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Abstract The stability and stabilisation problems for a series of continuous stochastic
singular systems with multiple time-varying delays are studied in this paper. First, a
useful lemma is proposed and a delay-distribution-dependent Lyapunov functional is
constructed. Then, a novel delay-distribution-dependent condition is given to ensure
the unforced stochastic singular systems to be regular and impulse-free. The mean-
square exponential stability of the whole system is guaranteed under the proposed
lemma. As a result, a suitable feedback controller is designed via strict linear matrix
inequality such that the system’s stabilisation problem is guaranteed. Finally, numeri-
cal examples are illustrated to show the proposed result are less conservative than the
existing ones and the potential of such technology.
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1 Introduction

Singular systems, which are known as descriptor systems, implicit systems, differen-
tial algebraic systems or generalised state-space systems, have extensive applications
in electrical circuits, power systems, economics and other areas [1,5,13]. In recent
decades, many results have been reported on the control of singular systems, for
example, the problem of state feedback H∞ control for discrete singular systems was
investigated in [33] and it is not necessary to assume the system to be regular. Con-
sidering the relationship between slow and fast subsystems of the singular system, a
novel bounded real lemma (BRL) was provided in [10], and robust H∞ performance
was obtained on the basis of BRL. Furthermore, for discrete-time singular Markov
jump systems with actuator saturation, the regularity, causality and bounded state sta-
bility of such systems was investigated in [19], and the H∞ controller was designed
with singular value decomposition approach. A necessary and sufficient condition was
proposed in [26] to ensure the sliding mode dynamics to be stochastic admissible. For
nonlinear singular Itô stochastic systems with Markovian switching parameters, the
sliding mode controller designing approach was introduced in [25].

On the other hand, time-delay frequently occurs in various practical systems such
as chemical processes, biological systems and networked control system [3,8,17,38].
The existence of time-delay may induce instability and poor performance. There-
fore, many results have been established for singular systems with time-delay which
can be classified into two types, delay-independent condition and delay-dependent
condition (see [2,6,7,12,14–16,18–20,23,24,27,30,31,34–37,39,40] and the refer-
ences therein). Most of the research results have focused on delay-dependent condi-
tions for the less conservatism. Such as, in [7], a delay-range-dependent condition
for unforced singular systems with multiple time-varying delays was given to ensure
the system to be regular, impulse-free and α-stable, then, a method to estimate the
system’s convergence rate was proposed. For time-delay singular system, a kind of
delay-dependent BRL was established in [34], and the regularity, impulse-freeness and
stability of the singular system with a prescribed H∞ performance was guaranteed. A
kind of passivity-based sliding mode control approach was studied in [24] for a class
of uncertain nonlinear singular time-delay systems. Based on the delay partitioning
technique, a delay-dependent stochastic stability condition was derived in [30] for
discrete-time singular Markov jump systems with time-varying delay and piecewise-
constant transition probabilities. Reference [40] has considered the exponential H∞
filtering problem for discrete-time switched singular systems with time-varying delay.
For stochastic system with multiple delay, [32] has dealt with the problem of robust
exponential stability for a class of uncertain stochastic neural networks with mul-
tiple delays via multiple-difference-dependent Lyapunov–Krasovskii functional and
free-weighting matrices method. Besides, in terms of Linear matrix inequality (LMI),
the stability analysis of stochastic neural networks with multiple time-delays is given
in [9].

To the author’s knowledge, the research on the stochastic singular system with
multiple time-varying delays is rather limited, because the study of singular system
with multiple time-varying delays is much more complicated than the singular system
with single time-delay or without time-delay, it is due to the difficulty of guaranteeing
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the stability of the fast subsystem [11,21,37]. Therefore, the main purpose of this
research is: (1) to propose a useful lemma which is used to guarantee the mean-square
exponential stability of stochastic singular system; (2) to use the statistical distribution
of each time-delays, so that a less conservative delay-distribution-dependent condition
is given, which result in that the stochastic singular system is regular, impulse-free and
mean-square exponential stable; (3) not to use free-weighting matrix to deal with cross-
product term, and hence the produced method includes much fewer matrix variables
than the existing one; (4) that the corresponding controller design approach is given
to ensure the mean-square exponential stability of the closed-loop system. These four
aspects form the novelty of the work given in this paper. Finally, three numerical
examples are given to show the effectiveness of the proposed methods.

Notation: R
n and R

m×n denote the n-dimensional Euclidean space and the set of
all m × n real matrices, respectively. The notation X > Y (X � Y ) means that X and
Y are symmetric matrices and X −Y is positive definition (positive semi-definition). I
and 0 represent the identical matrix and the zero matrix, respectively. The superscript
“T” represents the transpose, and diag{. . .} means the block-diagonal matrix. For an
arbitrary matrix B and two symmetric matrices A and C

[
A B
∗ C

]

denotes a symmetric matrix, where ∗ denotes the entries implied by symmetry. ‖φ‖c =
sup−τ�t�0 ‖φ(t)‖.

2 Problem Formulation

Consider a class of continuous-time linear singular systems with multiple time-varying
delays, which can be described as

{
Eẋ(t) = Ax(t) +∑p

k=1 Ak x(t − dk(t)) + Bu(t)

x(t) = φ(t), − max(d̄k) � t � 0
, (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input, the matrix
E ∈ R

n×n may be singular and satisfying rank(E) = r � n, A, Ak and B are known
constant matrices, φ(t) ∈ Cυ

τ is a compatible vector valued continuous function which
denotes the initial condition of x(t), and dk(t), k = 1, 2, . . . , p is the time-varying
delay satisfying

0 < dk � dk(t) � d̄k, ḋk(t) � μ < 1, (2)

where μ is a given scalar, dk and d̄k are scalars representing the lower and the upper
bound of the time-varying delay dk(t). The unforced system (u(t) = 0) of (1) can be
written as
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Eẋ(t) = Ax(t) +
p∑

k=1

Ak x(t − dk(t)). (3)

There exist scalars τk satisfying dk � τk � d̄k , and denoting a series of variables
δk(t) as

δk(t) =
{

1, dk(t) ∈ [dk, τk]
0, dk(t) ∈ (τk, d̄k] . (4)

Define d̂k(t) = δk(t)dk(t) and d̃k(t) = (1 − δk)dk(t), the unforced system (3) can
be rewritten as the following stochastic unforced singular system with multiple time-
varying delays:

Eẋ(t) = Ax(t) +
p∑

k=1

[
δk(t)Ak x(t − d̂k(t)) + (1 − δk(t))Ak x(t − d̃k(t))

]
. (5)

Remark 1 In [4,7], the derived stability criteria are dependent on the varying range
of the time-varying delay. However, if some values of the delay are changed largely
whereas the probabilities of the delay in such large range are very small, thus, the
obtained results are much conservative in [4,7] where only the information of delay
variation range is considered. In this study, by employing the information of delay
distributions [22], the corresponding result can be improved.

Throughout the paper, the following definition and lemma are made.

Definition 1 [7,27]

1. System (5) is said to be regular if det(s E − A) is not identically zero.
2. System (5) is said to be impulse-free if deg(det(s E − A)) = rank(E).
3. The stochastic singular system (5) is said to be mean-square exponentially stable, if

there exist scalars α > 0 and β > 0 such that, for any compatible initial condition
φ(t), E{‖x(t)‖2} � βe−αt‖φ‖2

c, t > 0.
4. System (5) is said to be mean-square exponentially admissible if it is regular,

impulse-free and mean-square exponentially stable.

Lemma 1 [29] For any given symmetric positive definite matrix V ∈ R
n×n, and

scalars α > 0, 0 � h1 < h2, if there exists a vector function ė(θ) : [−h2, 0] → R
n

such that the following integration is well defined, then

γ (t) = −
∫ −h1

−h2

ė(t + θ)Teαθ V ė(t + θ)dθ

� α

eαh1 − eαh2

[
e(t − h1)

e(t − h2)

]T [ V −V
−V V

] [
e(t − h1)

e(t − h2)

]

Remark 2 Lemma 1 is used to deal with cross-product terms, thus, the number of
decision variables is less than the one with free-weight matrix technology to deal with
cross-product terms.
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3 Main Results

In this section, a useful lemma is first proposed and a novel delay-distribution-
dependent condition to ensure the stochastic singular system (5) to be regular, impulse-
free and mean-square exponentially stable is derived from this lemma.

Lemma 2 Suppose that a series of positive continuous functions fk(t), k =
1, 2, . . . , p satisfy

p∑
k=1

E{ fk(t)} � ζ1

p∑
k=1

{
sup

t−d̄k�s�t−τk

fk(s)

}

+ ζ1

p∑
k=1

E

{
sup

t−τk�s�t−dk

fk(s)

}
+

p∑
k=1

ζ2e−αt

where α > 0, 0 < 2ζ1 < 1, ζ2 > 0, β > 1, 0 < 2ζ1eδ max{d̄k } < 1, 0 < δ <

min{α, min(d̄−1
k ) ln η̃}, η̃ > 1, d̄k > 0, then

p∑
k=1

E{ fk(t)} � βe−δt
p∑

k=1

E

{
sup

−d̄k�s�0

fk(s)

}
+

p∑
k=1

ζ2e−δt

1 − 2ζ1eδd̄k
, t � 0.

Proof Similarly as Lemma 2 of [36], for t � 0, we have

p∑
k=1

E{ fk(t)} � ζ1

p∑
k=1

E

{
sup

t−d̄k�s�t−τk

fk(s)

}

+ζ1

p∑
k=1

E

{
sup

t−τk�s�t−dk

fk(s)

}
+

p∑
k=1

ζ2e−δt

� 2ζ1

p∑
k=1

E

{
sup

t−d̄k�s�t

fk(s)

}
+

p∑
k=1

ζ2e−δt (6)

If the following inequality holds,

2ζ1

p∑
k=1

E

{
sup

t−d̄k�s�t

fk(s)

}
+

p∑
k=1

ζ2e−δt

� βe−δt
p∑

k=1

E

{
sup

−d̄k�s�0

fk(s)

}
+

p∑
k=1

ζ2e−δt

1 − 2ζ1eδd̄k

then, Lemma 2 can be obtained, and we will proof it by contradiction approach.
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If the second inequality of Lemma 2 is true, there exists a scalar ε0 > 0

p∑
k=1

E { fk(t)} < βe−δt
p∑

k=1

E

{
sup

−d̄k�s�0

fk(s)

}
+

p∑
k=1

ζ2e−δt

1 − 2ζ1eδd̄k
+ ε0. (7)

Note that

p∑
k=1

E { fk(0)} � 2ζ1

p∑
k=1

E

{
sup

−d̄k�s�0

fk(0)

}
+

p∑
k=1

ζ2

< β

p∑
k=1

E

{
sup

−d̄k�s�0

fk(0)

}
+

p∑
k=1

ζ2

1 − 2ζ1eδd̄k
+ ε0. (8)

By using contradiction method, if Eq. (7) is not true, thus, there exists t̄ such that

p∑
k=1

E
{

fk(t̄)
} = βe−δt̄

p∑
k=1

E

{
sup

−d̄k�s�0

fk(s)

}
+

p∑
k=1

ζ2e−δt̄

1 − 2ζ1eδd̄k
+ ε0 (9)

and

p∑
k=1

E { fk(t)} < βe−δt
p∑

k=1

E

{
sup

−d̄k�s�0

fk(s)

}
+

p∑
k=1

ζ2e−δt

1 − 2ζ1eδd̄k
+ ε0, t < t̄ .

(10)

For t ∈ [−d̄k, 0
]
, we have the following results:

p∑
k=1

E { fk(t)} �
p∑

k=1

E

{
sup

−d̄k�s�0

fk(s)

}

<

p∑
k=1

E

{
sup

−d̄k�s�0

fk(s)

}
βe−δt +

p∑
k=1

ζ2e−δt

1 − 2ζ1eδd̄k
+ ε0. (11)

Therefore, (10) holds for any t ∈ [−d̄k, t̄
)
. However, from (6), (9), and (11), we can

see that

p∑
k=1

E
{

fk(t̄)
}

� 2ζ1

p∑
k=1

{
sup

t̄−d̄k�s�t̄

fk(s)

}
+

p∑
k=1

ζ2e−δt̄

< 2ζ1

p∑
k=1

E

{
sup

−d̄k�s�0

fk(s)

}
βe−δt̄
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+
p∑

k=1

2ζ1eδd̄k ζ2e−δt̄

1 − 2ζ1eδd̄k
+ 2ζ1ε0 +

p∑
k=1

ζ2e−δt̄

< E

{
sup

−d̄k�s�0

fk(s)

}
βe−δt̄ +

p∑
k=1

ζ2e−δt̄

1 − 2ζ1eδd̄k
+ ε0. (12)

Obviously, (12) contradicts (9) and Lemma 2 can be obtained with ε0 → 0. The proof
is completed. ��

Remark 3 Due to β > 1, 0 < 2ζ1 < 1 and 0 < 1−2ζ1eδ max{d̄k } < 1, it is not difficult
to conclude that Eq. (8) always holds.

Remark 4 Equation (11) holds for β > 1, e−δt > 1, ε0 > 0, ζ2e−δt > 0 and
1 − 2ζ1eδd̄k > 0.

Next, we will considering the admissibility of system (5).

Theorem 1 Denoting E{δk(t) = 1} = δ̃k , given positive scalars d̄k , dk and δ̃k ,
k = 1, . . . , p, 0 � μ < 1 and α > 0. System (5) is mean-square exponentially
admissible if there exist a nonsingular matrix P, positive definite matrices Qkv ,
Zkw, k = 1, . . . , p, v = 1, 2, 3, 4, 5, w = 1, 2, 3, 4 such that the following LMI
holds:

⎡
⎢⎢⎢⎢⎣

Π φ1,2 φ1,3 φ1,4 φ1,5
∗ φ2,2 0 0 0
∗ ∗ φ3,3 0 0
∗ ∗ ∗ φ4,4 0
∗ ∗ ∗ ∗ φ5,5

⎤
⎥⎥⎥⎥⎦ < 0 (13)

with the constraint

ET P = PT E � 0, (14)

where

Π =

⎡
⎢⎢⎢⎢⎢⎢⎣

Π1 PT Ã1 PT Ã2 0 Ξ1 Ξ2
∗ U1 0 0 0 0
∗ ∗ U2 0 0 0
∗ ∗ ∗ U3 0 Ξ3
∗ ∗ ∗ ∗ U4 Ξ4
∗ ∗ ∗ ∗ ∗ U5

⎤
⎥⎥⎥⎥⎥⎥⎦
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with elements defined as

Π1 = AT P + PT A + αET P +
p∑

k=1

(
Qk1 + Qk2 + Qk3 + δ̃k Qk4 + (1 − δ̃k)Qk5

+ α

1 − eαd̄k
ET Zk1 E + α

1 − eατk
ET Zk2 E

)

Ã1 =
[
δ̃1 A1 δ̃2 A2 . . . δ̃p Ap

]
,

Ã2 =
[
(1 − δ̃1)A1 (1 − δ̃2)A2 . . . (1 − δ̃p)Ap

]

Ξ1 =
[
− α

1 − eαd̄1
ET Z11 E . . . − α

1 − eαd̄p
ET Z p1 E

]
,

Ξ2 =
[
− α

1 − eατ1
ET Z12 E . . . − α

1 − eατp
ET Z p2 E

]

Ξ3 = diag

{
− α

eαd1 − eατ1
ET Z13 E, . . . ,− α

eαd p − eατp
ET Z p3 E

}
,

Ξ4 = diag

{
− α

eατ1 − eαd̄1
ET Z14 E, . . . ,− α

eατp − eαd̄p
ET Z p4 E

}
,

U1 = diag
{
−δ̃1(1 − μ)e−ατ1 Q14, . . . ,−δ̃p(1 − μ)e−ατp Q p4

}
,

U2 = diag
{
−(1 − δ̃1)(1 − μ)e−αd̄1 Q15, . . . ,−(1 − δ̃p)(1 − μ)e−αd̄p Q p5

}
,

U3 = diag

{
−e−αd1 Q11 + α

eαd1 − eατ1
ET Z13 E, . . . ,

−e−αd p Q p1 + α

eαd p − eατp
ET Z p3 E

}

U4 = diag{−e−αd̄1 Q12 + α

1 − eαd̄1
ET Z11 E + α

eατ1 − eαd̄1
ET Z14 E,

. . . ,−e−αd̄p Q p2 + α

1 − eαd̄p
ET Z p1 E + α

eατp − eαd̄p
ET Z p4 E}

U5 = diag{−e−ατ1 Q13 + α

1 − eατ1
ET Z12 E + α

eαd1 − eατ1
ET Z13 E

+ α

eατ1 − eαd̄1
ET Z14 E, . . . ,−e−ατp Q p3 + α

1 − eατp
ET Z p2 E

+ α

eαd p − eατp
ET Z p3 E + α

eατp − eαd̄p
ET Z p4 E}

φ1,2 =
[√

d̄1V T
11 Z11

√
d̄2V T

11 Z21 . . .

√
d̄pV T

11 Z p1

]
,

φ1,3 =
[√

τ1V T
11 Z12

√
τ2V T

11 Z22 . . .
√

τpV T
11 Z p2

]
,

φ1,4 =
[√

τ1 − d1V T
12 Z13

√
τ2 − d2V T

12 Z23 . . .
√

τp − d pV T
12 Z p3

]
,
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φ1,5 =
[√

d̄1 − τ1V T
13 Z14

√
d̄2 − τ2V T

13 Z24 . . .

√
d̄p − τpV T

13 Z p4

]
,

V11 =
[

A Ã11 Ã21 01×3p

]
, Ã11 =

[
δ̃1 A1 δ̃2 A2 . . . δ̃p Ap

]
,

Ã21 =
[
(1 − δ̃1)A1 (1 − δ̃2)A2 . . . (1 − δ̃p)Ap

]
,

V12 =
[

A Ã12 01×4p

]
, V13 =

[
A 01×p Ã12 01×3p

]
,

Ã12 = [
A1 A2 . . . Ap

]
,

φ2,2 = diag{−Z11,−Z21, . . . ,−Z p1}, φ3,3 = diag{−Z12,−Z22, . . . ,−Z p2}
φ4,4 = diag{−Z13,−Z23, . . . ,−Z p3}, φ5,5 = diag{−Z14,−Z24, . . . ,−Z p4}

Proof First, the regularity and impulse-freeness of the system (5) is shown as follows.
Since rank(E) = r � n, there exist two nonsingular matrices R and L such that

RE L =
[

Ir 0
0 0

]
, R AL =

[
A11 A12
A21 A22

]
, R−T P L =

[
P̂11 P̂12

P̂21 P̂22

]
. (15)

Substitute (15) into (13) and (14), it is straight forward to obtain AT
22 P̂22 + P̂T

22 A22 < 0
and we can conclude that A22 is nonsingular, from Definition 1, it implies that system
(5) is regular and impulse-free. Next, we will show the mean-square exponential
stability of the system (5). Choose the following Lyapunov functionals:

V (x(t)) =
3∑

i=1

Vi (x(t)), (16)

where

V1(x(t)) = xT(t)ET Px(t)

V2(x(t)) =
p∑

k=1

{∫ t

t−dk

eα(s−t)xT(s)Qk1x(s)ds +
∫ t

t−d̄k

eα(s−t)xT(s)Qk2x(s)

+
∫ t

t−τk

eα(s−t)xT(s)Qk3x(s) + δk(t)
∫ t

t−d̂k(t)
eα(s−t)xT(s)Qk4x(s)

+(1 − δk(t))
∫ t

t−d̃k (t)
eα(s−t)xT(s)Qk5x(s)ds

}

V3(x(t)) =
p∑

k=1

{∫ 0

−d̄k

∫ t

t+θ

eα(s−t)(Eẋ(s))T Zk1(Eẋ(s))dsdθ

+
∫ 0

−τk

∫ t

t+θ

eα(s−t)(Eẋ(s))T Zk2(Eẋ(s))dsdθ
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+
∫ −dk

−τk

∫ t

t+θ

eα(s−t)(Eẋ(s))T Zk3(Eẋ(s))dsdθ

+
∫ −τk

−d̄k

∫ t

t+θ

eα(s−t)(Eẋ(s))T Zk4(Eẋ(s))dsdθ

}
.

Denoting E{δk(t) = 1} = δ̃k , then, the time-derivative of V (x(t)) along with the
solution of (5) is given by

E{V̇ (x(t))} =
3∑

k=1

E{V̇k(x(t))}, (17)

where

E{V̇1(x(t))} = E{2xT(t)PT Eẋ(t)}

E{V̇2(x(t))} =
p∑

k=1

{
3∑

i=1

(xT(t)Qki x(t)) − e−αdk xT(t − dk)Qk1x(t − dk)

−e−αd̄k xT(t − d̄k)Qk2x(t − d̄k) − e−ατk xT(t − τk)Qk3x(t − τk)

+ δ̃k xT(t)Qk4x(t) + (1 − δ̃k)xT(t)Qk5x(t) − δ̃k(1 − ˙̂dk(t))e
−αd̂k (t)

×xT(t − d̂k(t))Qk4x(t − d̂k(t)) − (1 − δ̃k)(1 − ˙̃dk(t))e
−αd̃k (t)

×xT(t − d̃k(t))Qk5x(t − d̃k(t)) − αV2(x(t))

}

E{V̇3(x(t))} = E

{ p∑
k=1

{
d̄k(Eẋ(t))T Zk1(Eẋ(t))

−
∫ 0

−d̄k

eαθ (Eẋ(t + θ))T Zk1(Eẋ(t + θ))dθ

+τk(Eẋ(t))T Zk2(Eẋ(t)) −
∫ 0

−τk

eαθ (Eẋ(t+θ))T Zk2(Eẋ(t+θ))dθ

+(τk − dk)(Eẋ(t))T Zk3(Eẋ(t))

−
∫ −dk

−τk

eαθ (Eẋ(t + θ))T Zk3(Eẋ(t + θ))dθ

+(d̄k − τk)(Eẋ(t))T Zk4(Eẋ(t))

−
∫ −τk

−d̄k

eαθ (Eẋ(t + θ))T Zk4(Eẋ(t + θ))dθ − αV3(x(t))

}}
.
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According to Lemma 1, we have

−
∫ 0

−d̄k

eαθ (Eẋ(t + θ))T Zk1(Eẋ(t + θ))dθ

� α

1 − eαd̄k

[
x(t)

x(t − d̄k)

]T [
ET Zk1 E −ET Zk1 E

−ET Zk1 E ET Zk1 E

] [
x(t)

x(t − d̄k)

]
(18)

Similarly, the following results can be obtained:

−
∫ 0

−τk

eαθ (Eẋ(t + θ))T Zk2(Eẋ(t + θ))dθ

� α

1 − eατk

[
x(t)

x(t − τk)

]T [ ET Zk2 E −ET Zk2 E
−ET Zk2 E ET Zk2 E

] [
x(t)

x(t − τk)

]

−
∫ −dk

−τk

eαθ (Eẋ(t + θ))T Zk3(Eẋ(t + θ))dθ

� α

eαdk − eατk

[
x(t − dk)

x(t − τk)

]T [ ET Zk3 E −ET Zk3 E
−ET Zk3 E ET Zk3 E

] [
x(t − dk)

x(t − τk)

]

−
∫ −τk

−d̄k

eαθ (Eẋ(t + θ))T Zk4(Eẋ(t + θ))dθ

� α

eατk − eαd̄k

[
x(t − τk)

x(t − d̄k)

]T [
ET Zk4 E −ET Zk4 E

−ET Zk4 E ET Zk4 E

] [
x(t − τk)

x(t − d̄k)

]
(19)

Denoting

ηT(t) =
[
xT(t) ωT

1 (t) ωT
2 (t) ωT

3 (t) ωT
4 (t) ωT

5 (t)
]
,

where

ωT
1 (t) =

[
xT(t − d̂1(t)) xT(t − d̂2(t)) . . . xT(t − d̂p(t))

]

ωT
2 (t) =

[
xT(t − d̃1(t)) xT(t − d̃2(t)) . . . xT(t − d̃p(t))

]

ωT
3 (t) =

[
xT(t − d1) xT(t − d2) . . . xT(t − d p)

]

ωT
4 (t) =

[
xT(t − d̄1) xT(t − d̄2) . . . xT(t − d̄p)

]

ωT
5 (t) =

[
xT(t − τ1) xT(t − τ2) . . . xT(t − τp)

]
.

Substitute (18), (19) into (17), we have the following result via augmented technology:

E{V̇ (x(t)) + αV (x(t))}
� ηT(t)

[
Π + φ1,2φ2,2φ

T
1,2 + φ1,3φ3,3φ

T
1,3 + φ1,4φ4,4φ

T
1,4 + φ1,5φ5,5φ

T
1,5

]
η(t).
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According to Schur complement, (13) can be derived from

E{V̇ (x(t)) + αV (x(t))} < 0.

Next, we will derive the mean-square exponential stability of the system (5), define

ζ(t) = L−1x(t) =
[

ζ1(t)
ζ2(t)

]
.

Since system (5) is regular, there exist two nonsingular matrices R̂ and L such that

R̂ =
[

Ir −A12 A−1
22

0 A−1
22

]
R

and

R̂E L =
[

Ir 0
0 0

]
, R̂ AL =

[
Â11 0
Â21 I

]
, R̂ Ak L =

[
Ak11 Ak12
Ak21 Ak22

]
,

R̂−T P L =
[

P11 P12
P21 P22

]
, LT Qki L =

[
Qki11 Qki12
Qki21 Qki22

]
, (20)

where Â11 = A11 − A12 A−1
22 A21, Â21 = A−1

22 A21, R and L are defined in Eq. (15),
then, the system (5) can be rewritten as

ζ̇1(t) = Â11ζ1(t) +
p∑

k=1

[
δk(t)

(
Ak11ζ1(t − d̂k(t)) + Ak12ζ2(t − d̂k(t))

)

+(1 − δk(t))
(

Ak11ζ1(t − d̃k(t)) + Ak12ζ2(t − d̃k(t))
)]

−ζ2(t) = Â21ζ1(t) +
p∑

k=1

[
δk(t)

(
Ak21ζ1(t − d̂k(t)) + Ak22ζ2(t − d̂k(t))

)

+(1 − δk(t))
(

Ak21ζ1(t − d̃k(t)) + Ak22ζ2(t − d̃k(t))
)]

.

(21)

From the constructed Lyapunov functional in (16), it is not difficult to conclude that

λmin(P11)E{‖ζ1(t)‖2} � E{xT(t)ET Px(t)} � E{V (x(t))}, (22)

where λmin(P11) denotes the minimum eigenvalue of P11. Considering E{V̇ (x(t)) +
αV (x(t))} � 0, and there exists a sufficient large k > 0, the following result is
obtained:

E{V (x(t))} � e−αt V (φ(t)) � ke−αt‖φc‖2.
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Combined (22) together, we have

E{‖ζ1(t)‖2} � ke−αt

λmin(P11)
‖φc‖2. (23)

The mean-square exponential stability condition of fast subsystem ζ1(t) is guaranteed.
Next, in order to get the mean-square exponential stability condition of slow subsystem
ζ2(t), the following functional is constructed as:

χ(t) =
p∑

k=1

[
ζT

2 (t)Qk422ζ2(t) − 1

4
ζT

2 (t − d̂k(t))Qk422ζ2(t − d̂k(t))

+ζT
2 (t)Qk522ζ2(t) − 1

4
ζT

2 (t − d̃k(t))Qk522ζ2(t − d̃k(t))

]
. (24)

Pre-multiplying the second equation of (21) with ζT
2 (t)P22, we have

0 =ζT
2 (t)P22ζ2(t) +

p∑
k=1

[
δk(t)ζ

T
2 (t)P22 Ak22ζ2(t − d̂k(t))

]

+
p∑

k=1

[
(1 − δk(t))ζ

T
2 (t)P22 Ak22ζ2(t − d̃k(t))

]
+ ζT

2 (t)P22ω(t), (25)

where

ω(t) = Â21ζ1(t) +
p∑

k=1

[
δk(t)Ak21ζ1(t − d̂k(t)) + (1 − δk(t))Ak21ζ1(t − d̃k(t))

]

Summing (24) and (25) yields to

χ(t) = ζT
2 (t)

[
P22 + PT

22 +
p∑

k=1

(Qk422 + Qk522)

]
ζ2(t)

+
p∑

k=1

[
2δk(t)ζ

T
2 (t)P22 Ak22ζ2(t − d̂k(t))

+2(1 − δk(t))ζ
T
2 (t)P22 Ak22ζ2(t − d̃k(t))

]

+
p∑

k=1

[
−ζT

2 (t − d̂k(t))
Qk422

4
ζ2(t − d̂k(t))

−ζT
2 (t − d̃k(t))

Qk522

4
ζ2(t − d̃k(t))

]
+ 2ζT

2 (t)P22ω(t)
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�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ2(t)
ζ2(t − d̂1(t))

...

ζ2(t − d̂p(t))
ζ2(t − d̃1(t))

...

ζ2(t − d̃p(t))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Ψ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ2(t)
ζ2(t − d̂1(t))

...

ζ2(t − d̂p(t))
ζ2(t − d̃1(t))

...

ζ2(t − d̃p(t))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+θ̃ ζT
2 (t)ζ2(t) + θ̃−1ωT(t)PT

22 P22ω(t), (26)

where

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ1 δ1(t)P22 A122 . . . δp(t)P22 Ap22 η1(t)P22 A122 . . . ηp(t)P22 Ap22

∗ − 1
4 Q1422 . . . 0 0 . . . 0

...
...

. . .
...

...
. . .

...

∗ ∗ . . . − 1
4 Q p422 0 . . . 0

∗ ∗ . . . ∗ − 1
4 Q1522 . . . 0

...
...

. . .
...

...
. . .

...

∗ ∗ . . . ∗ ∗ . . . − 1
4 Q p522

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ψ1 = P22 + PT
22 +∑p

k=1 (Qk422 + Qk522), ηi (t) = 1 − δi (t), i = 1, . . . , p, θ̃ is any
positive scalar. From inequality (13), we can conclude that there exists a sufficient
small η̂ > 0 and satisfying η̂ − θ̃ > 0 such that

Ψ � −

⎡
⎢⎢⎢⎣

η̂I 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎥⎦ . (27)

Since θ̃ can be chosen arbitrary and η̂− θ̃ > 0, thus we can always find a scalar η̃ > 1,
such that

p∑
k=1

[Qk422 + Qk522] + (η̂ − θ̃ )I � η̃

p∑
k=1

(Qk422 + Qk522). (28)

Using (24), (26), (27) and (28), we have the following result:

E

{
ζT

2 (t)

[ p∑
k=1

(Qk422 + Qk522)

]
ζ2(t)

}

� η̃−1

4
E

{
ζT

2 (t − d̂k(t))

[ p∑
k=1

(Qk422 + Qk522)

]
ζ2(t − d̂k(t))

}
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+ η̃−1

4
E

{
ζT

2 (t − d̃k(t))

[ p∑
k=1

(Qk422 + Qk522)

]
ζ2(t − d̃k(t))

}

+(η̃θ̃ )−1
E

{
ωT(t)PT

22 P22ω(t)
}

(29)

which infers to

p∑
k=1

E { fk(t)} � η̃−1
1

p∑
k=1

{
sup

t−d̄k�s�t−τk

fk(s)

}

+η̃−1
1

{
sup

t−τk�s�t−dk

fk(s)

}
+

p∑
k=1

ξe−δt ,

where 0 < δ < min{α, min(d̄−1
k ) ln η̃}, fk(t) = ζT

2 (t)(Qk422 + Qk522)ζ2(t), η̃−1
1 =

η̃−1

4 and ξ = (η̃θ̃ )−1λmax(PT
22 P22)m‖φc‖2 and m is sufficient large. Applying to

Lemma 2 to the above inequality yields to

E{‖ζ2(s)‖2} � λ−1
min

[ p∑
k=1

(Qk422 + Qk522)

]
pβe−δt max

(
‖ζ2(s)‖2

d̄k

)

+ pλ−1
min

[∑p
k=1 (Qk422 + Qk522)

]
ξe−δt

1 − 2η̃−1
1 eδ min(d̄k)

(30)

Combining (23) and (30) together with Definition 1, the system (5) is mean-square
exponentially stable. The proof is completed. ��

Remark 5 Without using free-weight matrix technology, Lemma 1 is used to deal with
the cross-term, thus, the number of variables in our research is less than the one in the
method of [7].

Remark 6 Notice η̃ > 1, η−1
1 = η̃−1

4 thus 0 < η̃−1
1 < 1

4 and 0 < 2η̃−1
1 < 1

2 < 1,
which satisfies the condition of Lemma 1.

However, in Theorem 1, the equality constraints are involved in (6), and some
numerical problems will arisen with it. Using the similar method of [28], choosing
G ∈ R

n×n satisfying ETG = 0 and rank(G) = r . Denote P = P1 E + GW T, where
P1 > 0 and W ∈ R

n×(n−r), then, we have the following corollary.

Corollary 1 Denoting E{δk(t) = 1} = δ̃k , given positive scalars d̄k , dk and δ̃k ,
k = 1, . . . , p, 0 � μ < 1 and α > 0. System (5) is mean-square exponentially
admissible if there exist positive definition matrices P1, Qkv , Zkw, k = 1, . . . , p,
v = 1, 2, 3, 4, 5, w = 1, 2, 3, 4 such that the following LMI holds:
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⎡
⎢⎢⎢⎢⎣

Π̂ φ1,2 φ1,3 φ1,4 φ1,5
∗ φ2,2 0 0 0
∗ ∗ φ3,3 0 0
∗ ∗ ∗ φ4,4 0
∗ ∗ ∗ ∗ φ5,5

⎤
⎥⎥⎥⎥⎦ < 0, (31)

where

Π̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Π̂1 (ET P1 + W GT) Ã1 (ET P1 + W GT) Ã2 0 Ξ1 Ξ2
∗ U1 0 0 0 0
∗ ∗ U2 0 0 0
∗ ∗ ∗ U3 0 Ξ3
∗ ∗ ∗ ∗ U4 Ξ4
∗ ∗ ∗ ∗ ∗ U5

⎤
⎥⎥⎥⎥⎥⎥⎦

Π̂1 = AT P1 E + ET P1 A + ATGW T + W GT A + αET P1 E

+
p∑

k=1

(
Qk1 + Qk2 + Qk3 + δ̃k Qk4 + (1 − δ̃k)Qk5

+ α

1 − eαd̄k
ET Zk1 E + α

1 − eατk
ET Zk2 E

)

the rest parameters are the same as those in Theorem 1.

Proof Substitute P = P1 E + GW T in (13) and (31) can be obtained directly.

Next, the stabilisation problem of system (1) will be considered as follows. Similar
to unforced system (3) with δk(t), the system (1) can be rewritten as

Eẋ(t) = Ax(t) +
p∑

k=1

[
δk(t)Ak x(t − d̂k) + (1 − δk(t))Ak x(t − d̃k)

]
+ Bu(k).

(32)

Theorem 2 Given positive scalars d̄k , dk and δ̃k , k = 1, . . . , p, 0 � μ < 1 andα > 0.
System (32) is mean-square exponentially admissible if there exists a nonsingular
matrix X, positive definition matrices Q̂kv , Ẑkw, k = 1, . . . , p, v = 1, 2, 3, 4, 5,
w = 1, 2, 3, 4 and matrix Y such that the following LMI holds:

⎡
⎢⎢⎢⎢⎢⎣

Ψ φ̂1,2 φ̂1,3 φ̂1,4 φ̂1,5

∗ φ̂2,2 0 0 0
∗ ∗ φ̂3,3 0 0
∗ ∗ ∗ φ̂4,4 0
∗ ∗ ∗ ∗ φ̂5,5

⎤
⎥⎥⎥⎥⎥⎦

< 0 (33)
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with the following constraint

XT ET = E X � 0, (34)

where

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ψ1 Ã1 X Ã2 X 0 Ξ̂1 Ξ̂2

∗ Û1 0 0 0 0
∗ ∗ Û2 0 0 0
∗ ∗ ∗ Û3 0 Ξ̂3

∗ ∗ ∗ ∗ Û4 Ξ̂4

∗ ∗ ∗ ∗ ∗ Û5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ψ1 = XT AT + AX + Y T BT + BY + αXT ET

+
p∑

k=1

(
Q̂k1 + Q̂k2 + Q̂k3 + δ̃k Qk4 + (1 − δk)Qk5

+ α

1 − eαd̄k
ET Ẑk1 E + α

1 − eατk
ET Ẑk2 E

)

Ûi = diag{XT, . . . , XT}Ui diag{X, . . . , X}, i = 1, 2, 3, 4, 5

Ξ̂i1 = diag{XT, . . . , XT}Ξi1diag{X, . . . , X}, i1 = 1, 2, 3, 4

φ̂1, j1 = diag{XT, . . . , XT}φ1, j1diag{X, . . . , X}, j1 = 2, 3, 4, 5

φ̂ j2, j2 = diag{XT, . . . , XT}φ j2, j2 diag{X, . . . , X}, j2 = 2, 3, 4, 5.

Proof Design the feedback controller as u(t) = K x(t) = Y X−1x(t), where X =
P−1. In (13), A is replaced by A + BK , then, the inequality can be written as

⎡
⎢⎢⎢⎢⎣

Π̃ φ1,2 φ1,3 φ1,4 φ1,5
∗ φ2,2 0 0 0
∗ ∗ φ3,3 0 0
∗ ∗ ∗ φ4,4 0
∗ ∗ ∗ ∗ φ5,5

⎤
⎥⎥⎥⎥⎦ < 0, (35)

where

Π̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Π̃1 PT Ã1 PT Ã2 0 Ξ1 Ξ2
∗ U1 0 0 0 0
∗ ∗ U2 0 0 0
∗ ∗ ∗ U3 0 Ξ3
∗ ∗ ∗ ∗ U4 Ξ4
∗ ∗ ∗ ∗ ∗ U5

⎤
⎥⎥⎥⎥⎥⎥⎦

Π̃ = AT P + PT A + Y T BT P X + XT PT BY + αET P
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+
p∑

k=1

(
Qk1 + Qk2 + Qk3 + δk Qk4 + (1 − δk)Qk5

+ α

1 − eαd̄k
ET Zk1 E + α

1 − eατk
ET Zk2 E

)
.

Pre- and post-multiplying (35) and (14) by diag{XT, . . . , XT} and diag{X, . . . , X},
respectively. Define Q̂kυ = XT Qkυ X and Ẑkω = XT Zkω X , k = 1, . . . , p, υ =
1, 2, 3, 4, 5, ω = 1, 2, 3, 4. Then, (33) and (34) are obtained directly. This concludes
the proof. ��

In Theorem 2, the corresponding result is not a strict LMI. Similar to Corollary 1,
define X = X1 ET + GT

1 W T
1 , where X is positive definition and EGT

1 = 0. Then, we
have the following corollary.

Corollary 2 Given positive scalars d̄k , dk and δ̃k , k = 1, . . . , p, 0 � μ < 1 and
α > 0. System (32) is mean-square exponentially admissible if there exist positive
definition matrices X1, Q̂kv , Ẑkw, k = 1, . . . , p, v = 1, 2, 3, 4, 5, w = 1, 2, 3, 4 and
a matrix Y such that the following LMI holds:

⎡
⎢⎢⎢⎢⎢⎣

Ψ̂ φ̂1,2 φ̂1,3 φ̂1,4 φ̂1,5

∗ φ̂2,2 0 0 0
∗ ∗ φ̂3,3 0 0
∗ ∗ ∗ φ̂4,4 0
∗ ∗ ∗ ∗ φ̂5,5

⎤
⎥⎥⎥⎥⎥⎦

< 0, (36)

where

Ψ̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ψ1 Ã1(X1 ET + GT
1 W T

1 ) Ã2(X1 ET + GT
1 W T

1 ) 0 Ξ̂1 Ξ̂2

∗ Û1 0 0 0 0
∗ ∗ Û2 0 0 0
∗ ∗ ∗ Û3 0 Ξ̂3

∗ ∗ ∗ ∗ Û4 Ξ̂4

∗ ∗ ∗ ∗ ∗ Û5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ψ1 = E XT
1 AT + AX1 E + W1G1 AT + AGT

1 W T
1 + Y T BT + BY + αE XT

1 ET

+
p∑

k=1

(
Q̂k1 + Q̂k2 + Q̂k3 + δ̃k Qk4 + (1 − δk)Qk5

+ α

1 − eαd̄k
ET Ẑk1 E + α

1 − eατk
ET Ẑk2 E

)
.

Proof The proof is similar to Corollary 1, and it is omitted here.
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Table 1 Maximum allowable
d̄2 for different α

α Maximum allowable delay d̄2

[7] [4] Corollary 1
in this paper

0.2 3.30 5.18 14.3

0.3 2.79 4.87 11.05

0.4 2.43 3.81 8.21

0.5 1.84 2.86 6.50

0.6 1.01 2.35 5.36

0.7 0.32 2.03 4.54

4 Numerical Examples

In this section, three numerical examples are provided to show the effectiveness of the
proposed methods.

4.1 Example 1

Consider the following unforced singular time-delay system in [7]:

E =
[−1 2

−2 4

]
, A=

[−4.7 0.4
−4.9 0.8

]
, A1 =

[
0.7 −0.95
1.1 −1.75

]
, A2 =

[
1 −0.8

1.4 −1.3

]
.

As in [7], let d1 = 0.1, d̄1 = 0.5, d2 = 0.2 and μ = 0.3. Given various α, compared
with [7], using Corollary 2, the maximum allowable d̄2 to ensure the mean-square
exponentially stable of the unforced system are listed in Table 1. For simplicity, we

choose τ1 = d̄1+d1
2 , δ̃1 = 0.5, τ2 = τ1, δ̃2 = τ2−d2

d̄2−d2
. From Table 1, it can be found that

our results are less conservative than the results of [4,7].

Remark 7 In our research, the information of statistical distribution of each time-
delays is fully considered. Thus, the main advantage of our method is that it uses the
full information of time-varying delays. That’s the reasons that our research result is
less conservative than the results in [4,7].

Remark 8 Without using free-weight matrix, the number of decision variables in our
paper is 20 and less the those in [7] (the number of decision variables is 24) and [4]
(the number of decision variables is 22).

4.2 Example 2

Consider the singular system (1) with the following parameters as:

E =
[

1 0
0 0

]
, A =

[−1.5 −1
0 −1

]
, A1 =

[−1 0
−1 −2

]
,

A2 =
[

0.3 0
0.2 1

]
, B =

[−0.2
−1

]
.
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Fig. 1 State response of the open-loop system (Example 2)

The state response of open-loop system (u(t) = 0) is shown in Fig. 1, d1(t) =
0.3 + 0.1 sin(2t), d2(t) = 0.4 + 0.2 cos(t). From Fig. 1, it can be found that the
open-loop system is unstable.

Next, we will consider the state response of closed-loop system, set d1 = 0.2,
d̄1 = 0.4, d2 = 0.2, d̄2 = 0.6, μ = 0.3, α = 0.4, τ1 = τ2 = 0.3, δ̃1 = 0.5,

δ̃2 = 0.2500, and G1 =
[

0 1
0 1

]
. Using Corollary 2, we have the following results:

X1 =
[

26.3315 9.1780
9.1780 7.7079

]
, Y = [71.7662 158.1402],

Q̂11 =
[

2.4889 2.3311
2.3311 13.8269

]
, Q̂21 =

[
2.4965 2.3310
2.3310 13.8270

]
,

Q̂12 =
[

4.0194 2.5028
2.5028 14.5967

]
, Q̂22 =

[
4.0268 2.6569
2.6569 15.3583

]
,

Q̂13 =
[

2.6622 2.4302
2.4302 14.2117

]
, Q̂23 =

[
2.6694 2.4280
2.4280 14.2120

]
,

Q̂14 =
[

43.8057 29.3595
29.3595 51.5046

]
, Q̂24 =

[
15.1616 11.1710
11.1710 38.5489

]
,

Q̂15 =
[

45.3688 31.3683
31.3683 55.6711

]
, Q̂25 =

[
14.9742 13.7472
13.7472 36.9889

]
,

Ẑ11 =
[

3.3246 0.0913
0.0913 1.5380

]
, Ẑ21 =

[
3.1185 0.0887
0.0887 1.0583

]
,
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Fig. 2 State response of the closed-loop system (Example 2)

Ẑ12 =
[

3.7660 0.0998
0.0998 1.9805

]
, Ẑ22 =

[
3.7945 0.0999
0.0999 1.9806

]
,

Ẑ13 =
[

1.9850 0.0682
0.0682 4.0113

]
, Ẑ23 =

[
1.9846 0.0685
0.0685 4.0125

]
,

Ẑ14 =
[

0.1842 0.0030
0.0030 4.3874

]
, Ẑ24 =

[
0.5002 0.0114
0.0114 1.8596

]
.

Then, K is computed as K = [−7.5659 29.5257]. The state response of the closed-
loop system is as shown in Fig. 2, as expected, the system state convergences to the
equilibrium point quickly.

4.3 Example 3

In this example, the system (1) with the following parameters is considered as:

E =
[

1 0
0 0

]
, A =

[−2 0
0 −0.9

]
, A1 =

[ −1 0.6
−0.4 −1

]
,

A2 =
[

0 −0.6
−0.6 0

]
, B =

[
0.1

−0.5

]
.

Let d1(t) = 0.3 + 0.1 sin(2t), d2(t) = 0.4 + 0.2 cos(t). Then, we have d1 = 0.2,
d2 = 0.2, d̄1 = 0.4, d̄2 = 0.6, μ = 0.3. Figure 3 shows the state response of the
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Fig. 3 State response of the open-loop system (Example 3)
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Fig. 4 State response of the closed-loop system (Example 3)

open-loop system (1) (u(t) = 0), and the results present that the open-loop system is
unstable. Then, considering the feedback controller, with Corollary 2, and considering
α = 0.3, we have the controller gain as K = [−5.0680 54.3055], and the state
response of closed-loop system is shown as Fig. 4, it is clearly that the closed-loop
system is stable.
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5 Conclusion

The problem of delay-distribution-dependent mean-square exponential stability has
been considered for continuous-time stochastic singular systems with multiple time-
varying delays in this paper. Using the statistical information of time-delays, a delay-
distribution-dependent condition is given, which is less conservative than the existing
ones. Without using the free-weighting matrix technology, the number of decision
variables in our research are much fewer than the method in [4,7]. Besides, a useful
lemma is proposed to ensure the mean-square exponential stability of the stochastic
singular systems. Furthermore, a suitable feedback controller is derived from the basis
of such delay-distribution-dependent conditions. Finally, numerical examples have
been provided to illustrate the less conservatism and the effectiveness of the proposed
approach.
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