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Abstract Recently, there is an essential demand to extend the fundamentals of the
conventional circuit theory to include the new generalized elements, fractional-order
elements, and mem-elements due to their unique properties. This paper presents the
relationships between seven different elements based on the four physical quantities
and the fractional-order derivatives. One of them is the Fractional-order memristor,
where the memristor dynamic is expressed by fractional-order derivative. This ele-
ment merge the memristive and fractional-order concepts together where the con-
ventional modeling becomes a special case. Moreover, the mathematical modeling
of the fractional-order memristor is introduced. In addition, the response of apply-
ing DC, sinusoidal, and nonsinusoidal periodic signals is discussed. Finally, different
numerical simulations are presented.

Keywords Fractional-order elements · Constant phase elements · Memristor ·
Mem-element · Nonlinear circuits · Memristive circuits

1 Introduction

The Memristor is the newest electrical element whose existence was theoretically
proven by Chua in a seminal paper in 1971 [4]. Chua postulated that element for the
sake of completing the two-terminal electrical elements, where the memristor offers
the missing link between flux ϕ and charge q. Then in 1980, Chua generalized the
axiomatic approach of two-terminal elements definition to define an infinite variety of
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higher order basic circuit elements [5]. Moreover, Chua defined a new general element
and named it as v(α) − i (β)element which has a constitutive relation involving only
the two variables v(α) and i (β), where α and β are integer numbers.

Although the theoretical concepts related to this fourth passive two-terminal ele-
ment have been postulated more than 40 years ago, the first passive realization was
introduced by HP-lab a few years ago [23]. Since the existence of the passive mem-
ristor device, huge research interests and projects have been directed toward the new
applications related to this element [7,13,25]. For example, the memristor can be used
as a nonvolatile memory instead of the capacitor and transistor circuits because it can
memorize its previous state. Therefore, building the memristor-based logic and digital
circuits instead of transistors draws great attention due to its nano-dimension size [2].
In addition, the time-varying property of the memristor resistance introduces many
novel fundamentals in the analogy circuit design such as in the case of memristor-based
oscillators [9,10].

The fractional-order elements or constant phase elements (CFE) were introduced
a long time ago (like fractional-order capacitor (FOC) and fractional-order inductor
(FOI)) to model the practical elements (frequency dependent losses) [20]. In order to
analyze these elements, the knowledge of fractional calculus is necessary where inte-
ger calculus is not applicable. Fractional calculus is very useful in modeling due to
its privileges over integer calculus. The main advantages of fractional-order modeling
are its long-memory dependency and also the ability to increase the degree of freedom
for the system through the added fractional-order parameters. The basic and funda-
mental definitions in many applications have been generalized in the fractional-order
sense such as in the control theory [3], circuit theory [6,16,18,19,22], waveguide
modeling [8], and in the fractional-order Smith chart [17]. In the circuit theory, the
fractional-order element (FOE) is considered as a generalized element that covers the
conventional three passive elements which are inductor, resistor, and capacitor when
the fractional-order parameter equals to −1, 0, and 1, respectively. One of the realiza-
tions of the half-order capacitor can be obtained by dipping a capacitive type probe,
coated with a porous film of polymer of particular thickness, into a polarizable medium
[1,21] or tree shape of equal values can be used to realize the half-order fractional
element [12].

This paper is organized as follows. Section 2 discusses the relationships between
the fractional-order elements. The mathematical analysis of the FOM is discussed
in Sect. 3. Moreover, the response of the FOM under step, sinusoidal, and periodic
excitation signals is introduced. As an example, the FOM response under a square
wave signal is analyzed in Sect. 4. Finally, the conclusion is given.

2 Fractional-order Elements Relations

In the year 1980, Chua generalized the axiomatic approach of two-terminal elements
definition to interpret an infinite variety of higher order basic circuit elements [5].
Moreover, Chua defined a new general element and named it as v(α) − i (β)element
which has a constitutive relation involving only the two variables v(α) and i (β), where
α and β are integer numbers representing the derivative order. For instance, if (α, β)
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Fig. 1 Fractional-order
elements relations

equals (0, 0), this element represents resistor; and (−1, 0), (0,−1), and (−1,−1)

correspond to inductor, capacitor, and memristor, respectively. But later, this definition
was generalized to the fractional-order domain [24].

The conventional elements are linked as shown in Fig. 1, where links (1), (2),
and (3) represent R, L , and C , respectively, and link (4) represents the memristor.
The fractional-order capacitor (F OC) relates between the fractional derivative of the
charge and the voltage which is represented in link (5) and link (8) with fractional-
order 1 − α and α, respectively. Also, the fractional-order inductor (F O I ) relates
between the fractional derivative of the flux and the current which is represented in
link (6) and link (8) with fractional order 1−α and α, respectively. So, the missing link
is between the fractional-order derivative of charge and the fractional-order derivative
of flux (link (9)) representing the fractional-order memristor(F O M). All the links are
linear elements except link (4) and link (9) which are nonlinear elements.

Generally, the relation between any fractional-order derivative of charge Dαq and
any fractional-order derivative of flux Dβϕ represents one of elements R, L , C, M,

FoC, F O I , and F O M depending on the resulting order and linearity between the
elements. Also, this relation could be generalized to include memcapacitor and memin-
ductor in addition to fractional-order memcapacitor (FOMC) and fractional-order
meminductor (FOMI).

3 Mathematical Analysis on FOM Model

The memristance is described as follows:

Rm = x Ron + (1 − x)Roff , (1)

where x represents the state variable of the memristor which physically represents
the ratio between the length of doped region to the total length of the memristor D.
Also, Ron and Roff represent the minimum and maximum resistances of the memristor,
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respectively. The fractional differential equation of memristor state, introduced in [11],
is given by

dαx

dtα
= ηki(t), (2)

where η is the memristor polarity which is either 1 or −1, and k is proportionality
constant. By differentiating the memristance Rm , then

dα Rm

dtα
= −Rd

dαx

dtα
. (3)

Substituting by (3) into (2) then

dα Rm

dtα
= −ηk Rdi(t), (4)

where Rd is the difference between Roff and Ron.
Using the basic definition of the fractional integral proposed by Riemann Liouville

[14], and applying fractional integral of order α for both sides [11], then the memris-
tance as a function of the input voltage and the time can be obtained as follows:

Rm =
(

Rα+1
in − ηα(α + 1)k Rd

∫ t

0
(t − τ)α−1v(τ)dτ

) 1
α+1

. (5)

When α = 1, this equation tends to the known equation for HP memristor as follows:

R2
m = R2

in − 2ηk Rd

∫ t

0
v(τ)dτ = R2

in − 2ηk Rdϕ(t), (6)

which matches the published formula in [15], where ϕ(t) represents the accumulated
flux.

4 Excitation Signals Response

In this section, the response of FOM under different input voltage signals is discussed
starting from step input signal and then sinusoidal waveforms which are the keys in
the analysis of any periodic signal.

4.1 Step Input Response

In case of applying step input voltage across the memristor where the input signal is
defined by

v(t) = VDCu(t), (7)
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Fig. 2 Memristance versus α and time for a negative ηVDC and b positive ηVDC

where u(t) is the unit step function. Then by substituting from (7) into (6), the resistance
of the memristor is given by

Rm =
(

Rα+1
in − η(α + 1)k Rd VDCtα

) 1
α+1

. (8)

It is clear from the previous equation that the memristance increases/decreases from
the initial value until reaches its maximum resistance Roff / minimum resistance Ron
in a certain time period which is called the saturation time tsat for negative/positive
sign of (ηVDC), respectively.

Figure 2 shows the memristor behavior under step input voltage where the memris-
tor parameters k, VDC, Roff , and Ron are equal to 104, 1 V, 38 k �, 100 �, respectively,
for different values of α. Therefore, the saturation time depends on the value of the
fractional-order α, where the saturation time increases as α increase for certain VDC.

The general formula of the saturation time tsat in the fractional-order case at which
the memristance increases or decreases from its initial value Rin to Roff or Ron is given
by

tsat =
(

Rα+1
in − Rα+1

bd

(α + 1)ηk Rd VDC

)1
α

, (9)

where Rbd is the boundary memristance which is either Roff or Ron. The maximum
saturation time can be obtained when changing from minimum or maximum memris-
tance to maximum or minimum memristance, respectively, as follows:

tsat|max =
(

Rα+1
off − Rα+1

on

(α + 1)k Rd |VDC|

)1
α

. (10)

For the conventional model of the memristor α = 1, the saturation time will be
reduced to the formula given in [15].

The saturation time surface as a function of the α − VDC plane and also versus
three different cases of α = 0.5, 1 and 1.5 are shown in Fig. 3a and b, respectively.
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Fig. 3 a Saturation time versus α and VDC, and b saturation time versus VDC for different α

It is clear from the above response that the saturation time can be controlled through
the fractional order, where it can be less than 1 sec when α < 0.5 up to higher values
when α > 0.5. It is worthy to note that the memristor will act as a linear resistor as α

tends to 0 with resistance Rin.

4.2 Sinusoidal Input Response

Conventionally, the sinusoidal response of circuit elements is extremely important in
many applications and also in circuit theory especially in circuits which have lissajous
curves. So in this section, a single tone is applied to the fractional-order memristor
to study the effect of changing the fractional order and the frequency on the pinched
hysteresis. Using MATHEMATICA, the fractional integral of sinusoidal is given by

Jαsin(2π f t) =
2π f tα+1

1 F2

[
1; 1 + α

2 , 3+α
2 ;−π2 f 2t2

]
	(α + 2)

, (11a)

Jαcos(2π f t) =
tα1 F2

[
1; 1+α

2 , 1 + α
2 ;−π2 f 2t2

]
	(α + 1)

. (11b)

For single sinusoidal input which is given by v(t) = Vo sin (2π f t), the memristance
is given by

Rm =
(

Rα+1
in − 2ηπk Rd f tα+1

1 F2

[
1; 1 + α

2
,

3 + α

2
;−π2 f 2t2

]) 1
α+1

(12)

Thus, the memristance is a function of some factors {α, Vo, k, f }, but the most
influential factor is α such that any small change leads to a new behavior and hysteresis
as shown in Fig. 4a and c. Moreover, the hysteresis loops shape is changed due to
changing frequency unlike HP memristor which has symmetric hysteresis and its size
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(a) (b)

(c)

Fig. 4 Numerical simulation of I − V hysteresis for (α, f ) equals a (0.5,1), b (0.5,0.5) and c (0.55,1) at
Rin = 20 k �, Vo = 10 mV, and k = 104

shrinks with increasing frequency preserving its shape (inclined 8) as shown in Fig.
4c. For the integer case at α = 1, the memristance tends to the same results published
in [15] which is given by

Rm =
√

R2
in ± 4k Rd

Vo

ωo
sin2

(
ωot

2

)
. (13)

4.3 Nonsinusoidal Periodic Signal Response

This subsection discusses the FOM response under any periodic input waveform by
using the Fourier series expansion where any periodic signal can be expanded into

v (t) = ao +
∞∑

n=1

ansin (2π f t) + bncos (2π f t) . (14)
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In order to get a closed form expression for the instantaneous memristance, the
fractional integral of the voltage Jαv(t) should be calculated. By integrating (14)
using (11) so

Jαv (t) = aotα

	 (α + 1)
+

∞∑
n=1

an Jαsin (2π f t) + bn Jαcos (2π f t) . (15)

By substituting (15) into (5), the complete expression of the instantaneous memristance
is obtained. As an example for the periodic signal, a square wave signal is applied and
which is defined as:

v(t) =
{

Vo1 0 < τ ≤ βT
Vo2 βT < τ ≤ T

0 ≤ β ≤ 1, (16)

where τ = mod(t, T ). Since the applied signal alternates between positive and neg-
ative voltages with sharp transitions, then the step response can be used periodically
using the last value as the initial value of the next step. So the FOM changes up
and down as the voltage changes periodically. By applying Fourier series expan-
sion to the input signal, the coefficients are given by ao = βVo1 + (1 − β)Vo2,
an = ((Vo1 − Vo2)/nπ) sin (2βnπ), and bn = ((Vo1 − Vo2)/nπ)(1 − cos (2βnπ)).
Therefore, the fractional integral of the voltage is given by

Jαv(t) =
{

Vo1τ
α 0 < τ ≤ βT

Vo1(βT )α + Vo2
(
τα − (βT )α

)
βT < τ ≤ T

. (17)

then, the instantaneous memristance is given as follows:

Rα+1
m = Rα+1

in − η(α + 1)k Rd

{
Vo1τ

α 0 < τ ≤ βT
Vo1 − Vo2)(βT )α + Vo2τ

α βT < τ ≤ T
. (18)

Moreover, Fig. 5a shows the instantaneous memristance for α = 0.5, β = 0.5,

and Vo2 = −Vo1 = 1, but as is obvious the memristance decreases until it reaches
the boundary due to the effect of the fractional-order unlike the conventional case
where the memristance is completely periodic. As α increases, the average transient
memristance slope increases and converges to conventional case (α = 1) where the
memristance does not saturate [15]. However, a periodic memristance can be obtained
by using a square wave with duty cycle given by

β =
( Vo2

Vo2 − Vo1

)1/α

. (19)

Figure 5(c) shows a periodic memristance at different applied frequencies for
α = 0.5, β = 0.25, and Vo2 = −Vo1 = 1.
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(a) (b)

(c)

Fig. 5 Transient memristance for a different applied frequencies, b different α, and c different applied
frequencies without average term at Ron, Roff , k and Rin equal 100 �, 38 k �, 104, and 10 k �, respectively

5 Conclusion

This paper introduced the analysis of the fractional-order memristor model and its rela-
tionship to other fractional-order elements. The proposed model has an extra degree of
freedom that can be used for better interpolation of the practical memristor. Moreover,
its response under sinusoidal and periodic signals using Fourier series expansion was
derived and verified numerically via many simulation results.
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