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Abstract In this paper, an improved stable digital rational approximation of the
fractional-order operator sα, α ∈ R is developed. First, a novel efficient second-
order digital differentiator is derived from the transfer function of the digital inte-
grator proposed by Tseng. Then, the fractional power of the new s-to-z transform is
expanded using power series expansion (PSE)-signal-modeling technique to obtain
stable rational approximation of sα . Simulation results show that the proposed ratio-
nal approximation has better frequency characteristics in almost the whole frequency
range than that of existing first-order s-to-z transforms based approximations for dif-
ferent values of the fractional-order α. This paper also shows the benefit of using
PSE-signal-modeling approach with first- or second-order mapping functions over
PSE-truncation approach that is used in recent works for rational approximation of
the operator sα , and highlights the major disadvantage of the latter approach that leads
to undesirable rational models with complex conjugate poles and zeros.

Keywords s-to-z transform · Power series expansion · Deterministic
signal modeling · Fractional-order differentiator · Fractional-order integrator ·
Al-Alaoui’s operator

1 Introduction

The fractional-order derivative and integral of order α of an analog signal xa(t) are
often denoted by the operator cDα

t xa(t), where c and t are the lower and upper limits,
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respectively. The fractional operator cDα
t xa(t) appears naturally in fractional order

differential equations that best model many systems in various areas of engineering
and sciences [4,17,27]. Upon zero initial conditions, fractional-order operators are
represented by the transfer function

Hα(s) = sα. (1)

In the present study, the order α is assumed to be a real number, the lower limit c to
be zero, and the fractional-order operator is simply denoted by the operator Dα .

The caseα > 0 indicates fractional-order differentiation, while the caseα < 0 indi-
cates fractional-order integration. Fractional-order differentiation/integration-based
algorithms have been used to solve many problems in various fields including auto-
matic control [5,18,22,24], digital signal processing [3,11,12,20,21,23], and cir-
cuit theory and design [15,26]. The main problem encountered when dealing with
fractional-order operator is how to realize it physically. This problem is due to the
fact that fractional-order operators possess an infinite memory. Therefore, for phys-
ical implementation, approximate models with finite memory such Moving Average
(MA), Autoregressive (AR), or Autoregressive Moving Average (ARMA) models are
to be used instead. Although many methods have been developed to achieve such
approximations with analog or digital models, this important issue in fractional-order
calculus applications still needs to be addressed through new approaches that seem to
bemore promising in terms of approximation accuracy and computational complexity.
In this paper, we focus on digital design case. The digital designmethods of fractional-
order integrator and differentiator can generally be classified into two categories: direct
and indirect methods. In indirect methods [6,16,33], a rational continuous time model
approximation of sα is first developed, then the resulting s-transfer function is dis-
cretized using an appropriate s-to-z transform, whereas the direct methods substitute
for s in sα a chosen s-to-z transform, then the resulting non-rational z-transfer func-
tions are approximated with rational ones. In the early direct discretization methods,
the first-order s-to-z transforms of Euler, Tustin, and the linear combination of two of
them (Al-Alaoui operator), have been used for discretization of sα . In [7], the authors
have proposed two discretization methods of sα , i.e., a recursive discretization of
Tustin operator and direct discretization using Al-Alaoui operator via continuous frac-
tion expansion (CFE)-truncation. In [8] a family of second-order mapping functions
obtained by inverting and stabilizing the combination of the numerical integrator rules
of trapezoidal and Simpson have been used with CFE to design rational approximation
of sα . The design of finite impulse response (FIR) and infinite impulse response (IIR)
fractional-order Simpson integrators using power series expansion (PSE)-truncation
approach is proposed in [29].

More recently, higher order s-to-z transforms have been proposed for digital
design of sα in the hope of improving their approximation accuracy. In [14,30],
the authors have proposed the use of higher order s-to-z transforms viz. second-
order Schneider operator, and stabilized third-order Al-Alaoui-Schneider-Kaneshige-
Groutage (Al-Alaoui-SKG) rule. The obtained approximations have been designed
using PSE-truncation approach and compared with Al-Alaoui (CFE)-based approxi-
mations. These higher order s-to-z transforms have been modified in [32] to improve
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the approximations in the low frequencies. However, simulation results showed that
the Schneider operator and Al-Alaoui-SKG (PSE-truncation) based approximations
possess complex conjugate poles and zeros which may be not desirable since it is
well known that, for a better fit to continuous frequency response of sα , it would be
of high interest to obtain discrete approximation with poles and zeros distributed in
alternating fashion on the real axis in the unit circle in the z plane [25,31].

The signal-modeling approach proposed in [9,10,13] has proved to be an efficient
method for digital rational design of sα . Indeed, it is computationally efficient and
leads to rational approximations with the desired properties, namely, stability, mini-
mumphase and poles- zeros distributed in alternating fashion on the real axis. The con-
tribution of the present study is to improve the rational approximation of sα obtained
via PSE-signal-modeling approach by using a new second-order s-to-z transform (new
mapping function (NMF)) [19]. This s-to-z transform has been derived through inver-
sion and stabilizing of the transfer function of the digital integrator designed using
conventional Simpson-integrator rule and fractional delay filter proposed by Tseng in
[28]. As it will be shown in the sequel, compared to the magnitude response of the
ideal integrator 1/s, the magnitude response of the integrator proposed by Tseng out-
performs the integrators corresponding to the first and higher order s-to-z transforms
mentioned above.

Simulation results show that the proposed rational approximation of sα has better
frequency characteristics (magnitude and phase responses) than those based on the
widely used Al-Alaoui operator and Euler’s rule, in a wide range of frequencies. It
has also better magnitude frequency response than that of Al-Alaoui-Schneider, Hsue
operator [14], and Tustin based approximations. The latter, however, has the best phase
response.

Furthermore, this paper compares the NMF (PSE-signal modeling)-based approx-
imations to those obtained using PSE-truncation approach used in [14,29,30]. The
simulation results confirm that the major disadvantage of PSE-truncation approach
for rational approximation of sα is that it provides models having complex conjugate
poles and zeros.

The rest of the paper is organized as follows: In Sect. 2, after a brief introduction of
the integer order digital integrator proposed by Tseng in [28], the corresponding new
stabilized digital differentiator is presented. Section 3 derives the impulse response of
the new digital fractional-order differentiator (NDFOD). Simulation results are pre-
sented in Sect. 4, and the impulse response derived in Sect. 3 has been modeled to cal-
culate the IIR models which have been compared to those obtained based on recently
used s-to-z transforms. In Sect. 4, we have compared the approximations obtained
using PSE-signal modeling with those obtained using PSE-truncation approach. Con-
clusions are provided in Sect. 5.

2 Novel Stable Second-Order s-to-z Transform

The novel stable second-order s-to-z transform introduced in this paper is obtained
by inverting and stabilizing the second-order digital integrator designed from the
conventional Simpson integrator and fractional delay filter proposed by Tseng in [28].
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2.1 Digital Integrator Proposed by Tseng

In [28], Tseng has proposed a new non-minimum phase integrator in order to improve
the magnitude response of the conventional Simpson integrator by reducing the sam-
pling interval from T to 0.5T . The whole process can be summarized as follows:

Firstly, replacing T by 0.5T in the expression of the output y(n) of the conventional
Simpson integrator and taking the z transform yield the following z transfer function
[28]

G(z) = T (1 + 4z−1/2 + z−1)

6(1 − z−1)
(2)

The fractional delay element z−1/2 is then implemented with IIR all-pass filter and
FIR filter using the design technique of FIR and all-pass fractional delay filter [28].

In this paper, the designed digital integrator obtained by using the following half
sample delay IIR all-pass filter [28] is investigated

z−1/2 =
(
1/3 + z−1

)/(
1 + (1/3)z−1

)
(3)

Substituting (3) in (2), we obtain the transfer function derived in [28]

G(z) = T

6

7 + 16z−1 + z−2

3 − 2z−1 − z−2 (4)

The integrator in (4) has two real zeros located at z = −2.2214, and z = −0.064309,
and two poles at z = 1 and z = −0.333333. To illustrate the performance of the
integrator in (4), Fig. 1 shows the percent relative error in magnitude defined in (5)
between the ideal integrator 1/s and the integrators corresponding to the first and
higher order s-to-z transforms [1] listed in Table 1.

Er = (|Hi | − ∣∣Happ
∣∣)/|Hi | (%), (5)

where Hi= s−1
∣∣
s= j2π f , and Happ = [M(z)]−1

∣∣
z=e j2π f T with M(z) represents the

s-to-z transforms.
We can observe from this figure that the integrator in (4) presents the smallest

error over almost the whole frequency range, especially at high frequencies where it
overlaps the Al-Alaoui-SKG curve.

2.2 New Stable Digital Differentiator

The direct inversion of the transfer function G(z) in (4) leads to instable recursive
differentiator since G(z) is non-minimum phase as one zero (z = −2.2214) lies
outside the unit circle in the z plane.

Let H(z) be the transfer function defined by

H(z) = 1

G(z)
= 6

T

3 − 2z−1 − z−2

7 + 16z−1 + z−2 (6)
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Fig. 1 Percent relative error of integrators, T =1s

Table 1 s-to-z transforms

Method Conversion s-to-z

Euler s ≈ 1−z−1

T

Tustin s ≈ 2
T

1−z−1

1+z−1

Al-Alaoui s ≈ 8
7T

1−z−1

1+z−1/7

Al-Alaoui-Simpson s ≈ 0.8038475773
T

(1−z−2)
(1+0.2679491924Z−1)2

Al-Alaoui-SKG s ≈ 1.1272
T

(z3−z2)
(z3+0.168z2−0.0607z+0.0199)

Al-Alaoui-Schneider s ≈ 1.398181667894
T

(1−z−1)
(1+0.4660655596Z−1−0.067878888z−2)

This may be written in factorizing form as

H(z) = 1

G(z)
=

(
18

7T

)
(1 − z1z−1)(1 − z2z−1)

(1 − p1z−1)(1 − p2z−1)
(7)

with z1 = 1 and z2 = −0.333333, p1 = −2.2214 and p2 = −0.064309. Notice
that p1 is an instable pole. Thus applying the pole reflection method used in [1,2], by
inverting p1 from radius r = 2.2214 to radius 1/r and compensating the resulting
change in magnitude, we obtain the following new stable digital differentiator.

s ≈ H(z)=
(

18

7T (−p1)

)
((1 − z1z

−1)(1−z2z
−1)/((1−(1/p1)z

−1)(1 − p2z
−1)))

(8)
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Fig. 2 Percent relative error of differentiators, T = 1s

To illustrate the performance of the new stable digital differentiator (NMF) in (8),
Fig. 2 shows the percent relative error in magnitude between the ideal differentiator s
and the new stable differentiator in (8) and the s-to-z transforms listed in Table 1.

We can observe from Fig. 2 that the NMF in (8) presents the smallest relative
error over almost the whole frequency range. Indeed, the NMF approximates the ideal
differentiator favorably, with Er ≤ 2.91%.

The NDFOD is obtained by taking the α th power of the novel s-to-z transform
given in (8) as follows:

sα ≈ Hα(z) =
(

18

7T (−p1)

)α ((
1 − z1z

−1
)α

(
1 − z2z

−1
)α) /((

1 − z−1

p1

)α (
1 − p2z

−1
)α

)
(9)

As can be seen, the expression in (9) is irrational function. The aim of this work is to
transform it into rational transfer function (10), using PSE-signal-modeling technique,
as follows:

F(z) = B(z)/A(z) =
( q∑

i=0

bi z
−i

)/(
1 +

p∑
i=1

ai z
−i

)
(10)

Theunknowncoefficientsai and bi are to bedetermined such that the impulse response
hF (n), the inverse z-transform of F(z) in (10), best approximates the desired one
hα(n), the inverse z- transform of Hα(z) in (9), in some sense.
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3 Derivation of the Impulse Response

In this section we derive the desired impulse response of the NDFOD. Rewriting first
equation (9) in the factorizing form as

Sα ≈
(

18

7T (−p1)

)α

(1 − z1z
−1)α(1 − z2z

−1)α
(
1 − z−1

p1

)−α

(1 − p2z
−1)−α

(11)
Denoting the four terms in (11) as follows

A1(z) = (1 − z1z
−1)α, A2(z) = (1 − z2z

−1)α,

A3(z) =
(
1 − z−1

p1

)−α

, A4(z) = (1 − p2z
−1)−α

we can write

Sα ≈
(

18

7T (−p1)

)α

A1(z)A2(z)A3(z)A4(z) (12)

By taking the PSE of each factor Ai (z) in (12), we get

Ai (z) =
∞∑
n=1

hi (n)z−n i = 1, 2, 3, 4 (13)

where hi (n) represent the inverse z-transforms of Ai (z). The first L values of the
desired impulse response, required for the computation of the rational approximation
of Hα(z), can be computed via the discrete convolution of the first L values of hi (n), i
=1,2,3,4, i.e.,

h(n) = h1(n) ∗ h2(n) ∗ h3(n) ∗ h4(n) and hα(n) =
( −18

7T p1

)α

h(n) (14)

Once the desired impulse response has been computed, a signal modeling technique
is then applied to estimate the coefficients ai and bi of the transfer function F(z)
approximating Hα(z) . The degrees of the denominator and numerator polynomials p
and q, respectively, are to be chosen by the designer.Many signal-modeling techniques
such as Padé approximant, Prony, Shanks, or Steiglitz Mc-Bride methods can be used
to estimate these coefficients. Simulation experiments showed that the Steiglitz–Mc
Bride method can provide slight improvement in low frequencies as compared to
non-iterative ones (Prony, Shanks). Therefore, in this paper, the coefficients ai and
bi are obtained by modeling the impulse response hα(n), using Steiglitz–Mc-Bride
method. This method is implemented in Matlab by the function stmcb.m. Based on
the above equations, the desired impulse response of the new digital half differentiator
/integrator for L = 500, T = 1s is plotted in Fig. 3. This impulse response will be
modeled in the next section to calculate the coefficients of the rational approximation
of NDFOD.
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4 Simulation Results and Comparisons

4.1 Rational Approximation of sα Using PSE-Signal modeling

In this section, we present simulation results for digital rational approximation (IIR
filters) of continuous half differentiator s0.5 and half integrator s−0.5 sampled at T =
1s, for p = q = 5. The fifth-order models of half differentiator and half integrator
based onNMFare obtained bymodeling the impulse response presented in Fig. 3 using
the Matlab’s mfile stmcb.m. For comparison purposes, the Al-Alaoui, Tustin, Euler,
Hsue, and Al-Alaoui-Schneider operators based rational models are designed using
the same method. The coefficients ai and bi of the obtained rational approximations
are reported in Table 2.

Figure 4 compares the magnitude and phase frequency responses of the rational
approximations (in Table 2) with the ideal half differentiator s0.5 and half integrator
s−0.5.

A zoomed view of the magnitude responses shows that the NMF improves the high
frequency magnitude response comparatively to the Al-Alaoui Schneider, Al-Alaoui,
Tustin, Euler, andHsue operators. Also, the approximations based onNMF have better
phase response than those based on the Al-Alaoui operator and Euler’s rule in high
frequency range and the phase is closer to the ideal one for larger range of frequencies
using Tustin operator.

To see how well the magnitude frequency response is approximated in all the range
of frequencies for half differentiator as well as half integrator, Fig. 5 shows the percent
relative error in magnitude between the ideal continuous fractional-order operator
sα, α = ±0.5 and the approximations defined by the coefficients given in Table 2.

We can observe from Fig. 5 that the NMF accomplishes better magnitude response
fit with the smallest relative error which remains within about Er = ±2.39% for
sα, α = ±0.5. In order to check for the stability of the obtained approximations,
poles-zeros plots are shown in Fig. 6.

We can see that the poles and zeros are inside the unit circle in the z plane and dis-
tributed in alternating fashion that is the obtained rational approximations are stable
and minimum phase. Considering now distinct order of differentiators and integra-
tors, Figures 7 and 8 show the percent relative errors in magnitude of the rational
approximations of sα , for α = ±0.7 and α = ±0.3, respectively.

From the error plots, it can be observed that the differentiator and integrator of
order α = 0.3 and α = 0.7 obtained by using NMF have the smallest error compared
to those based on the others operators.

To further investigate the performance of the proposed approach, let us compare
the existing third-order model of one-third integrator based on Hsue operator obtained
using CFE, proposed in [14], with the third-order approximation obtained using NMF
(PSE-signal modeling), suggested in this paper. From [14], the transfer function of the
third-order model based on Hsue operator is given in (15), with T = 0.001s.

HHsue−cfe− 1
3

= 0.0794
(1 − 0.793z−1)(1 − 0.2646z−1)(1 + 0.1922z−1)

(1 − 0.9108z−1)(1 − 0.4548z−1)(1 + 0.07365z−1)
(15)
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Fig. 4 Magnitude and phase responses of sα and the corresponding approximations obtained using Steiglitz
Mc-Bride based on first-order operators, Al-Alaoui-Schneider operator, and NMF a α =0.5, b α =−0.5
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Fig. 5 Percent relative error corresponding to NMF, Al-Alaoui-Schneider, and first-order operators
a α = 0.5, b α = −0.5

The transfer function of the third-order model of one-third integrator obtained using
NMF (PSE-signal modeling) is given in equation (16).

HNMF−PSE−signal modeling− 1
3

= 0.0952 − 0.1964z−1 + 0.1174z−2 − 0.0161z−3

1 − 2.4474z−1 + 1.9240z−2 − 0.4766z−3

(16)
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Fig. 6 Poles-zeros diagram, a α = 0.5, b α = −0.5
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Fig. 7 Percent relative error corresponding to NMF, Al-Alaoui-Schneider, and first-order operators
a α =0.7, b α =−0.7

The magnitude and phase responses corresponding to the transfer functions (15) and
(16) along with that of the ideal continuous one-third integrator are presented in
Fig. 9.
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Fig. 8 Percent relative error corresponding to NMF, Al-Alaoui-Schneider, and first-order operators
a α =0.3, b α =−0.3

Figure 10 shows thepercent relative error inmagnitudebetween the ideal continuous
one-third integrator and the approximations defined by eqs. (15) and (16). It is clear
that the one-third integrator based on NMF has smaller approximation error than that
of Hsue operator.
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Fig. 9 Magnitude and phase responses of s−1/3 and the approximations obtained using NMF (PSE-signal
modeling) and Hsue (CFE), for T =0.001s, q=p=3

Fig. 10 Percent relative error corresponding to NMF (PSE-signal modeling) and Hsue (CFE)



Circuits Syst Signal Process (2015) 34:1869–1891 1885

Table 3 Coefficients of the rational approximations obtained using PSE- truncation and PSE-signal mod-
eling based on NMF

PSE-truncation PSE-signal modeling

α = 1/4 α =−1/4 α = 1/4 α = −1/4

A(z) a0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000

a1 0.128618732779785 −0.128618732779785 −2.642298424462082 −3.346619696567223

a2 −0.017576702073245 0.034119480495123 2.180842137372684 4.053031823772161

a3 0.004654368244047 −0.011303465735543 −0.360042594479389 −2.015118863658326

a4 −0.001455440936101 0.004107625264022 −0.238434104364171 0.258795471839350

a5 0.000494219246776 −0.001567216047954 0.060014220570801 0.049913556402085

B(z) b0 1.037257739379952 0.964080538553298 1.037257739381558 0.964080538556493

b1 −0.172876289896659 0.160680089758883 −3.047027754055937 −2.941736892553446

b2 −0.129657217422494 0.147290082278976 2.999348950633721 3.105660127139822

b3 −0.060026489547451 0.100425056099302 −0.912125378920097 −1.173256118096685

b4 −0.043719293220393 0.085082339195242 −0.166892647491649 −0.020115601187619

b5 −0.031864061534772 0.071645838633807 0.089452730584446 0.065382467056951

4.2 PSE-signal Modeling Versus PSE-Truncation

In the rest of this section wewill compare the performance of the PSE-signal modeling
and PSE-truncation for rational approximation of sα . An example is used for rational
approximation of sα, α = ±1/4. Table 3 presents the coefficients of rational approx-
imations of sα, α = ±1/4 obtained using PSE-signal modeling and PSE-truncation
approaches based on NMF for p = q = 5, T = 1s, L = 500.

Figure 11 presents the magnitude and phase frequency responses of the rational
approximations (in Table 3) along with that of the ideal fractional-order operator
sα, α = 1/4 and α = −1/4.

Figure 12 presents the percent relative error in magnitude, between the ideal contin-
uous fractional-order operator sα, α = ±1/4 and themagnitude of the approximations
obtained using PSE-signal modeling and PSE-truncation.

Figure 12 shows clearly that the error corresponding to PSE-signal modeling is
smaller than that of the PSE-truncation. To check for the stability of the obtained
approximations, Fig. 13 presents poles-zeros diagram of the approximations based on
NMF.

We can deduce that PSE-signal modeling and PSE-truncation provide stable mini-
mum phase filters since all poles and zeros are inside the unit circle. But unlike PSE-
signal modeling, the PSE-truncation provides approximations which possess complex
conjugate poles and zeros. The latter may not be desirable for approximation of sα .

Now, let us compare the previous methods using the first-order Al-Alaoui operator.
The rational models based on the Al-Alaoui operator using PSE-signal modeling and
PSE-truncation for α = 0.5, p = q = 5, T = 1s, L = 500 are defined by the
coefficients given in Table 4.
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Fig. 11 Magnitude and phase responses of sα and the approximations obtained using PSE-signal modeling
and PSE-truncation based on NMF a α = 1/4, b α = −1/4
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Fig. 12 Percent relative error, a α = 1/4, b α = −1/4

The magnitude and phase frequency responses of the obtained approximations
are shown in Fig. 14 and compared to models obtained using PSE-truncation with
p = q = 40 . The checking of the pole-zero maps shows that the poles and zeros are
complex when using PSE-truncation.

Figure 15 presents the percent relative error inmagnitude.We can observe that PSE-
signal modeling presents the smallest error. Also, we can deduce that increasing the
truncation order (q and p) of numerator and denominator results in slight improvement
in the quality of the magnitude approximation using PSE- truncation.
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Fig. 13 Poles-zeros diagram, a PSE-signal modeling, b PSE-truncation

Table 4 Coefficients of the rational approximations based on Al-Alaoui’s operator

PSE-signal Modeling PSE-Truncation

B(z) b0 1.069044967644567 1.069044967649698

b1 −3.789489561781301 −0.534522483824849

b2 5.080791711801894 −0.133630620956212

b3 −3.129840761402043 −0.066815310478106

b4 0.831436092275494 −0.041759569048816

b5 −0.061940142505705 −0.029231698334171

A(z) a0 1.000000000000000 1.000000000000000

a1 −2.973314461443737 0.071428571428571

a2 3.135238561983327 −0.002551020408163

a3 −1.320541978722998 0.000182215743440

a4 0.140837398772762 −0.000016269262807

a5 0.017868591240445 0.000001626926281
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Fig. 14 Magnitude and phase responses of sα and the approximations obtained using PSE-signal modeling
and PSE-truncation based on Al-Alaoui’s operator

Fig. 15 Percent relative error for α = 0.5
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5 Conclusion

An improved digital rational approximation of sα obtained via PSE-signal-modeling
technique by using a new second-order s-to-z transform was presented and compared
to recently used s-to-z transforms based models. Moreover, PSE-signal modeling has
also been compared to PSE-truncation technique. Themain advantages of the proposed
approach are the following:

– The new second-order s-to-z transform has better magnitude response in almost
over the full Nyquist band than the recently used first-order and higher order s-
to-z transforms with the lower relative error in magnitude which is preferred for
real-time application.

– The PSE-signal-modeling techniques (Prony, Shanks, Padé, and Steiglitz MC-
Bride) of the fractional power of second-order operator (FPSOO) can be accom-
plished and lead to stable models .The drawback is that the approach requires more
arithmetic operations to compute the FPSOO’s impulse response as compared to
the computation of the first-order operators’ impulse response.

– In contrast to the recently used method based on PSE-truncation, PSE-signal-
modeling approach does not lead to approximation with complex conjugate poles
and zeros using first-order or second-order operators.

– Simulation results of magnitude response, phase response, and relative error show
that the rational approximations obtained using PSE-signal modeling outperform
those obtained using PSE-truncation based on first or second-order s-to-z trans-
forms.
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