8.8, T = 8, d = 1, α = 0.01 and the
matrices Hi = 4I, i = 1, 2, 3, 4. The transition rate matrices are given respectively
in four cases:

Based on the LMIs (40–44), (52), and (53) in Theorem 3, the robust finite-time H∞
output feedback controller gains are obtained below:

Figures 1–2 show the effectiveness of the designmethod. Figure 1 describes the state
trajectories of the closed-loop system. It can be seen that the stochastic jump system
(5) with incomplete transition rates is robust finite-time stable. Figure 2 presents the
corresponding control signal, which further shows the effectiveness of the designed
controller (4).

Example 2 We consider a single-link robot arm in [16,23]. To demonstrate the effec-
tiveness of the results, we assume that a white noise interferes with a single-link robot
arm system. The dynamic equation is given by

d2θ(t) =
[

− MgL

J
sin(θ(t)) − D(t)

J
θ̇ (t) + 1

J
u(t) + L

J
v(t)

]

dt

+GdW (t). (59)
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Case I Completely known
1 2 3 4

1 -0.7 0.4 0.1 0.2
2 0.1 -1 0.3 0.6
3 0.5 0.4 -1.3 0.4
4 0.9 0.1 0.5 -1.5
Case II Partially known

1 2 3 4
1 ? 0.4 ? 0.2
2 ? -1 0.3 ?
3 0.5 ? -1.3 ?
4 ? 0.1 ? ?
Case III Partially known

1 2 3 4
1 -0.7 ? 0.1 ?
2 0.1 ? ? 0.6
3 ? 0.4 ? 0.4
4 0.7 ? 0.5 -1.5
Case VI Completely unknown

1 2 3 4
1 ? ? ? ?
2 ? ? ? ?
3 ? ? ? ?
4 ? ? ? ?

Case I Completely known
Controller gains K1 = [−12.7862 0.4678; 1.2536 − 63.9580]

K2 = [ 48.9090 0.6281; 1.5609 − 27.4897]
K3 = [−19.4609 − 1.2617;−0.0442 − 26.6781]
K4 = [−40.6328 − 0.8940;−0.1791 − 20.4902]

Case II Partially known
Controller gains K1 = [−10.2508 0.3927; 1.4609 − 63.9080]

K2 = [ 56.2721 0.4527; 0.4161 − 34.2997]
K3 = [−25.5304 − 0.0179;−0.0162 − 15.6604]
K4 = [−46.2473 − 0.8945;−0.8522 − 29.4492]

Case III Partially know
Controller gains K1 = [−9.4198 2.7156; 0.0562 − 51.3098]

K2 = [ 68.0098 0.0805; 0.9362 − 25.5802]
K3 = [−13.5304 − 0.0179;−2.4642 − 17.1818]
K4 = [−33.6230 − 0.7473;−1.6999 − 20.0095]

Case VI Completely unknown
Controller gains K1 = [−18.0008 0.8931; 1.5302 − 56.2220]

K2 = [ 50.4821 0.0290; 0.2198 − 30.6413]
K3 = [−25.4777 − 0.3519;−0.0602 − 14.9994]
K4 = [−50.2001 − 0.6600;−0.4516 − 28.4370]

where θ(t) is the angle position of the arm, u(t) is the control input, v(t) is the external
disturbance, andW (t) is a white noise. M is the mass of the payload, J is the moment
of inertia, g is the acceleration of gravity, L is the length of the arm, and D(t) is
the viscous friction. The values of parameters g, D(t) and L are given by g = 9.81,
D(t) = 2 and L = 0.5, respectively. The parameters M and J have four different
modes. The transition rate matrices are given, respectively, in four cases:
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Fig. 1 State response of the closed-loop system
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Fig. 2 Control signal of the closed-loop system

The linearized system with four modes systems (59) is represented by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx(t) =
[ [

0 1
−gl − 2

J (r)

]

x(t) +
[

0
1

J (r)

]

u(t) +
[

0
1

J (r)

]

v(t)

]

dt

+
[
0.1 0
0 0.1

]

x(t)dW (t),

y(t) = [
0.1 0.2

]
x(t),

z(t) = [
1 1

]
x(t),

(60)

where x(t) = [x1(t)T x2(t)T ]T , r = {1, 2, 3, 4}, J (r) depends on the jump mode r ,
J (1) = 1, J (2) = 5, J (3) = 10, J (4) = 15. We consider the uncertain parameters as
follows:
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Case I Completely known
1 2 3 4

1 -0.7 0.2 0.2 0.3
2 0.2 -1 0.5 0.3
3 0.8 0.4 -1.3 0.1
4 0.7 0.2 0.6 -1.5
Case II Partially known

1 2 3 4
1 ? 0.2 ? 0.3
2 ? -1 0.5 ?
3 0.8 ? -1.3 ?
4 ? 0.2 ? ?
Case III Partially known

1 2 3 4
1 -0.7 ? 0.2 ?
2 0.2 ? ? 0.3
3 ? 0.4 ? 0.1
4 0.7 ? 0.6 -1.5
Case VI Completely unknown

1 2 3 4
1 ? ? ? ?
2 ? ? ? ?
3 ? ? ? ?
4 ? ? ? ?

M11 =
[
0.1
0.2

]

, N11 = [
0.1 0.01

]
, M12 =

[
0.1
0.13

]

, N12 = [
0.1 0.3

]
,

M13 =
[
0.1
0.19

]

, N13 = [
0.2 0.15

]
, M14 =

[
0.1
0.09

]

, N14 = [
0.1 0.05

]
,

and choose the positive scalars c1 = 2, c2 = 8.8, T = 10, d = 1, α = 0.01 and the
matrices Hi = 4I, i = 1, 2, 3, 4.

Our purpose is to design a robust finite-time output feedback H∞ controller in the
form of (4) such that the closed-loop system is finite-time stable with an optimal H∞
performance index. Based on the LMIs (40–44), (52), and (53) in Theorem 3, the
robust finite-time H∞ output feedback controller gains are obtained:

Case I Completely known
Controller gains K1 = −21.9938 K2 = −78.6534 K3 = −115.6020

K4 = −168.7598
Case II Partially known
Controller gains K1 = −19.9571 K2 = −103.4801 K3 = −155.5879

K4 = −260.8996
Case III Partially know
Controller gains K1 = −13.5207 K2 = −45.8019 K3 = −92.0787

K4 = −144.2625
Case VI Completely unknown
Controller gains K1 = −29.9364 K2 = −88.7656 K3 = −184.3426

K4 = −119.6302
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Fig. 3 State response of the closed-loop system
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Fig. 4 Control signal of the closed-loop system

We take the initial condition x0 = [−0.1, 0.1]. Figure 3 describes the state trajec-
tories of the closed-loop system. It can be seen that the stochastic jump system (5)
with incomplete transition rates is robust finite-time stable, which implies that the sto-
chastic jump system (1) is robust finite-time H∞ output feedback stabilizable via the
designed output feedback controller (4). The corresponding control signal is presented
in Fig. 4, which further shows the effectiveness of the designed controller (4).

5 Conclusions

This study has concerned with the problem of robust finite-time output feedback H∞
control for stochastic jump systems with incomplete transition rates. The sufficient
conditions have been developed to ensure the finite-time boundedness and finite-
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time output feedback stabilization for the given system. We have also designed a
robust finite-time H∞ output feedback controller, which guarantees the H∞ finite-
time boundedness of the closed-loop system. Finally, a numerical example has been
provided to demonstrate the applicability of the main results.

Acknowledgments This work was supported by the National Natural Science Foundation of China under
Grants 61233002 and 61174073and IAPI Fundamental Research Funds under Grant 2013ZCX03-01.

Appendix

Proof of Lemma 2

Proof For the stochastic jump system (1) (u(t) = 0, v(t) = 0, and F(t, rt ) = 0),
choose a Lyapunov function candidate as (30). Then, by Definition 4, we obtain

LV (x(t), i) = xT (t)

[

AT
i Pi + Pi Ai +

N∑

j=1

πi j Pj

]

x(t)

+ xT (t)GT
i PiGi x(t). (61)

If the transition rates are not accessible completely, the following equation hold for
arbitrary symmetric matrices Qi due to

∑N
j=1 πi j Qi = 0

LV (x(t), i) = xT (t)

[

AT
i Pi + Pi Ai +

N∑

j=1

πi j Pj −
N∑

j=1

πi j Qi

]

x(t)

+ xT (t)GT
i PiGi x(t)

= xT (t)

[

AT
i Pi + Pi Ai +

∑

j∈Li
k

πi j (Pj − Qi ) +
∑

j∈Li
uk

πi j (Pj − Qi )

+GT
i PiGi

]

x(t). (62)

If i ∈ Li
k(the elements of the diagonal are known), by inequalities (14) and (15), the

following inequality holds

LV (x(t), i) ≤ αV (x(t), i). (63)

If i ∈ Li
uk(the elements of the diagonal are unknown), according to inequalities (14–

16), the inequality (63) holds. Multiplying (63) by e−αt yields

L(e−αt V (x(t), i)) ≤ 0. (64)
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According to Dynkin’s formula for (64), we get

e−αt V (x(t), i) − V (x0, t0) ≤ 0, (65)

which shows

V (x(t), i) ≤ eαt V (x0, t0). (66)

This together with P̃i = H−1/2
i Pi H

−1/2
i gives rise to

V (x(t), i) ≤ eαt c1λmax(P̃i ). (67)

Consider

V (x(t), i) = xT (t)Pi x(t) ≥ λmin(P̃i )x
T (t)Hi x(t). (68)

For ∀t ∈ [0, T ], we obtain

E{xT (t)Hi x(t)} ≤ c1e
αt λmax(P̃i )

λmin(P̃i )
< c2. (69)

This completes the proof. ��

Proof of Lemma 3

Proof For the stochastic jump system (1) (u = 0 and F(t, rt ) = 0), choose aLyapunov
function candidate as (30). Based on Definition 4, we have

LV (x(t), i) = xT (t)
[
AT
i Pi + Pi Ai +

N∑

j=1

πi j Pj + GT
i PiGi

]
x(t)

+ vT (t)ET
xi Pi x(t) + xT (t)Pi Exiv(t). (70)
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Since
∑N

j=1 πi j Qi = 0 is always true for arbitrary symmetric matrices Qi , (70) can
be rewritten as

LV (x(t), i) = xT (t)

⎡

⎣AT
i Pi + Pi Ai +

N∑

j=1

πi j Pj −
N∑

j=1

πi j Qi + GT
i PiGi

⎤

⎦ x(t)

+ vT (t)ET
xi Pi x(t)

+ xT (t)Pi Exiv(t)

= xT (t)
[
AT
i Pi + Pi Ai +

∑

j∈Li
k

πi j (Pj − Qi ) +
∑

j∈Li
uk

πi j (Pj − Qi )

+GT
i PiGi

]
x(t)

+ vT (t)ET
xi Pi x(t) + xT (t)Pi Exiv(t). (71)

Notice that πi j ≥ 0 for all i �= j , and πi i = −
N∑

j=1,i �= j

πi j < 0 for all i ∈ M, if i ∈ Li
k

(the elements of the diagonal are known), by inequalities (18) and (19), the following
inequality holds

LV (x(t), i) ≤ αV (x(t), i) + γ 2vT (t)v(t). (72)

If i ∈ Li
uk(the elements of the diagonal are unknown), according to inequalities (18–

20), the inequality (72) holds. Multiplying (72) by e−αt yields

L(e−αt V (x(t), i)) ≤ γ 2e−αtvT (t)v(t). (73)

Using Dynkin’s formula to (73), we obtain

e−αt V (x(t), i) − V (x0, t0) ≤ γ 2
∫ t

0
e−αsvT (t)v(t)ds, (74)

which in turn shows

V
(
x(t), i

) ≤ eαt V (x0, t0) + γ 2eαt
∫ t

0
e−αsvT (s)v(s)ds

≤ eαt
[

V (x0, t0) + γ 2d
1 − e−αt

α

]

. (75)

This together with P̃i = H−1/2
i Pi H

−1/2
i gives rise to

V (x(t), i) ≤ eαt
[
c1λmax(P̃i ) + γ 2d (1−e−αt )

α

]
. (76)
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Taking into account the fact that

V (x(t), i) = xT (t)Pi x(t) ≥ λmin(P̃i )x
T (t)Hi x(t), (77)

∀t ∈ [0, T ], we have

E{xT (t)Hi x(t)} ≤ eαt
[
c1λmax(P̃i ) + γ 2d (1−e−αt )

α

]

λmin(P̃i )
< c2. (78)

This completes the proof. ��
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