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Abstract We present a novel eigenfilter-based approach to the design of time-
frequency optimized, linear-phase, biorthogonal FIR filter banks. We first design a
linear-phase, low-pass analysis filter, followed by a complementary linear-phase, low-
pass synthesis filter. The optimality criterion used is uncertainty-based time-frequency
localization, where the objective function is a convex combination of time variance
and frequency variance of the respective filters. The objective function to be mini-
mized is formulated in a convex-quadratic form and the perfect reconstruction (PR)
and vanishing moment (VM) conditions are imposed in the eigen design of filters as a
set of linear equality constraints. The PR and VM conditions are expressed in the time
domain matrix formulation, so that these can directly be incorporated into the eigenfil-
ter design. Using the Rayleigh principle, the optimal filter is obtained as an eigenvec-
tor corresponding to the minimum eigenvalue of the real symmetric positive-definite
matrix associated with the optimization criterion. Thus, our formulation reduces the
design problem of time-frequency optimal filter banks to an eigenfilter-based prob-
lem. Furthermore, the filter banks designed in this manner are found to be regular and
are valid candidates for wavelet filter banks, allowing for the construction of linear
phase wavelets. We present a few examples to show that the smooth wavelets can be
constructed using the proposed method.
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1 Introduction

The eigenfilter approach [25,30] is an efficient and popular method to design digital
filters with a quadratic optimization criterion. Slepian [25] introduced the notion which
formed a precursor to the eigenfilter design. He designed a real window with minimum
stop-band energy called a prolate spheroidal wave sequence. In designing the prolate
spheroidal wave sequence, the objective functionφ, which is the energy of the sequence
in the frequency range σ ≤ ω ≤ π for, 0 < σ < π is expressed in quadratic form and
the optimization problem has been formalized as follows:

minimize
a

φ = aT Pa

subject to aT a = 1,

where P is a real, symmetric, and positive-definite matrix and a is a real-valued vec-
tor. The optimal sequence, which minimizes the cost function is the eigenvector a
of the matrix P corresponding to its smallest eigenvalue. The constraint aT a = 1 is
imposed to avoid trivial solutions. The “eigenfilter” method proposed by Tkacenko et
al. [30] involves designing of an optimal finite impulse response (FIR) filter directly,
instead of using the windowing method. Similar to the prolate spheroidal window
sequence design, the filter is obtained as the eigenvector of a real symmetric positive-
definite matrix. In the eigenfilter approach, the objective is to minimize the error
between the desired frequency response and the frequency response of the filter to be
designed. Recently, eigenfilter-based methods have also been used by Andrew et al.
[1] as well as Jain and Crochiere [15] to design filter banks. They proposed a technique
to design quadrature mirror filter banks (QMF) using an eigenfilter-based approach.
Patil et al. [20] proposed another design method, combining the complementary fil-
ter technique with the eigenfilter approach, for linear phase two-channel PR filter
banks. Using Bernstein polynomials, Cooklev et al. [5] proposed an eigenfilter based
approach for designing a half-band polynomial, the factorization of which yields both
orthogonal and biorthogonal filter banks. In all these eigenfilter-based designs of fil-
ter banks [1,5,15,20] discussed above, the optimizing criterion is a combination of
the pass-band and stop-band error between desired and actual frequency response of
filters.

It is well known that wavelets can be generated from iterations of these filter banks.
Wavelet transforms are used in joint time-frequency analysis due to their superior
time-frequency localization over other transforms [11]. Time-frequency localization
of wavelet filters also plays a pertinent role in various signal processing applications.
Abundant literature is available for designing optimal filter banks using a variety
of optimizing criteria such as ripples in the pass-band and stop-band, pass-band and
stop-band energy, frequency selectivity, flatness at particular frequency, regularity,
orthogonality, linearity of phase, and energy compaction. However, surprisingly the
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literature on the design of optimal time-frequency localized wavelet filter banks is rela-
tively scant, and filter banks are seldom designed with an objective of minimizing joint
time-frequency localization. This is despite the fact that in certain signal processing
applications such as feature extraction, image enhancement, edge detection, and image
segmentation; time-frequency localization appears promising [35,36]. It is shown by
the authors in [35,36] that the filters, designed to achieve simultaneous concentration
in time and frequency, are very effective in feature extraction, image compression, and
image segmentation. Furthermore, it is reported by Monro and Sherlock [16] that the
filter banks designed taking the time-frequency localization into account exhibit good
performance in image compression applications. This motivates us to design wavelet
filter banks with good time-frequency localization.

We are interested in designing optimal filter banks using an eigenfilter approach
instead of a parametrization approach. This is because the eigenfilter-based methods
are numerically efficient, and one can incorporate both time domain and frequency
domain constraints easily. The eigenfilter method gives a global solution. Using this
approach, we can design orthogonal as well as biorthogonal filters banks. The eigen-
filter formulation can be extended to design M-band and 2-D filter banks. These
advantages justify the use of the eigenfilter approach.

Ample literature is available on the design of filters using the eigenfilter approach.
However, to the best of our knowledge, no description is available on the design of
biorthogonal wavelet filter banks using the eigenfilter-based formulation, wherein the
optimality criterion is associated with the time-frequency uncertainty of the filters.

Haddad et al. [12] present time-frequency localization properties of discrete-time
sequences (filters), filter banks, wavelets, and several other signal decomposition tech-
niques in view of the uncertainty principle. They evaluate time-frequency localization
of filter banks and orthogonal wavelets. However, no design methodology is suggested
to design wavelets and filter banks possessing good time-frequency localization. Mor-
ris and Xie [17,37] design time-frequency-localized orthonormal wavelets via opti-
mization of the lattice parameters of the paraunitary filter banks. Caglar et al. [3]
design optimal orthogonal filter banks keeping the optimality criterion as a combina-
tion of coding gain, aliasing energy, and VM; but the time-frequency localization is not
considered explicitly. Sharma et al. [24] design linear phase biorthogonal filter banks,
wherein the optimality criterion is the product of the time variance and frequency
variance of wavelet bases. The wavelet filter banks are designed using a parameteri-
zation technique, and the authors have not used an eigenfilter approach. However, in
this paper, we present the eigenfilter approach due to its obvious advantages instead
of parameterization techniques for designing time-frequency localized filter banks.
Furthermore, we optimize the time-frequency localization of filters of underlying PR
filter banks, whereas in [24], the authors attempt to optimize time-frequency localiza-
tion of wavelet bases. In the inspiring work reported by Tay [27,29], author designs a
special class of linear phase biorthogonal filter banks called half-band pair filter banks
(HBPF) [22], employing a measure called balanced-uncertainty metric proposed by
Monro and Sherlock [16], which is a weighted summation of the time variance and
frequency variance of the filter to be designed. The author uses parametric Bernstein
polynomials to optimize filter coefficients. A similar kind of cost function is also used
by us. However, we present an eigenfilter based approach for designing the general
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class of linear-phase biorthogonal filter banks with the desired degree of the regular-
ity. Furthermore, in [27,29] the authors do not present any lower bound on the metric
used. We establish a lower bound on the objective measure used by us to design fil-
ters. In the motivating work [34,35], Wilson and Granlund design filters with optimal
time-frequency localization. However, authors have not addressed the design of PR
filter banks. Furthermore, the measure of frequency localization used is different from
what we have used in our designs. Recently, Parhizkar et al. [19] used the notion of
the periodic frequency spread, suggested by Breitenberger [2], to design optimal time-
frequency sequences [19]. However, Parhizkar et al. [19] do not address the issue of
optimal PR filter bank design.

In this paper, we present a method for designing linear phase biorthogonal wavelet
filter banks. The method proposed is a combination of the eigenfilter-based formula-
tion and the complementary filter bank design technique. We first design a linear phase,
low-pass analysis filter using the eigenfilter-based formulation. The filter is designed
with the objective of minimizing its joint time-frequency localization subject to the
constraint of desired number of VMs. Then follows the design of the complementary
synthesis, linear phase, low-pass filter with the objective of minimizing time-frequency
localization subject to the constraints of PR and VMs. The objective function is a con-
vex combination of the time variance and frequency variance of filters to be designed,
which has been formulated in a quadratic form which involves a real, symmetric,
positive-definite matrix. In view of the well-known Rayleigh principle [13], the opti-
mal filter is obtained as the eigenvector corresponding to the smallest eigenvalue of
this matrix. The PR and VM constraints are formulated as a set of linear equations
so that they can readily be incorporated in the eigen design problem. The important
features of our design method are as follows:

– The objective function as well as PR and VM constraints are formulated in the time
domain. Here time-domain formulation implies a form, which directly employs
filter coefficients and does not use any parameterization.

– We can design filters with as many VMs as desired.
– The solution of the optimization problem is global, stable and does not need manual

intervention for initial guess.
– Filter banks designed using the proposed method are found to be regular, and it

is observed that smooth wavelets can be constructed via iterations of the designed
filter bank, using the cascade algorithm.

– We also establish an inequality, which poses a lower bound on the uncertainty-based
time-frequency measure used by us.

– We can control the time and frequency localization of the analysis and synthesis fil-
ters independently and arbitrarily. It is possible to design completely time localized
and frequency localized filters using the proposed method.

– Our method is neither an iterative method, unlike methods proposed by Andrew
et al. [1] as well as Jain and Crochiere [15] nor requires factorization of half-band
polynomials unlike the method of Cooklev [5].

– In the eigenfilter-based design of filter banks in [1,5,15,20], the optimizing criterion
is a combination of the pass-band and stop-band errors between desired and actual
frequency response of the filter. However, we have used a convex combination of
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Gabor’s uncertainty-based time variance and frequency variance of the filters as our
optimality criterion.

We have also compared the time-frequency localization properties of the optimal fil-
ter banks designed by us, with time-frequency properties of the filter bank designed by
Tay [29] and the popular CDF-9/7 filter bank. It has been shown that the time-frequency
localization of the optimal filter bank designed by us is superior to that of others.

The paper is organized as follows. The Sect. 2 gives a brief overview of two-channel
perfect reconstruction filter banks and uncertainty-based time-frequency measures for
continuous-time signals and discrete-time sequences. Section 3 explains the uncer-
tainty principle in the context of the quantum harmonic oscillator’s eigenvalue prob-
lem and its relationship with the objective function (criterion) used by us. The lower
bound on the objective function is established. In this Section, we derive the frame-
work for the eigenfilter-based design of time-frequency localization optimized filter
banks. In Sect. 4, we present the proposed design methodology in detail. In Sect. 5,
we give several design examples including construction of wavelets via iterations of
the designed filter banks.

We use following notations: Boldfaced lowercase letters a represent vectors, and
bold-faced uppercase letters A are used for matrices. AT denotes the transpose of the
matrix A. The notation 〈x, y〉 represents the dot product of vectors x and y.

2 Background

2.1 Perfect Reconstruction Filter Banks

A two-channel filter bank is shown in Fig. 1. The filters H0(z) and H1(z) are analysis
low-pass and high-pass filters, respectively. Similarly, F0(z) and F1(z) denote synthe-
sis filters. The choice of high-pass filters given in (1) ensures alias cancellation.

H1(z) = z−1 F0(−z) F1(z) = zH0(−z) (1)

Defining the product filter as

P(z) = H0(z)F0(z) (2)

The perfect reconstruction (half band) condition can be expressed as

P(z)+ P(−z) = 2 (3)

Fig. 1 Two-channel 1D filter bank
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Equality (3) implies that the product filter P(z) is a symmetric (zero phase) poly-
nomial in z, whose coefficients corresponding to even powers of z are zero, except
for the term (z0) which carries a coefficient 1. Hence, the design of two-channel
PR filter bank reduces to the design of the half band filter P(z). Several techniques
are available to design perfect reconstruction filter banks. The design techniques for
two-channel PR filter banks can broadly be divided into the following categories: Fac-
torizing a Lagrange half-band polynomial (LHBP) [4,33], Lattice and lifting struc-
tures in the polyphase domain [18,31,32], and Complementary filter design method
[33]. Recently, the eigenfilter-based approach has also been used for designing PR
filter banks by Patil et al. [20]. In the complementary design method, a valid analy-
sis filter is first independently designed. For the given analysis filter, the synthesis
filter is designed by imposing the PR condition. However, the designed filters are
not necessarily optimal in any sense. In this paper, optimal filter banks are designed
by blending the complementary filter design method and the eigenfilter approach.
Furthermore, the design of wavelet filter banks is also equivalent to the design of
PR filter banks except that the former must satisfy regularity constraints in order
to ensure the convergence of wavelets and scaling functions in L2(R). Wavelets
can be constructed from iterations of two-channel PR filter banks using the cascade
algorithm [33].

2.2 Time-Frequency Localization and Uncertainty Principle

Uncertainty in continuous-time domain

In this subsection, we describe, in brief, the time-frequency localization measures
and associated uncertainty principles for continuous-time and discrete-time signals.
Gabor’s uncertainty principle essentially states: “A signal cannot be localized simul-
taneously in time and frequency arbitrarily.”

Let f (x) be a real valued, even symmetric function in L2(R) with unity norm, i.e.,∫ +∞
−∞ | f (x)|2dx = 1. According to Gabor’s uncertainty principle [9]

{∫

R

x2| f (x)|2dx

}

×
{

1

2π

∫

R

�2|F(�)2|d�
}

≥ 1

4
, (4)

where F(�) = ∫
R

f (x)e− j�x dx is the Fourier transform of f (x). In (4), equality
is achieved only for Gaussian signals. Inequality (4) implies that the time-frequency
product of a signal f (x), given by � f = σ 2

x σ
2
�, is bounded below by 0.25. Where

σ 2
x = ∫

R
x2 | f (x)|2 dx andσ 2

� = 1
2π

∫
R
�2|F(�)2|d� are time spread and frequency

spread of the signal f (x), respectively.

Uncertainty in discrete-time domain

In this subsection, we give a brief overview of the time-frequency localization and
uncertainty principle associated with discrete-time signals. There are several notions
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[2,7,8,12,14,23,25] of uncertainty measures associated with simultaneous time-
frequency localization for discrete-time sequences; however, all these measures are
not necessarily variance or spread based. In this paper, we shall consider the measure
given in [12,14], which can be considered as an extension of the continuous-time
measure explained above.

Let h(n) be a real valued, even symmetric, discrete-time sequence in l2 (Z) nor-
malized as,

∑∞
n=−∞ |h (n)|2 = 1, and, let H (ω) = ∑∞

n=−∞ h (n) e− jωn be the
Discrete-Time Fourier Transform (DTFT) of the sequence h(n). The time variance,
σ 2

n , and the frequency variance, σ 2
ω, of the sequence are defined as [12,14].

σ 2
n =

∞∑

n=−∞
n2 |h (n)|2 (5)

σ 2
ω = 1

2π

∫ π

−π
ω2 |H (ω)|2 dω (6)

The time-frequency product (TFP) or uncertainty product of the sequence h(n) denoted
by �h is lower bounded by the inequality

�h = σ 2
n σ

2
ω ≥

(
1 − |H (π)|2)2

4
(7)

In the case of discrete sequences, the lower bound is not fixed unlike the time-frequency
product of continuous-time signals. It can reduce to zero, which is obvious from the
inequality (7). It is interesting to note that if the low-pass sequence has a null at
ω = π then the lower bound on the time-frequency product is the same as that
for the continuous-time signal [12], i.e., �h = σ 2

n σ
2
ω ≥ 0.25. Thus, the Heisen-

berg uncertainty principle for discrete-time sequences in l2 (Z) can be expressed as
follows:

�h = σ 2
n σ

2
ω ≥ 0.25, H (π) = 0. (8)

An important point to note is that H (π) is invariably 0, for low-pass filters of an
underlying regular wavelet filter bank. Therefore, for the class of sequences corre-
sponding to low-pass filters of regular wavelet filter banks, inequality (8) holds true.
This allows us to use this uncertainty measure for regular filter banks. For more details
readers are referred to the work of Haddad et al. [12].

3 Problem Formulation

3.1 Our Optimality Criterion and its Merits

Gabor’s uncertainty inequality, as given in (4), is well known. It poses a lower bound
on the ‘product’ of the time localization and frequency localization of a function.
The important but relatively less explored equivalent of uncertainty principle is the
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eigenvalue problem corresponding to the quantum harmonic oscillator. This form
of uncertainty principle presents a lower bound on the ‘summation’ of the poten-
tial energy and kinetic energy of the oscillator. The signal processing equivalent of
the uncertainty principle, which poses the lower bound on the summation of time
variance and frequency variance of a signal, or a sequence, is presented in this
subsection.

The energy state of the quantum harmonic oscillator is characterized by an operator
called the Hamiltonian [10]

H := x2 −
(

d

dx

)2

(9)

In the right side of (9), the first and second terms represent potential and kinetic
energy operators, respectively. The corresponding Hamiltonian eigenvalue problem
(or Schrodinger equation) is given as follows:

H f = x2 f − d2 f

dx2 = λ f (10)

A remarkable property of a quantum harmonic oscillator is that the eigenval-
ues of (10) are of the form; λn = 2

(
n + 1

2

)
, n ∈ {0, 1, 2, · · · }. The eigenfunc-

tions corresponding to λn are fn(x) = k Hn(x)e− x2
2 , k ∈ R. Where Hn(x) =

(−1)nex2 ( d
dx

)n
e−x2

are Hermite polynomials of the order n.
Here, we present the signal processing interpretation of the uncertainty principle

related to the eigenvalue problem of the harmonic oscillator.
On taking the dot product of both sides of (10) with f ∈ L2(R), we obtain the

relation

〈

x2 f − d2 f

dx2 , f

〉

= λE, (11)

where E = 〈 f, f 〉 is the L2 norm of the signal f . Since, the eigenvalues of the (10)
are equal to or greater than 1. Therefore, from (11), we infer

λE =
〈

x2 f − d2 f

dx2 , f

〉

≥ E (12)

Assuming f is normalized such that 〈 f, f 〉 = 1, then from (12)

〈
x2 f, f

〉
+
〈

−d2 f

dx2 , f

〉

≥ 1 (13)

The first term on the left-hand side of the inequality (13) represents the time variance
and second term denotes frequency variance of the real, symmetric signal f ∈ L2(R),
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whose energy is normalized to 1. The eigenvalue λ represents the sum of the time
variance and frequency variance of the signal f .

Using Parseval’s theorem, the inequality (13) can be expanded as

∫

R

x2| f (x)|2dx +
∫

R

| f ′(x)|2dx ≥ 1 (14)

σ 2
x + σ 2

� ≥ 1 (15)

which essentially states that the sum of the time variance and frequency variance of a
real, symmetric signal f (x) ∈ L2(R) is lower bounded by 1. The equality is achieved
only in the case of the Gaussian signal. The condition (15) associated with a quantum
harmonic oscillator can also be deduced from the Heisenberg’s uncertainty principle
as follows:

According to the Heisenberg uncertainty [9],

∫

R

x2| f (x)|2dx
∫

R

| f ′(x)|dx = σ 2
x σ

2
� ≥ 1

4
(16)

Using the inequality of arithmetic and geometric mean (AM-GM inequality), which
states that the arithmetic mean (AM) of two non-negative real numbers a and b is
greater than or equal to their geometric mean (G M)

a + b

2
≥ √

ab (17)

and following (16), we have

σ 2
x + σ 2

�

2
≥ σxσ� ≥ 1

2
(18)

Hence, we deduce

σ 2
x + σ 2

� ≥ 1 (19)

On the parallel lines, using the uncertainty principle for discrete-time sequences
given in (8) and AM-GM inequality (20), we arrive at an important inequality associ-
ated with discrete-time sequences

σ 2
n + σ 2

ω

2
� σnσω � 1

2
(20)

Implying

σ 2
n + σ 2

ω ≥ 1 (21)

We use the summation form (21) of the uncertainty measure instead of the product form
(8), for designing filter banks. The, justification for using the measure is motivated at
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the end of this subsection. Now, we establish an inequality, which imposes a lower
bound on the objective criterion used by us.

Let us consider a convex combination of the time variance and frequency variance
of a discrete time sequence f ∈ l2(Z)

φ = ασ 2
n + (1 − α)σ 2

ω, α ∈ [0, 1] (22)

Invoking AM-GM inequality (17)

φ = ασ 2
n + (1 − α)σ 2

ω ≥ 2σnσω
√
α(1 − α) (23)

Using the uncertainty inequality (8) for the class of sequences in l2(Z) having the
spectrum null at ω = π and (23), we obtain

ασ 2
n + (1 − α)σ 2

ω ≥ 2σnσω
√
α(1 − α) ≥ √

α(1 − α)

Thus, we have an important inequality

φ = ασ 2
n + (1 − α)σ 2

ω ≥ √
α(1 − α) (24)

For α = 1
2 , the inequality (24) boils down to the inequality (21). We use a convex

combination of the time variance and frequency variance as our objective function in
designing filter banks. (We abbreviate the convex combination of the time variance
and frequency variance as “CCTFV”). The inequality (24) poses the lower bound on
the objective function φ used by us. The rationale to minimize CCTFV instead of TFP
in designing the filter bank is twofold.

1. We design filter banks using the eigenfilter-based approach due to its obvious
advantage as mentioned in the Sect. 1. The eigenfilter-based optimization method
can be used to design optimal filters provided the objective measure is a quadratic
function of the design variables of the form aT Pa, where P is a real, symmetric, and
positive-definite matrix and a is a real vector containing design variables. Unfor-
tunately, the time-frequency product σ 2

n σ
2
ω cannot be expressed in the quadratic

form. However, we have derived and explained, in the next Sect. 3.2 that the objec-
tive measure CCTFV, as given in (22), can be cast in the desired convex-quadratic
form. This enables us to employ the eigenfilter approach.

2. To design wavelet filter banks, Tay [29] used a criterion called balanced uncer-
tainty (BU), which is a weighted sum of the time variance and frequency variance
of wavelet filters to be designed. Tay [29] reported that the sum of time variance
and frequency variance is a better measure than the product of time variance and
frequency variance because different wavelet filters with vastly different time vari-
ance and frequency variance give the same time-frequency product. Moreover,
the product measure does not give any control on time localization and frequency
localization individually.
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3.2 Formulation of the Objective Function in Quadratic Form

Let h(n) denote the impulse response of a zero phase, low-pass, real-valued FIR filter
of length 2N + 1, such that h(n) �= 0, only in the range −N ≤ n ≤ N . Its DTFT
denoted by H(ω) can be given as

H(ω) = h(0)+ 2
N∑

n=1

h(n) cos(ωn) (25)

Defining the vectors a, c ∈ R
(N+1)

a = [
h(0) h(1) . . . h(N − 1) h(N )

]T
, N ∈ N (26)

c(ω) = [
1 2 cos(ω) . . . 2 cos(Nω)

]T
, ω ∈ [0, π ] (27)

The vector f is obtained from the first derivative of the vector c, i.e.,

f(ω) = d

dω
c(ω)

Thus, we obtain

f(ω) = [
0 −2 sin(ω) −4 sin(2ω) . . . −2N sin(Nω)

]T (28)

The frequency response H(ω) and its derivative H
′
(ω) can be expressed as

H(ω) = aTc(ω) (29)

H ′(ω) = d
dω

H(ω)= aT d
dω

c(ω) = aTf(ω) (30)

The frequency variance of a real-valued zero phase, sequence h(n) in l2(Z) nor-
malized to unit energy is given by (6). On substituting (29) in (6), we obtain

σ 2
ω = aT

{∫ π

0
ω2c(ω)cT(ω)

dω
π

}

a (31)

The equality (31) can be expressed asσ 2
ω = aTQa, where Q = ∫ π

0 ω2c(ω)cT(ω) dω
π

.
The matrix Q is a real, symmetric, positive-definite matrix of the order (N+1)×(N+1)
due to the fact that σ 2

ω = aTQa >0 for each a ∈ R
N+1. The (k, l)th element of the

matrix Q is given as

[Q]k,l =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π2

3 k = l = 0
2π2

3 + 1
k2 k = l, except k = l = 0

4(−1)k+l

(k+l)2
k = 0 or l = 0, except k = l = 0

8(−1)k+l (k2+l2)

(k2−l2)2
otherwise

(32)
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where 0 ≤ k, l ≤ N . The derivation of (32) is given in the Appendix.
The time variance of a real-valued zero phase, sequence h(n) in l2(Z) normalized

to unit energy is given by (5). Using Parseval’s theorem, we obtain from (5)

σ 2
n = 1

π

∫ π

0

∣
∣
∣
∣

d

dω
H(ω)

∣
∣
∣
∣

2

dω (33)

On substituting (30) in (33), we get

σ 2
n = aT

{∫ π

0
f(ω)fT(ω)

dω
π

}

a (34)

Hence, σ 2
n can be expressed as σ 2

n = aTPa, where P = ∫ π
0 f(ω)fT(ω)dω

π
. The matrix

P is a real, symmetric, positive-definite matrix of the size (N + 1)× (N + 1).
The (k, l)th element of P is given by

[P]k,l = 2k2δ(k − l), k, l ∈ {0, 1, · · · , (N − 1)} (35)

Thus, P is a diagonal matrix, with non-negative, real entries. The derivation of (35)
is given in the Appendix.

Now we define the objective function φ to be minimized, which is a convex com-
bination of the time variance and frequency variance (CCTFV) of the filter as

φ = ασ 2
n + (1 − α)σ 2

ω, α ∈ [0, 1], (36)

where α is a trade-off factor between the time variance σ 2
n and frequency variance σ 2

ω.
The equality (36) can be expressed in the following convex quadratic form

φ = αaTPa + (1 − α)aTQa

= aT{αP + (1 − α)Q}a=aTRa, (37)

where R = αP + (1 − α)Q is a real, symmetric, positive-definite matrix of order
(N + 1) × (N + 1) and a ∈ R(N+1) is a unit norm vector. Using the Rayleigh
Principle [13], the optimum filter, which minimizes φ is obtained as the eigenvector
of R, corresponding to its smallest eigen value. Note, our aim is not only to design
the finite length filters, which minimize the objective function but which also satisfy
constraints of vanishing moments and perfect reconstruction. In order to absorb these
constraints in the eigenfilter design, it is mandatory that the constraints be expressed
in the form Ca = 0 as described by Pie et al. [21]. In the next section, we present how
to formalize PR and VM conditions in the desired form to unable us to incorporate
them in eigenfilter design.
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3.3 Constraints on the Lengths of Filters

In this paper, we shall consider the design of the odd-length symmetric filters, i.e.,
type-1 FIR filters only, although the design methodology can be used for even length
symmetric filters also. In this section, we present the constraints on the length of filters
to be designed. In the case of odd-length, linear phase biorthogonal filter banks, the
choice of lengths of filters is constrained by the fact that the lengths of analysis and
synthesis filters differ by an odd multiple of two, and the sum of the lengths of analysis
and synthesis low-pass filter must be 4m,m ∈ N [33].

In order to obtain some freedom to optimize the filter coefficients and to ensure
existence of the solution of the optimization problem, the length of filters should
be chosen so as to satisfy the aforementioned fact along with additional constraints
presented in this subsection. Let h0(n) denote a symmetric low-pass analysis filter
such that h0(n) = 0, for |n| > P , i.e., the length L A of the h0(n) is 2P + 1. Let f0(n)
denote the symmetric low-pass synthesis filter such that f0(n) = 0, for |n| > Q, i.e.,
the length L S of the f0(n) is 2Q+1. The sum of the length of the analysis and synthesis
low-pass filters must be 4m, m ∈ N, i.e., L A + L S = 2P + 1 + 2Q + 1 = 4m. It
follows

P + Q = 2m − 1, m ∈ N (38)

Thus, the first constraint on choice of lengths of the filter is that P + Q be odd.
Let us assume the analysis low-pass filter H0(z) has 2MA number of vanishing

moments, i.e., the filter has 2MA zeros at z = −1 and synthesis low-pass filter F0(z)
has 2MS number of vanishing moments. To obtain some freedom to optimize the
filter coefficients h0(n), the length of the analysis filter should be chosen such that
inequality

P > MA (39)

is satisfied. Thus, the degrees of freedom available to design the filter is P − MA. The
filter corresponding to P = MA is the binomial filter. In order to obtain some freedom
to optimize filter coefficients of the synthesis filter f0(n), the length must be chosen
so as to satisfy the condition

Q >

{(
P + Q − 1

2

)

+ MS

}

(40)

In which case, the degrees of freedom available to design the filter are
{

Q −
(
(P+Q−1)

2

+MS)}. If one chooses Q =
{(

P+Q−1
2

)
+ MS

}
, there exists a unique solution but

there is no freedom left to optimize the filter coefficients. No solution exists for the

length corresponding to Q <
{(

P+Q−1
2

)
+ MS

}
.
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3.4 Imposing Linear Constraints in Eigen Design Formulation

Linear constraints of the form Ca = d can be incorporated into eigenfilter design
of FIR filters, where the vector a contains the filter coefficients. The matrix C is a
rectangular matrix having constant elements and the vector d is an arbitrary vector
having constant elements. To impose the linear constraint

Ca = 0 (41)

a method, given by Pei et al. [21], is used in this paper.
From Eq. (41), we infer that a is in the null space of C. Therefore, a can be expressed

as [13]

a = Ub, (42)

where U is a rectangular unitary matrix, i.e., UUT = I
The columns of U form an orthogonal basis for the null space of C, and b is an

arbitrary vector. The objective function φ, as given in (37), can be expressed as

φ = aT Ra = bTUTRUb = bTSb, (43)

where S = UTRU is a real symmetrical matrix of the order (N + 1)× (N + 1). Using
the Rayleigh theorem [13], the optimal b is obtained as the eigenvector of the matrix S,
corresponding to its minimum eigenvalue. Having obtained the optimal b, the optimal
a can be obtained using a = Ub.

3.5 Framework for Imposing PR and VMs Condition in Time Domain

In this subsection we present how PR and VM conditions can be expressed as a set of
linear equations in the time domain.

Perfect reconstruction condition

In case of two-channel filter banks, the condition of perfect reconstruction is equivalent
to biorthogonality. In this subsection, we describe how to impose PR conditions as a
set of linear constraints in the eigen-design of the synthesis low-pass filter F0(z).

The half-band condition (3) on the product filter P(z) can be expressed in the time
domain as

p(2n) = f0(0)h0(2n)+
Q∑

k=1

f0(k){h0(2n − k)+ h0(2n + k)}

= 0 for 1 ≤ n ≤
(

P + Q − 1

2

)

, (44)

where p(n) is normalized such that p(0) = 1. We express the condition (44) in the form
Ba = 0, in order to be able to assimilate it in the eigen filter design. The a ∈ R

(Q+1)
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containing the filter coefficients f0(n), for 0 ≤ n ≤ Q, and B ∈ R

(
P+Q−1

2

)
×(Q+1)

. The
(k, l)th element of matrix B is obtained as

[B]k,l =
{

h0[2k + 2] l = 0

h0[2(k + 1)− l] + h0[2(k + 1)+ l] 1 ≤ l ≤ Q,
(45)

where 0 ≤ k <
{(

P+Q−1
2

)
− 1

}
. Note, here h0(n) = h0(−n), 0 ≤ n ≤ P and

h0(n) = 0, |n| > P . In the above formulation, the condition p(0) = 1 is not included
explicitly. The condition is absorbed in normalizing the energy of the filter.

Vanishing Moment Condition

In certain applications, specially in the design of wavelet filter banks, we require the
low-pass filters to be regular. A low-pass filter H0(z) is said to be K -regular if it has
K multiple zeros at z = −1. Since we also want to design wavelets from the filter
banks designed by us we will impose certain additional conditions on PR filter banks
to enable them to be valid candidates for wavelet filter banks. The design of wavelet
filter banks is equivalent to the design of PR filter banks, except that the former must
satisfy vanishing moment or regularity constraints in order to ensure construction of
regular wavelets and scaling functions. In this paper, K -regular low-pass filters are
said to have K vanishing moments (VMs). In our design, VM constraints are imposed
in the time-domain matrix form Ab = 0 as explained below.

Let we impose 2MA zeros at z = −1 on the low-pass filter H0(z) having 2P + 1
non-zero taps. Then the impulse response of the filter h0(n) satisfies the equality

P∑

n=−P

nK (−1)nh0(n) = 0, for K = 0, 1, 2, . . . 2MA − 1 (46)

Note, in case of odd length filters, zeros at z = −1 always occur in pairs.
Since h0(n) is a zero phase filter, the condition (46) boils down to

{
h0(0)+ 2

∑P
n=1(−1)nh0(n) = 0

2
∑P

n=1 n2K (−1)nh0(n) = 0, K = 1, 2, . . .MA − 1
(47)

The conditions (47) can be expressed in the form Ab = 0. Where, the vector
b, defined as b = [h0(0) h0(1) · · · h0(P − 1) h0(P)]T ∈ R

(P+1), contains filter
coefficients h0(n), for 0 ≤ n ≤ P , and A ∈ R

(MA)×(P+1). The (k, l)th element of
matrix A is obtained as follows:

[A]k,l =
{

1 k = l =0

2(l)2k(−1)l l ∈{0, 1, 2, · · · , P}, k ∈{0, 1, 2, · · · ,MA−1}\{k = l =0}
(48)
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4 Design Method

In this section, we present a method to design linear phase PR wavelet filter banks
using a combination of the eigenfilter-based approach and the complementary filter
bank design technique. The analysis and the synthesis filters are designed with the
objective of minimizing the time-frequency localization measure CCTFV subject to
constraints of VMs and/or PR, using the eigenfilter-based approach. The objective
measure CCTFV is formulated in the quadratic form φ = aT Ra, where R is a real
symmetric positive-definite matrix. Perfect reconstruction and vanishing moments
conditions are incorporated in the the eigenfilter design by casting the constraints
in the form Ca = 0 [21], where C is a constant matrix and a is a constant vector
associated to the filter coefficients. The optimal filter is obtained as the eigenvector of
the matrix S associated with the objective measure and the constraits, as given in (43).

We first design an optimal analysis low-pass filter H0(z) using the eigenfilter
approach taking CCTFV as minimizing objective measure subject to the constraints of
VMs. The filter H0(z) cannot be an arbitrary filter. It ought to be a valid analysis filter
of the underlying PR filter bank. A condition given by Vetterli and Herley [33] states
that the analysis filter H0(z) has a complementary-synthesis filter F0(z) if and only if
its two-polyphase components are coprime. The validity is checked explicitly, using
the Proposition 4.3 given by Vetterli and Herley [33] which states that a filter H0(z) has
a complementary filter, if and only if, it has no pair of zeros at z = γ and z = −γ . The
absence of zero pairs of the form (γ,−γ ) ensures that polyphase components of H0(z)
are coprime. Having obtained the valid analysis low-pass filter H0(z), we proceed to
design the optimal complementary synthesis low-pass filter F0(z) with the objective
of minimizing CCTFV subject to the constraints of VMs and PR. High-pass filters
F1(z) and H1(z) are obtained by quadrature conjugation of low-pass filters H0(z) and
F0(z), respectively.

We also construct wavelets from iterations of the filters of the corresponding wavelet
filter banks. To construct wavelets from the filter banks, the cascade algorithm given
by Vetterli and Herley [33] is used. However, all PR two-channel biorthogonal filter
banks cannot yield regular wavelets and scaling functions. In order to ensure that the
designed filter bank corresponds to a valid wavelet filter bank, we use the necessary
and sufficient condition given by Strang [26]. This condition essentially states that
the wavelet ψ(t) and the scaling function φ(t) converge into L2(R) if and only if the
absolute values of all eigenvalues of the transition matrix T, which is defined below,
are less than 1 (except for the simple eigenvalue 1). The Transition matrix is defined as

T = (↓ 2) 2HHT , (49)

where (↓ 2) denotes downsampling-by-2 operator. The (k, l)th element of the Toeplitz
matrix H is given as [H]k,l = h0(k − l), h0(n) is the filter coefficients of the low-pass
filter of the underlying biorthogonal filter bank, normalized to

∑
n h0(n) = 1. Note, for

biorthogonal filter banks we have to explicitly check the eigenvalues of the transition
matrices corresponding to both the analysis and the synthesis sides of the filter bank.
The flow chart which delineates the design methodology is given in the Fig. 2.
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Fig. 2 Flow Chart for the Design Method
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In the later part of this section, we present how the design problem of the analysis
and synthesis filter can be formulated as a constrained optimization problem and how
to obtain optimal time-frequency localized filters using the eigenfilter technique.

Design of Analysis filter

1. First we fix the lengths and numbers of vanishing moments for the analysis and
synthesis filters by choosing appropriate values of P, Q,MA, and MS such that
constraints given on the lengths in the Sect. 3.3 are satisfied. We also choose the
value of the time-frequency trade-off factor α, 0 ≤ α ≤ 1 for the analysis as well
as the synthesis filters. The design of the analysis low-pass filter h0(n) has been
cast as a constrained optimization (minimization) problem

minimize
h

φ = hT Rh

subject to Ah = 0, hT h = 1

where φ is the objective function CCTFV (37). The matrix R ∈ R
(P+1)×(P+1)

is a real, symmetric positive-definite matrix. The set of linear equation Ah = 0
corresponds to VM constraints, A ∈ R

MA×(P+1) is the matrix as defined in (48),
and h ∈ R

(P+1) contains the filter coefficients h0(n) for 0 ≤ n ≤ P .
2. The optimal vector h is obtained as the eigenvector of the matrix S, as defined in

(43), corresponding to its minimum eigenvalue. The matrix S is constructed using
the method given in the Sect. 3.4. The vector h contains P + 1 coefficients of the
filter h0(n) for 0 ≤ n ≤ P. The remaining P coefficients can be deduced from
symmetry. Having obtained the filter coefficients h0(n), we explicitly verify that
H0(z) does not have any pair of zeros at z = γ and z = −γ,which ensures that two-
polyphase components of H0(z) are relatively coprime and therefore it is a valid
filter (for PR filter bank). In fact, it is observed that filters designed by taking the cost
function (37) are “almost always” valid for all values of time-frequency trade-off
factor α except for α = 0, in which case all zeros of H0(z) lie on the unit circle.

We would like to note that a filter from the well-known biorthogonal filter banks
such as CDF-9/7 [4] can also be chosen as the analysis filter, and we can design a
complementary-synthesis filter for this given analysis filter. For example, in design
Example 1 given in the Sect. 5, we chose 7-tap filter of the CDF-9/7 filter banks as
our analysis filter and design the optimal complementary-synthesis filter.

Design of Synthesis Filter

1 For the given (designed) analysis low-pass filter, the design of the complementary,
synthesis, low-pass filter can also be formulated as a constrained optimization
problem

minimize
g

φ = gT Rg

subject to Ag = 0, Bg = 0, gT g = 1,
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where φ, matrices R ∈ R
(Q+1)×(Q+1) and A ∈ R

MS×(Q+1) are exactly same as
defined for the design of the analysis filter. The set of linear equations Bg = 0

represents PR constraints, where the matrix B ∈ R

(
P+Q−1

2

)
×(Q+1)

, defined in (45),

corresponds to
(

P+Q−1
2

)
number of PR linear constraints.

2. The vector g corresponding to the optimal filter is obtained in the exactly similar
way as that of the analysis filter using the method described in the Sect. 3.4. The
vector g contains Q + 1 coefficients of filter f0(n) for 0 ≤ n ≤ Q. The remaining
Q coefficients can be deduced from symmetry.

Having designed both the analysis and the synthesis filters, we check the eigen
values of the transition matrices, as defined in (49), for both the analysis as well as
the synthesis sides of the underlying filter bank, in order to ensure the convergence
of the wavelets and the scaling functions in L2(R). If the filter bank satisfies the
validity condition, wavelets are constructed using the cascade algorithm. In all the
design examples presented by us, the filter banks satisfy the condition and therefore
the corresponding wavelets converge in L2(R).

5 Design Examples and Results

In this section, we present a few design examples to show the effectiveness of the
proposed eigenfilter-based design methodology. We also present time-frequency mea-
sures of the optimal filter banks designed by us in this section.

Example 1 In this example, we compare time-frequency localization properties of the
popular CDF-9/7 filter bank and the optimal time-frequency localized 13/7 filter bank
designed by us. The analysis filter has not been designed rather we take the 7-tap filter
of CDF-9/7 filter bank as our analysis filter h0(n). We design only the complementary-
synthesis filter f0(n) of length 13 for the given analysis filter by choosing the design
parameters as Q = 6, 2MS = 2, and α = .5. The value of α indicates that time
localization and frequency localization are given same weightage in the optimization
process. It is to be noted that in CDF-9/7 filter bank, both the analysis and synthesis
filter have four vanishing moments. To obtain some degrees of freedom to optimize
the filter coefficients, the length and number of vanishing moments are chosen to be
13 and 2, respectively. The degrees of freedom are used to optimize time-frequency
localization of the filter. Interestingly, the time-frequency localization of the optimal
length-13 filter designed by us has better time-frequency localization than that of the
length-9 filter of the CDF-9/7 filter bank. In Table 1, we compare the time-frequency
localization of the 9-tap filter of CDF-9/7 and 13-tap filter of the optimal 13/7 filter
bank deigned by us. From Table 1, it is clear that the product of the time variance and
frequency variance of the optimal length-13 filter is lesser than that of the length-9
filter of the CDF-9/7 filter bank. The frequency response plots for H0(ω) and F0(ω)

are shown in Fig. 3g and h, respectively. The pole-zero plots for H0(z) and F0(z) are
shown in Fig. 3e and f, respectively. The filter coefficients h0(n) and f0(n) are given
in Table 2.
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Fig. 3 Example-1

Example 2 This example demonstrates the fact that filter banks designed by us are
optimally time-frequency localized. It is shown that the time-frequency localization
property of the optimal filter bank designed by us is superior to the property of time-
frequency optimized filter bank deigned by Tay [29]. This example also testifies that
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Table 1 Time-frequency
Properties: Example-1 Filter σ 2

n σ 2
ω σ 2

n σ
2
ω

Length-9 of CDF-9/7 0.422 1.103 0.465

Length-13 of Optimal-
13/7 designed by us

0.361 1.170 0.422

Table 2 Filter Coefficients of Design Examples

Example 1 Example 2 Example 3

Index h0(n) f0(n) h0(n) f0(n) h0(n) f0(n)

0 7.9529E − 01 −8.5479E − 01 8.1602E − 01 8.7655E − 01 7.7037E − 01 7.7576E − 01

±1 4.2170E − 01 −3.4933E − 01 4.0780E − 01 3.1166E − 01 4.4761E − 01 3.9919E − 01

±2 −4.1041E − 02 1.0945E − 01 −2.0656E − 02 −1.3553E − 01 8.4491E − 03 −1.2857E − 01

±3 −6.5096E − 02 3.4822E − 03 3.6111E − 03 3.1074E − 03 −4.4067E − 02 −1.3692E − 01

±4 −2.5385E − 02 8.7321E − 03 −1.0359E − 02 2.5605E − 02 5.0022E − 02

±5 9.7073E − 04 −1.5329E − 02 1.4711E − 03 1.5699E − 02 3.3430E − 02

±6 −1.5397E − 03 1.0755E − 02 −2.6956E − 02

±7 −8.6951E − 03 −8.0621E − 03

±8 4.6791E − 03 7.2987E − 03

±9 2.0736E − 04 1.2445E − 03

±10 9.0654E − 06 −9.8374E − 04

±11 −9.4933E − 05 −1.1475E − 04

±12 −1.6665E − 04 7.0355E − 05

Table 3 Time-frequency
Properties: Example-2

Filter Bank Optimal 11/25
designed by us

Optimal 11/25 designed
by Tay in Ex-1 [29]

Filter H0(z) F0(z) H0(z) F0(z)

σ 2
n 0.350 0.363 0.438 1.020

σ 2
ω 0.836 1.350 0.718 1.080

σ 2
n σ

2
ω 0.293 0.491 0.315 1.102

we can construct smooth wavelets and scaling functions from iterations of the filter
bank designed by the proposed method. For the sake of comparison we choose the
length of filters and number of VMs exactly same as that of the filters of the 11/25
filter bank deigned by Tay [29] in the Example 1. For the analysis filter, the design
parameters are as follows: L A = 11, 2MA = 4, and trade-off factor α = 5/6. For
the synthesis filter, we choose L S = 25, 2MS = 4, and α = 10/11. Note that in
this example, we choose different values of the trade-off factor α for the analysis and
synthesis filters, which indicates that time and frequency localization is not given the
same weightage in the optimization process. In the Table 3, we compare the time-
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Table 4 Time-frequency
Properties: Example-3 Filter σ 2

n σ 2
ω σ 2

n σ
2
ω

H0(z) 0.350 0.836 0.431

F0(z) 0.365 1.328 0.526

frequency localization of the optimal 11/25 filter bank deigned by us and 11/25 time-
frequency optimized filter bank designed by Tay [29] in the Example 1. It is clear
from the table that time-frequency product of the analysis as well as the synthesis
filters designed by us is superior. The frequency response plots for H0(ω) and F0(ω)

are shown in Fig. 4g and h, respectively. The pole-zero plots for H0(z) and F0(z) are
shown in Fig. 4e and f, respectively. From the iteration of these filters, scaling functions
and wavelets are constructed using the cascade algorithm. The wavelets and scaling
functions are found to be regular. The analysis scaling function and wavelet are shown
in Fig. 4a and b, respectively. The synthesis scaling function and wavelet are shown
in Fig. 4c and d, respectively. Figure 4 exhibits that designed wavelets and scaling
functions are reasonably smooth. The filter coefficients h0(n) and f0(n) are given in
Table 2.

Example 3 This example justifies the fact that we can control time-frequency local-
ization of the analysis and synthesis filter independently and arbitrarily. It is possi-
ble to design the optimal time localized and optimal frequency localized filters. In
this example, we design optimally time-localized analysis filters without taking into
account the frequency localization. On the other hand, the synthesis filter designed
is optimally frequency localized, i.e., time localization is not taken into account in
the optimization process. For the analysis filter, the deign parameters are as follows:
L A = 11, 2MA = 6, and α = 1. The synthesis filter is designed with L S = 25,
2MS = 6, and α = 0. The frequency response plots for H0(ω) and F0(ω) are shown
in Fig. 5g and h, respectively. The pole-zero plots for H0(z) and F0(z) are shown in
Fig. 5e and f, respectively. From the iteration of these filters, scaling functions and
wavelets are constructed using the cascade algorithm. The wavelets and scaling func-
tions are found to be regular. Analysis scaling function and wavelet are shown in Fig.
5a and b, respectively. Synthesis scaling function and wavelet are shown in Fig. 5c
and d, respectively. From the Fig. 5, it is clear that the wavelets and scaling func-
tions designed by us are smooth. The filter coefficients h0(n) and f0(n) are given in
Table 2. Time-frequency properties of filters are given in the Table 4.

6 Conclusion

In this paper, we present an eigenfilter-based approach to design time-frequency opti-
mized linear phase biorthogonal two-channel filter banks. We also impose desired
degree of flatness at ω = 0 (regularity) in the transfer function of the low-pass analy-
sis as well as synthesis filters. We have shown that regular wavelets can be con-
structed from the iterations of the designed filter banks. We have demonstrated that it
is possible to control time localization and frequency localization of the analysis and
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(g) Plot of H0(ω)
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(h) Plot of F0(ω)

Fig. 4 Example-2

synthesis filters independently. This method can also be extended to design of
M-channel, 1-D, and 2-D filter banks. The method can be extended to design filter
banks, wherein the optimality criterion is a combination of time-frequency localiza-
tion, pass-band error, and stop-band error. In addition, the study of trade-offs among
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(e) Pole-zero plot for H0(z)

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

24

Real Part

Im
ag

in
ar

y 
P

ar
t

6

(f) Pole-zero plot for F0(z)
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Fig. 5 Example-3

time localization, frequency localization, stop-band error, and pass-band error can be
extended further.

Acknowledgments The authors acknowledge the support received from Bharti Center for Communica-
tion, Department of Electrical Engineering, Indian Institute of Technology, Bombay and Acropolis institute
of technology and research, Indore toward the research work presented in the manuscript.



Circuits Syst Signal Process (2015) 34:931–959 955

Appendix

7 Derivation of Matrix Formulation for Time and Frequency Variance for Real
Symmetric Discrete-Time Sequences

7.1 Frequency Variance Measure

From the Eq. (31) the frequency variance of the zero phase, low-pass, real FIR filter
h(n) of length 2N + 1, N ∈ N is given by

σ 2
ω = aTQa, (50)

where the matrix Q and the vector a are defined in the Eqs. (31) and (26), respectively.
We define the matrix E as

E = ω2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
2 cos(ω)

2 cos(2ω)
...

2 cos(Nω)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

[
1 2 cos(ω) 2 cos(2ω) . . . 2 cos(Nω)

]
(51)

The matrix E can also be expressed as follows:

E(ω) = ω2c(ω)cT (ω) (52)

The vector c(ω) is defined in (27). The (k, l)th element of the matrix E is given as

[E]k,l =

⎧
⎪⎨

⎪⎩

ω2 k = l = 0

ω2{cos(k + l)ω + cos(k − l)ω} k = 0 or l = 0 except k = l = 0

2ω2{cos(k + l)ω + cos(k − l)ω} otherwise

(53)

where 0 ≤ k, l ≤ N . The matrix Q corresponding to the frequency variance is related
to the matrix E as

Q(ω) = 1

π

∫ π

0
E(ω)dω (54)

The (k, l)th element of the matrix Q can be given as

[Q]k,l =
{

1
π

∫ π
0 ω2dω = π2

3 k = l = 0
1
π

∫ π
0 4ω2 cos2(kω)dω = 2π2

3 + 1
k2 k = l except k = l = 0

(55)
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[Q]k,l =
{∫ π

0 ω2[cos(k + l)ω + cos(k − l)ω] dω
π

k = 0 or l =0 except k = l =0
∫ π

0 2ω2[cos(k + l)ω + cos(k − l)ω] dω
π

1 ≤ k, l ≤ N , except k = l

(56)

In order to evaluate the integrals in the Eq. (56), we substitute k + l = m and
k − l = s. Thus (56) boils down to

[Q]k,l =
{∫ π

0 ω2[cos(mω)+ cos(sω)] dω
π

k = 0 or l = 0 except k = l = 0
∫ π

0 2ω2[cos(mω)+ cos(sω)] dω
π

1 ≤ k, l ≤ N , except k = l

(57)

The indefinite integral I = ∫
ω2 cos(mω)dω is evaluated as

I =
∫
ω2 cos(mω)dω

= ω2 sin(mω)

m
+ 2ω cos(mω)

m2 − 2 sin(mω)

m2 ,m �= 0 (58)

On substituting limits in the integral of the expression (58) we get

∫ π

0
ω2 cos(mω)dω = 2π(−1)m

m2 , m �= 0 (59)

Using (59), (57), and (55), we obtain

[Q]k,l =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π2

3 k = l = 0
2π2

3 + 1
k2 k = l except k = l = 0

4(−1)k+l

(k+l)2
k = 0 or l = 0, except k = l = 0

8(−1)k+l (k2+l2)

(k2−l2)2
otherwise

(60)

where 0 ≤ k, l ≤ N .

7.2 Time Variance Measure

From the Eq. (34) the time variance of the zero phase, low-pass, real FIR filter h(n)
of length 2N + 1, N ∈ N is expressed as

σ 2
n = aTPa, (61)
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where the matrix P and the vector a are defined in the Eqs. (34) and (26), respectively.
We define the matrix F as

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
−2 sin(ω)
−4 sin(2ω)

...

−2N sin(Nω)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

[
0 −2 sin(ω) −4 sin(2ω) . . . −2N sin(Nω)

]
(62)

F = f(ω)fT(ω)

The vector f(ω) is defined in (28). The (k, l)th element of the matrix F is given as

[F]k,l = 4kl sin(kω) sin(lω)

The matrix P corresponding to time variance is related to the matrix F as

P(ω) = 1

π

∫ π

0
F(ω)dω

The (k, l)th element of matrix P is

[P]k,l = 1

π

∫ π

0
4kl sin(kω) sin(lω)dω

= 1

π

∫ π

0
kl[2 cos(k − l)ω − 2 cos(k + l)ω]dω (63)

In order to evaluate the integral in the Eq. (63), we substitute k + l = m and
k − l = s. Thus (63) boils down to

[P]k,l = 1

π

∫ π

0
kl{2 cos(sω)− 2 cos(mω)}dω (64)

The value of the integral 1
π

∫ π
0 cos(mω)dω is evaluated as

1

π

∫ π

0
cos(mω)dω = 0,m �= 0 (65)

Using (65) and (64), we get

[P]k,l =
{

0 k �= l

2k2 k = l
(66)

Thus, the matrix P can be expressed as

[P]k,l = 2k2δ(k − l), 0 ≤ k, l ≤ N
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It is to be noted that the matrix P can be obtained directly using (5) in time domain;
however, for the sake of completeness we derived the matrix P using frequency-domain
approach and Parseval’s identity.
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