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Abstract A finite-time observer is designed for linear invariant systems in the pres-
ence of unknown inputs or disturbances with unavailable upper bound. The main
condition for designing the observer is strongly detectability. Geometric control the-
ory is used to decompose the given system into two parts: strongly observable sub-
system and strongly detectable subsystem. Through a series of transformations, the
former can be partitioned into two parts: affected and unaffected by unknown inputs
(UI-free and UI-dependent), and then the states can be exactly estimated via time-
delayed observer in pre-defined time. The nonstrongly observable subsystem can
be observed asymptotically. Without the upper bound of disturbances, the observer
ensures that the convergence time can be set arbitrarily. A numerical example illus-
trates the effective of the proposed estimation schemes.

Keywords Strongly detectability · Strongly observability · Finite-time ·
Time-delayed observer

1 Introduction

1.1 Antecedents and Motivation

The problem of state observation for systems with disturbances or unknown inputs is
important in modern control theory. Such observation problem plays an essential role
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inmodel-based fault detection [9,25,42]. The residuals of faulty system ismade by the
difference between the actual system outputs and the estimated outputs based on state
estimation and when a system is affected by disturbances or unknown inputs, their
effects have to be decoupled from the residuals to avoid false alarms [31]. Another
application field is feedback control. After estimating the undetectable states and
disturbances, robust feedback controllers can be designed [7,27].

As the early linear observer, Luenberger observer [29] has been already applied and
improved greatly [15,37]. The convergence of such observers based on Luenberger
observer is always asymptotic with time. The convergence rate is exponential and can
be assigned by suitably choosing the observer gain.

In the presence of disturbances or unknown inputs, unknown input observer (UIO)
has been developed. The problem of UIO has been initialized by Basile andMarro [1],
Guidorzi and Marro [19]. Since then, there have been some developments for UIOs
[8,10,23,38]. A reduced order observer has been proposed by Hou and Muller for
LTI system through a simple transformation [23], where the states are decomposed
into disturbance-free and disturbance-affected components. A different decomposition
approach is given by M. Lungu to reduce the LTI system with unknown inputs to a
standard one [11]. Considering disturbances and actuator faults, Park decouples the
state and output equations into three subsystems, and then reconstructs the states and
faults [38]. Darouach designs full-order observers with unknown inputs in the state
and measurement equations [10,11], which design some matrixes to eliminate the
influence of unknown inputs and to ensure the asymptotical convergence of observer
error. Hui and Zak give a design procedure for full-order UIO using a projection
operator approach [24]. Aiming at non-minimum phase systems or systems with non-
unity relative degree, MS.Chen and CC.Chen estimate states and unknown inputs
accurately [8].

For the majority of unknown input observers, one of the disadvantages is that
only asymptotic convergence to zero of the observation and error is guaranteed [31].
Sometimes, it is necessary to ensure that the observation convergence time is less than
the dwell time (e.g., in the case of walking robots [40]).

Slidingmode observers arewidely used because of their insensitivitywith respect to
some classes of unknown inputs. The conventional sliding mode observer (SMO) [14,
47,48] feeds back the output estimation error via a nonlinear term. Provided a bound
on the magnitude of the disturbances, SMO can force the output estimation error to
converge to zero in finite time, while the observer states converge asymptotically to the
system states. Based on SMO, unknown inputs can be estimated [3,25] and faults can
be detected [42] or even reconstructed [21,49]. The disadvantages of these observers
are related to obligatory filtration, which causes an intrinsic error in the observed states
that cannot be eliminated. A new generation of observers based on higher-order sliding
mode (HOSM) differentiators has been recently studied [17,18,50], which avoid the
filtration. In particular, HOSM-based observers can be considered as a successful
technique for the state observation of perturbed systems, due to their high precision
and robust behavior with respect to parametric uncertainties [44]. Fridman [17,18]
verifies that the finite time convergence of strongly observable states and asymptotic
convergence of strongly detectable states for LTI system. One disadvantage of HOSM
is that the bound of disturbances must be provided.
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The problem of finite time stabilization is attractive because it usually demonstrates
some nice features such as faster convergence rates and higher accuracies [13]. Besides
HOSM, there are also some other observers ensuring finite time convergence. Engel
and Kreisselmeier have designed a continuous observer that converges exactly to the
state after a pre-defined time delay for linear systems [16]. The finite time converging
estimate is computed from the present and delayed estimates provided by two dis-
tinct state observers. The application fields of the time-delayed observer have been
extended to nonlinear systems [41] and linear time-varying systems [34]. By homoge-
neous systems theory, a continuous finite-time convergent observer was first proposed
for double integrator systems. For higher-dimensional nonlinear cases, Shen [12,43]
develops a semi-global convergent observer rooted in [39] which have very small vari-
ations in homogeneous weight. Menard adds a linear error feedback to semi-global
convergent observer, and ensuring global convergence [33]. Another global convergent
idea is choosing appropriate observer gain [13,28]. There are some other finite-time
observers, such as terminal sliding-mode observer [45], moving horizon observer [35]
and so on.

Aiming at finite time observability of the strongly detectable system, Bejarano
decomposes nonstrongly observable system into strongly observable part and non-
strongly observable part. The states of strongly observable part are expressed as a
function of output and its derivatives,which precision is easily affected by noises [4–6].

In the presence of unknown inputs or faults, Menold and Findeisen [34], Lee and
Park [26] construct finite-time observers for LTI system based on reduced-order UIO
and time-delayed observer. Lee andPark decompose a strongly detectable (observable)
LTI system into an UI-free subsystem and two UI-dependent subsystems, and then
observer the UI-free subsystem using time-delayed observer. Park [38] verifies that the
strongly detectability (observability) of original system is equivalent to the detectabil-
ity (observability) of UI-free subsystem. Time-delayed observer requires the observ-
ability of system [16], and furthermore, the observer poles can be placed arbitrarily, But
the poles of detectable subsystem from strongly detectable system cannot be assigned
arbitrarily. Therefore, not all states of strongly detectable system can be observed in
finite time, which coincides with the definition of strongly detectability [21].

As stated above,mostUIOs only provide asymptotic property [1,8,10,11,19,24,30,
38]. Some finite-time observers don’t consider the influence of disturbances [12,22,
28,33,34,39,43]. Another observers, such as SMOandHOSM, can also provide finite-
time convergence, but they need the bound of disturbances [3,14,17,18,21,25,42,44,
47–50]. The methods of Bejarano [4–6] are easily affected by noises because of the
use of derivatives of outputs. The combination of reduced-order UIO and time-delayed
observer hardly estimate all strongly detectable states in finite time [26,34]. In this
paper, for strongly detectable systemswith disturbances, strongly observable states and
strongly detectable states are handled separately, and the upper bound of disturbances
and derivatives of outputs are unnecessary in the process of finite time observation.

1.2 Contribution

In this paper, the observer is developed for the strongly detectable systems with dis-
turbances, the upper bound of that is unavailable. The states of strongly observable
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subsystem can be reconstructed exactly in pre-defined arbitrary time without partici-
pation of some derivatives, and that of nonstrongly observable part are asymptotically
estimated.

1.3 Structure of the Paper

In Sect. 2we outline the problem statement and give some essential definitions. Section
3 is devoted to decomposing the given strongly detectable system. Section 4 deals with
the design of finite time observer and asymptotic convergent observer. Some numerical
examples are depicted in Sect. 5.

2 Problem Formulation

2.1 System Description

Let us consider the following continuous linear system affected by disturbances.

ẋ(t) = Ax(t) + Bu (t) + Dξ(t) (1a)

y(t) = Cx(t) (1b)

where x(t) ∈ R
n represents the continuous state vector, u(t) ∈ R

m is the known
control input, y(t) ∈ R

p is the measurable outputs of the system, ξ(t) ∈ R
q is

the disturbances or unknown inputs. A(t) ∈ R
n×n , B(t) ∈ R

n×m , C(t) ∈ R
p×n ,

D(t) ∈ R
n×q is known constant matrices.

2.2 Preliminaries

Somedefinitions about the properties of system� (A,C, D) are introduced for design-
ing the observer.

Definition 2.1 [20] � is strongly observable if for all x0(t) ∈ R
n and for every

unknown input ξ(t), the following holds: yξ (t, x0) = 0 for all t ≥ 0 implies x0 ≡ 0.

Definition 2.2 [20] � is strongly detectable if for all x0(t) ∈ R
n and for every

unknown input ξ(t), the following holds: yξ (t, x0) = 0 for all t ≥ 0 implies x0 = 0,
as t → ∞.

Definition 2.3 [18] s0 ∈ C is called an invariant zero of � if R(s0) < n + R (D),
where R(s) is the Rosenbrock matrix of system �

R(s) =
(
s I − A −D

C 0

)

Definition 2.4 [46] ν is called output-nulling controlled invariant subspace if for every
x0 ∈ ν, there exists a ξ satisfying that (Ax0 + Dξ) ∈ v and Cx0 = 0. ν∗ is called the
maximal output-nulling controlled invariant subspace if for every ν, we have ν ∈ ν∗.
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Remark 2.1 [46] The weakly unobservable subspace coincides with the maximal
output-nulling controlled invariant subspace ν∗.
Lemma 2.1 [20,46] The following statements about strongly observable system are
equivalent.

(i) the system � is strongly observable.
(ii) the Rosenbrock matrix of system � has no invariant zeros.
(iii) ν∗ = 0.

Lemma 2.2 [20,46] The following statements about strongly observable system are
equivalent.

(i) the system � is strongly detectable.
(ii) the invariant zeros of the Rosenbrock matrix of system � satisfy Re s < 0.

Definition 2.5 [46] For a linear map A : X → Y , we define

ker A := {x ∈ X |Ax = 0 }
imA := {Ax |x ∈ X }

called the kernel and image of A, respectively.

From the following section, we can see that strongly observable system can be
obtained from strongly detectable system, so this paper studies more extensive case-
strongly detectable systems.Without loss of generality, it will be assumed that R(C) =
p, R(D) = q, q < p. The aim of this article is to build a scheme to provide the exact
estimation of the states.

3 System Decomposition

3.1 Decomposition into Strongly Observable and Nonstrongly Observable
Subsystems

Now, we will decompose the strongly detectable system� (A,C, D) into the strongly
observable part and the nonstrongly observable part by employing geometric control
theory [17]. With this aim, we need basis of ν∗. Next, we will give an algorithm to
construct basis of the weakly unobservable subspace ν∗.

According to the definition of controlled invariant subspace [46], ν∗ is the maximal
(A, imD) controlled invariant subspace contained in the kernel of the map C , so ν∗
can be computed with the sequence [32,46].

ν1 = ker (C) ,

νi = ker (C) ∩ A−1 (νi−1 + imD) , (i = 2, 3, . . .) (2)

That converges in finite number of steps, i.e. for some integer k, we have νk = νk+1
for all t ≥ k. Consequently, the inclusion chain for νt must have the form

ν1 ⊃ ν2 ⊃ · · · ⊃ νk = νk+1 = νk+2 = · · · (3)

for some integer k. We contend that ν∗ = νk .
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Next, a matrix V is chosen as the basis of ν∗. F.J.Bejarano [4] constructs a nonsin-
gular matrix rooted in [36] as following

M := V⊥

where V⊥ satisfies V⊥V = 0.
The nonsingular matrices

P :=
[
M

V+
]

, P−1 := [
M+, V

]
(4)

where V+ = (
V T V

)−1
V T , M+ = MT

(
MT M

)−1
.

Lemma 3.1 [2] A subspace ν with basis V is an
(
A, imD

)
-controlled invariant

subspace if and only if there exist matrices Q∗ and K ∗ such that

AV = V Q∗ + DK ∗ (5)

From Eq. (3), we can see that ν∗ is controlled invariant subspace, so the basis V of ν∗

satisfy Eq. (5), which can be rewritten as AV = [
V D

] [
Q∗

K ∗
]
. Then all solutions

of Eq. (5) are [
Q∗

K ∗
]

= [
V D

]+
AV + H1K1 (6)

where imH1 = ker
[
V D

]
and K1 is arbitrary, so Q∗ and K ∗ are not unique.

Taking into account that V+V = I , from Eq. (5) it is easy to obtain the following
equation: (

A − DK̄ ∗) V = V Q∗ (7)

where K̄ ∗ = K ∗V+.
Let x̄ = Px , the system in the new coordinate can be rewritten as follows:

[ ˙̄x1(t)
˙̄x2(t)

]
=

[
Ā11 0

Ā21 Ā22

] [
x̄1(t)

x̄2(t)

]
+

[
D̄1

D̄2

]
ξ̄ (t) (8a)

y(t) = C̄1 x̄1(t) (8b)

ξ̄ (t) = ξ(t) − K ∗ x̄2(t) (8c)

where
[
Ā11 0

Ā21 Ā22

]
= P(A + DK̄ ∗)P−1,

[
D̄1

D̄2

]
= PD, C̄1 = CM+ (9)

Thefirst subsystem ( Ā11, C̄1, D̄1) is stronglyobservable, x̄1(t)∈ R
l and R(D̄1) = q

[6].
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3.2 Decomposition into UI-Free and UI-Dependent Subsystems

Consider the first strongly observable subsystem of (8)

˙̄x1(t) = Ā11 x̄1(t) + B̄1u(t) + D̄1ξ̄ (t) (10a)

y(t) = C̄1 x̄1(t) (10b)

Choose a nonsingular matrix

T = [
N D̄1

]
, N ∈ R

l×(l−q) (11)

for a co-ordinate transformation of the strongly observable subsystem Eq. (10), where
N is an arbitrary matrix making T nonsingular. Let x̄1(t) = T x̃1(t) and then the
subsystem can be separated into the following form:

[ ˙̃x11(t)
˙̃x12(t)

]
=

[
Ã1 Ã2

Ã3 Ã4

] [
x̃11(t)

x̃12(t)

]
+

[
B̃1

B̃2

]
u(t) +

[
0

Iq

]
ξ̄ (t) (12a)

y(t) = [
C̄1N C̄1 D̄1

]
x̃1(t) (12b)

where x̃11(t)∈ R
l−q , x̃12(t)∈ R

q . In (8a) the second differential equation involves the
unknown input. Dropping the UI-dependent equation, and then UI-free differential
equation as following:

˙̃x11(t) = Ã1 x̃11(t) + Ã2 x̃12(t) + B̃1u(t) (13)

Assuming R(C̄1 D̄1) = R(D̄1) = q, and a nonsingular matrix can be chosen as
following :

U = [
C̄1 D̄1 Q

]
, Q ∈ R

p×(p−q)

where Q is an arbitrary matrix making U nonsingular.
Defining

U−1 =
[
U1

U2

]
,U1 ∈ R

q×p,U2 ∈ R
(p−q)×p

so

U−1U =
[
U1

U2

] [
C̄1 D̄1 Q

] =
[
U1C̄1 D̄1 U1Q

U2C̄1 D̄1 U2Q

]
=

[
Iq 0

0 Ip−q

]

Pre-multiplying both sides of (12b) by U−1, we have

U1y(t) = U1C̄1N x̃11(t) + x̃12(t) (14a)
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U2y(t) = U2C̄1N x̃11(t) (14b)

Substituting (14) into (13), we have

˙̃x11(t) = A1 x̃11(t) + B̃1u(t) + Fy(t) (15a)

ỹ(t) = C1 x̃11(t) (15b)

where

A1 = Ã1 − Ã2U1C̄1N ,F = Ã2U1,C1 = U2C̄1N , ỹ(t) = U2y(t).

4 Reconstruction of System States

Lemma 4.1 Assuming R(C̄1 D̄1) = R(D̄1) = q. Then ( Ā11, C̄1, D̄1) is strongly
observable, if and only if (A1,C1) is observable.

Proof Let

P =
[
Il−q 0

−U1C̄1N Iq

]
∈ R

l×l , with R(P) = l

Designing nonsingular matrix

M =
[
T−1 0

0 U−1

]
∈ R

(l+p)×(l+p), H =
[
T P 0

−V P Iq

]
∈ R

(l+q)×(l+q)

where V = [− Ã3 s Iq − Ã4 ]. Obviously, R(M) = l + p, R(H) = l + q.
( Ā11, C̄1, D̄1) is strongly observable, and can be expressed as following:

R

[
s Il − A11 D̄1

C̄1 0

]
= l + q, for all s ∈ C.

And then

R

[
s Il − A11 D̄1

C̄1 0

]

= R

{
M

[
s Il − A11 D̄1

C̄1 0

]
H

}

= R

[
(T−1(s Il − Ā11)T − T−1 D̄1V )P T−1 D̄1

U−1C̄1T P 0

]
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= R

⎡
⎢⎣

(
s Il −

[
Ã1 Ã2

Ã3 Ã4

]
−

[
0

Iq

]
V

)
P

[
0
Iq

]

U−1
[
C̄1N C̄1 D̄1

]
P 0

⎤
⎥⎦

= R

⎡
⎢⎢⎢⎣

[
s Il−q − Ã1 + Ã2U1C̄1N − Ã2

0 0

] [
0

Iq

]
[
U1

U2

] [
C̄1N C̄1 D̄1

]
P 0

⎤
⎥⎥⎥⎦

= R

⎡
⎢⎢⎢⎣
s Il−q − A1 − Ã2 0

0 0 Iq
0 Iq 0

C1 0 0

⎤
⎥⎥⎥⎦

= 2q + R

[
s Il−q − A1

C1

]

Obviously,

[
s Il − A11 D̄1

C̄1 0

]
loses rank if and only if

[
s Il−q − A1
C1

]
loses rank,

so R

[
s Il−q − A1
C1

]
= l − q for all s ∈ C, i.e. (A1,C1) is observable. End proof. ��

4.1 Reconstruction of Strongly Observable States

From Lemma 4.1, (A1,C1) is observable, so a finite time observer(time-delayed
observer) can be designed for Eq. (15) [16]. One can always find two different vectors
L1 and L2 satisfying

Ji := A1 − LiC1(i = 1, 2)

which are stable. So we can design two standard Luenberger observers:

˙̃z1(t) = (A1 − L1C1)z̃1(t) + B̃1u(t) + Fy(t) + L1 ỹ(t) (16a)
˙̃z2(t) = (A1 − L2C1)z̃2(t) + B̃1u(t) + Fy(t) + L2 ỹ(t) (16b)

Designing

J :=
[
J1 0

0 J2

]
, L :=

[
L1

L2

]
,G1 :=

[
B̃1

B̃1

]

G2 :=
[
F + L1U2

F + L2U2

]
, K :=

[
I(l−q)×(l−q)

I(l−q)×(l−q)

]
, z̃ :=

[
z̃1
z̃2

]

Then the state estimate of the system equation (15) is obtained by projecting the current
states z̃1(t), z̃2(t) and the time-delayed observer states z̃1(t − τ), z̃2(t − τ) with time
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delay τ . i.e.

˙̃z(t) = J z̃(t) + G1u(t) + G2y(t) (17a)

ˆ̃x11(t) = S
[
z̃(t) − eJτ z̃(t − τ)

]
(17b)

where det
[
K eJτ K

] = 0, S := [
I(l−q)×(l−q) 0(l−q)×(l−q)

] [
K eJτ K

]−1
, so

the observer (17) can guarantee that ˆ̃x11(t) converge to x̃11(t) in finite time τ . Further-
more, one can see that the observermust be defined on the time interval t ∈ [t0, t0 + τ ],
i.e. the estimation error e(t) = ˆ̃x11(t) − x̃11(t) stays bounded ∀t ∈ [t0, t0 + τ ].

Hence, for t ≥ t0 + τ , from (14) and x̄1(t) = T x̃1(t), the state estimation of (10) is

ˆ̄x1(t) = T

[ ˆ̃x11(t)
U1y(t) −U1C̄1N x̃11(t)

]
(18)

Remark 4.1 [37] If Li is chosen such that Reλi (J2) < σ < Reλi (J1), i
= 1, 2, · · · , l − q for some σ < 0, where Reλi (J j ) represents the real part of the
Luenberger observer pole, then det

[
K eJτ K

] = 0 for almost all τ ∈ R
+.

Remark 4.2 If the Luenberger observer poles can be assigned arbitrarily, then the
strict condition of Remark 4.1 can be easily met. Furthermore, observable system
can provide arbitrary observer poles, but detectable system cannot, so it is difficult or
unable to satisfy the condition of Remark 4.1 for detectable system. Lee and Park [26]
can only deal with observable case, i.e., their scheme can only be applied into strongly
observable system.

After observing the strongly observable part of system (1) in pre-defined time, the
nonstrongly observable but strongly detectable subsystem can be estimated asymptot-
ically as following.

4.2 Reconstruction of Nonstrongly Observable States

It has been assumed that R(D̄1) = q, so from system (8), we have

ξ̄ (t) = (
D̄1

)+ ( ˙̄x1(t) − Ā11 x̄1(t) − B̄1u(t)
)

(19)

Substituted (19) into the second differential equation of (8a):

˙̄x2(t)= Ā22 x̄2(t)+ Ā21 x̄1(t)+ B̄2u(t)+ D̄2
(
D̄1

)+( ˙̄x1(t)− Ā11 x̄1(t)− B̄1u(t)
)

(20)

The observer of (20) can be designed as following:

ˆ̄x2(t) = ˜̄x2(t) + D̄2
(
D̄1

)+
x̄1(t) (21a)

˙̄̃x2(t) = Ā22 ˆ̄x2(t) + Ā21 x̄1(t) + B̄2u(t) − D̄2
(
D̄1

)+ (
Ā11 x̄1(t) + B̄1u(t)

)
(21b)
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so the error is governed by the following equation:

˙̄x2(t) − ˙̄̂x2(t) = Ā22

(
x̄2(t) − ˆ̄x2(t)

)
(22)

The strongly detectability of system � can result in the asymptotic convergence of
x̄2(t) [6], i.e. ˆ̄x2(t) → x̄2(t) , t → ∞ (23)

The transformed states are estimated through a series of transformations, so the
inverse process of the transformations can be used to obtain the states of system (1).

5 Numerical Examples

For observation problem, the known input does not play any role [4]. Therefore,
without loss of generality it will be assumed that the control input u(t) = 0. Then
system (1) can be simplified into the following equation:

ẋ(t) = Ax(t) + Dξ(t), y(t) = Cx(t)

Consider the following example which is strongly detectable:

⎡
⎣ ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣−1 −1 0
0 −1 1
0 0 −1

⎤
⎦

⎡
⎣ x1
x2
x3

⎤
⎦ +

⎡
⎣1
0
0

⎤
⎦ ξ(t) (24a)

y(t) =
[
1 0 1
0 0 1

] ⎡
⎣ x1
x2
x3

⎤
⎦ (24b)

It can be verified that the system has an invariant zero at s0 = −1. Defining
ξ(t) = sin(t).

To decompose the system into a strongly observable subsystem and a nonstrongly
observable subsystem, the transformation matrices is chosen as following:

P =
⎡
⎣1 0 0
0 0 1
0 −1 0

⎤
⎦ (25)

then the strongly observable subsystem ( Ā11, C̄1, D̄1) can be obtained. The two fol-
lowing nonsingular matrixes T and U are used to decompose the above subsystem
into UI-free and UI-dependent subsystems.

T =
[
0 1
1 0

]
,U =

[
1 0
0 1

]
(26)

The time-delayed observer estimates the state of UI-free system in a pre-defined
time, and simultaneously, the UI-dependent state can be easily calculated precisely.
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Fig. 1 Trajectories of errors with initial condition x0 = [1, 1, 1]T

After the states of strongly observable subsystem obtained, the nonstrongly observ-
able state (strongly detectable state) is given by (21), which is asymptotic convergent.

With the initial condition x0 = [
1, 1,−1

]T for system (24) and the initial observer
states all equal to zero, we define the convergence time τ = 0.1s, i.e. the estimation
errors of strongly observable states are exactly equal to zero after the convergent time
τ . In this example, it is easy to verify that x1 and x2 are strongly observable states.
And then the finite time convergence and good accuracy of the estimation are both
apparent from the plots of Fig. 1 Meanwhile, the following figure illustrates the dif-
ference between the asymptotic convergence behavior and the finite time convergence
behavior.

The high-precision and pre-defined convergent time are not affected by the change
of system initial states. To validate this, the initial condition of system (Sect. 2.2) is
assigned on [xin, xin,−xin], where xin is equal to 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and
5 respectively, so the details of the trajectories of errors are shown in Figs. 2 and 3.
The following two figures show that the strongly observable states can converge to the
true states exactly in pre-defined time regardless of initial condition.

6 Conclusions

We suggested a state observer for linear invariant strongly detectable systems in the
presence of unknown inputs with unavailable upper bound. Geometric control theory
is made use of to decompose a strongly detectable system into a strongly observable
part and a nonstrongly observable (but strongly detectable) part. For the former part,
time-delayed observer can exactly estimate its states in arbitrarily pre-defined time.
And for the latter part, the states are observed asymptotically. The simulation validates
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Fig. 2 The details of trajectories of x1 errors with multiple initial conditions
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Fig. 3 The details of trajectories of x3 errors with multiple initial conditions

the high-precision and finite-time convergence of the presented observer, which cannot
be affected by the change of initial states.
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