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Abstract This correspondence presents the adaptive polynomial filtering using the
generalized variable step-size least mean pth power (GVSS-LMP) algorithm for the
nonlinear Volterra system identification, under the α-stable impulsive noise environ-
ment. Due to the lack of finite second-order statistics of the impulse noise, we espouse
the minimum error dispersion criterion as an appropriate metric for the estimation error,
instead of the conventional minimum mean square error criterion. For the convergence
of LMP algorithm, the adaptive weights are updated by adjusting p ≥ 1 in the presence
of impulsive noise characterized by 1 < α < 2. In many practical applications, the
autocorrelation matrix of input signal has the larger eigenvalue spread in the case of
nonlinear Volterra filter than in the case of linear finite impulse response filter. In such
cases, the time-varying step-size is an appropriate option to mitigate the adverse effects
of eigenvalue spread on the convergence of LMP adaptive algorithm. In this paper,
the GVSS updating criterion is proposed in combination with the LMP algorithm, to
identify the slowly time-varying Volterra kernels, under the non-Gaussian α-stable
impulsive noise scenario. The simulation results are presented to demonstrate that the
proposed GVSS-LMP algorithm is more robust to the impulsive noise in comparison
to the conventional techniques, when the input signal is correlated or uncorrelated
Gaussian sequence, while keeping 1 < p < α < 2. It also exhibits flexible design to
tackle the slowly time-varying nonlinear system identification problem.
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1 Introduction

In the field of communication engineering, speech processing, image processing, and
biomedical engineering, etc., many systems possess certain degrees of nonlinearity,
which do not exhibit superposition property. Any such polynomial system [11] is
also called Volterra system [9], which is most commonly referred /used paradigm due
to its roots in the Taylor series expansion of the nonlinear functions with memory
[21]. Therefore, the nonlinear system identification [16] is indispensable to establish
a mathematical model for an unknown system through the input–output relationship.
The researchers in the field of nonlinear system identification usually consider Volterra,
Weiner [17] and Hammerstein [26] models. However, the presented research work will
focus on the variable step-size adaptive nonlinear Volterra filtering [12], due to its low
computational complexity compared to the variable step-size adaptive Hammerstein
filtering [25].

The measurement noise is an inevitable issue in the field of nonlinear system iden-
tification, which is generally assumed to be a random process with the finite-order
statistics. Under such scenario, the mean square error (MSE) appears as an appropri-
ate metric for the estimation error. However, the impulsive noise [15] with the heavier
distribution tail possesses approximately infinite second-order statistics, which con-
notes non-Gaussian characteristics. It leads to the need of alternate methods for the
nonlinear system identification in the presence of impulse noise.

The Gaussian distribution is a special case of α-stable processes with α = 2,
which is characterized by the finite variance [20]. It is noteworthy that the α-stable
processes in the range 1 < α < 2 are considered to be non-Gaussian with infinite
variance. In [24], Stuck has discussed that a finite variance Gaussian model is appro-
priate over a limited range of data, while an infinite variance model is adequate in
terms of matching the observed data over a wider range. Therefore, the impulse noise
occurrence may be modeled as non-Gaussian for further analysis, which favors the
application of adaptive nonlinear filtering for the noise excision and nonlinear system
identification [14]. Under the aforementioned conditions, the cost function based on
the minimum error dispersion (MED) outperforms the conventional minimum mean
square error (MMSE)-based approach [22]. Moreover, it results in the development
of least mean pth power (LMP) adaptation algorithm, in which the cost function is
convex with respect to the filter weights for the range p ≥ 1. However, the perfor-
mance of LMP algorithm supersedes the conventional LMS algorithm, only when the
value of parameter p is close to α for the range 1 < p < α. But in [28], Weng and
Barner have delineated that the large eigenvalue spread of the input signal autocorre-
lation matrix has been observed in the case of Volterra filtering, which in turn results
in the slow convergence speed/rate of the LMP, as well as LMS adaptive algorithms.
However, the nonlinear Volterra FSS-LMS filter can encounter divergence in case of
the ill-conditioned tap input autocorrelation matrix [25].
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The time-varying step-size is one of the tractable solutions to expedite the con-
vergence process in the case of LMP algorithm. Kwong and Johnston have proposed
a variable step-size LMS (KVSS-LMS) adaptive algorithm in [10] for the tracking
of time-varying first-order Markovian channels, in which the step-size adjustment is
controlled by the square of prediction error. Further, Aboulnasr and Mayyas have pre-
sented a variable step-size LMS (AVSS-LMS) adaptive algorithm in [1], in which the
step-size of the algorithm is adjusted according to the square of time-averaged esti-
mate of the autocorrelation of present/instantaneous estimation error e(n) and the past
estimation error e(n − 1). In an alternate approach proposed by Ang and Farhang-
Boroujeny in [2], the step-size of adaptive filter is changed according to a stochastic
gradient adaptive algorithm designed to reduce the squared estimation error at each
iteration, which is denoted as SVSS-LMS algorithm. All the aforementioned VSS-
LMS algorithms are implemented using the linear filtering perspective.

In this paper, we propose adaptive nonlinear Volterra filtering using the general-
ized variable step-size least mean pth power (GVSS-LMP) algorithm for the slowly
time-varying system identification, in the presence of α-stable impulsive noise. This
combination of GVSS and LMP algorithm enhances the convergence rate under the
noisy environment. However, it reduces to the various VSS-LMP and VSS-LMS adap-
tive algorithms under the typical parametric conditions, which signifies its flexibility.
This paper is organized as follows. In Sect. 2, we first describe the slowly time-varying
nonlinear Volterra system (as shown in Fig. 1) along with the details ofα-stable impulse
noise characteristics. We next introduce the adaptive nonlinear system identification
method based on the MED criterion using the proposed GVSS-LMP algorithm in Sect.
3. Subsequently, the convergence and tracking mode performances of the presented
algorithm are compared with KVSS-LMP [10,28], AVSS-LMP [1,28] and SVSS-LMS
[2] adaptive algorithms in Sect. 4, to manifest its benefits and efficacy on the basis of
simulation results. Finally, the concluding remarks and future scope are illustrated in
Sect. 5.

Fig. 1 Nonlinear slowly time-varying system identification configuration
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2 Nonlinear System Model in Noisy Environment

2.1 Slowly Time-Varying Volterra System

Among polynomial system models, the Volterra system [21] is the preferred paradigm
because its output is nonlinear with respect to the input signals, but it is linear in terms of
kernels. Therefore, the adaptive signal processing techniques may be directly extended
to the Volterra filtering. In literature, there are many time-varying nonlinear wireless or
underwater acoustic communication channels, which need to be tracked or estimated
by the nonlinear polynomial adaptive filtering. For identification of these unknown
systems, we consider the configuration shown in Fig. 1, in which the underlying system
and the adaptive nonlinear Volterra filter are driven by the common input signal vector
�x(n). In the presence of impulse noise, the general input–output relationship of an
unknown nonlinear system can be illustrated by a truncated Volterra series as

y(n) = h0 +
K∑

k=1

M−1∑

m1=0

. . .

M−1∑

mk=0

hk(n; m1, . . . ,mk)

k∏

i=1

x(n − mi )+ imp(n) (1)

Typically, the second-order Volterra series is described by the input–output rela-
tionship as

y(n) = h0 +
M−1∑

m1=0

h1(n; m1)x(n − m1)+
M−1∑

m1=0

M−1∑

m2=0

h2(n; m1,m2)x(n − m1)

x(n − m2)+ imp(n), (2)

where h0 is the time-invariant zeroth-order Volterra kernel, h1, h2 are the first-order
and the second-order Volterra kernels, respectively, M is the memory length, x(n) is
the input signal, and imp(n) is the α-stable noise with zero-mean (inevitable distur-
bance). The complexity of Volterra filter is dependent upon the memory (M). In the
general case, the degree of nonlinearity (K ) of the Volterra system is usually assumed
to be time-invariant [3]. As the Volterra kernels are symmetrical in nature, the value
of coefficient hk(n; m1, . . . , mk) is kept unchanged for any of the possible k! per-
mutations of m1,m2, . . . ,mk . Hence, these kernels remain time-invariant under the
different permutations of its argument.

In the presented work, the values of K and M are considered to be known a priori.
For the slowly time-varying second-order Volterra system, the input–output relation-
ship is depicted by (1) with K = 2. Now, let us consider the L×1 dimensional expanded
filter coefficients vector as

�h(n) = [h1(n; 0), h1(n; 1), . . . , h1(n; M − 1), h2(n; 0, 0), h2(n; 0, 1), . . . . . . ,
. . . . . . , h2(n; 0,M − 1), h2(n; 1, 1), . . . , h2(n; M − 1,M − 1)]T ,

(3)
where (.)T is the matrix transpose operator. The L × 1 dimensional expanded
input signal vector for the second-order Volterra filter with zero-mean and variance
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σ 2
x = 1/L is denoted as

�x(n) = [x(n), x(n − 1), . . . , x(n − M + 1), . . . , x2(n), x(n)x(n − 1), . . . ,
. . . . . . x(n)x(n − M + 1), . . . , x2(n − 1), . . . , x2(n − M + 1)]T (4)

Further, we can express Eq. (2) in the vector form as

y(n) = �hT (n)�x(n)+ imp(n) (5)

In the nonlinear system identification, the final goal is to identify the time-varying
Volterra kernels hk(n; m1, . . . , mk) in Eq. (1) through measured y(n) and x(n), which
follow the Random Walk model [1,2,10,13] given by �h(n + 1) = �h(n)+ �w(n + 1);
where �w(n) is the zero-mean white Gaussian process noise vector with variance
σ 2
w = 0.001 (assumed to be small for the slow time-variations). For the mathematical

analysis, the adaptively estimated Volterra kernel vector may be represented by

�h′(n) = [h′
1(n; 0), h′

1(n; 1), . . . , h′
1(n; M − 1), h′

2(n; 0, 0), h′
2(n; 0, 1), . . . ..,

. . . . . . . . . . . . . . . . . . . . . . . . .. , h′
2(n; 0,M − 1), h′

2(n; 1, 1), . . . , h′
2(n; M − 1,M − 1)]T (6)

Therefore, the estimated received signal is denoted by

y′(n) = �h′T (n)�x(n) (7)

Hence, the output estimation error in the signal reception is computed by

e(n) = y(n)− y′(n) (8)

This error signal is fed back to the adaptive filter (self-designing filter), which
begins from an initial guess based on the prior knowledge available to the system; and
then it converges eventually to the optimal solution in some statistical sense through
the successive iterations.

2.2 Symmetric α-Stable Noise Model

An α-stable process can be described by the following characteristic function [19,22],
as it exhibits no closed-form probability density function.

�(�) = exp
[

jη�− γ |�|α {1 + jβsgn(�)S(�, α)}] (9)

where, S(�, α) =
[

tan(απ2 ) for α �= 1
2
π

log |�| for α = 1

]
, 0 < α ≤ 2,−∞ < η < +∞, γ > 0,

and −1 ≤ β ≤ +1. Thus, a stable distribution is completely determined by four
parameters: (1) the location parameter η, (2) the index of skewness β (the distribution
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is symmetric about its location parameter η, when β = 0, therefore, called symmetric
α-stable distribution), (3) the scale parameter γ is called dispersion (the parameter
γ 1/α plays a role similar to the standard deviation of the Gaussian distribution), and
(4) α is the characteristic exponent. This shape parameter is a measure of the heaviness
of the tail of distribution. The processes with small values of α are considered to be
impulsive. However, for the large values of α, the observed values of random variable
are not far from its central location. Under typical conditions, when the value of α → 2
and β = 0, then �(�) → exp

[
jη�− γ |�|2]. This relevant stable distribution is

Gaussian in nature. However in the presented work, the α-stable random variables
do not have finite variance, but these are characterized only by the finite pth-order
moments for p < α. It is noteworthy fact that all the moments of order less than
α do exist and are called the fractional lower order moments (FLOM) [22], which
can be derived from its dispersion and the characteristic exponent with zero location
parameter as

E |X |p = C(p, α)γ p/α f or 0 < p < α

where, C(p, α) = 2p+1
((p+1)/2)
(−p/α)
α
√
π
(−p/2)

(10)

which is dependent on the values of parameters α and p, not on random variable X.
In the above equation, the parameter 
 is the gamma function [19,22].

3 GVSS-LMP Algorithm for Nonlinear System Identification

3.1 Least Mean pth Power Adaptive Algorithm

In the field of adaptive signal processing [7], the most popular approaches for the
estimation/prediction schemes are based on the MMSE criterion. The corresponding
cost function as per the Wiener theory is

JMMSE( �h′) = E

[∣∣∣y(n)− �h′T (n)�x(n)
∣∣∣
2
]
, (11)

where E [∗] is the ensembled average operator. Using the error signal e(n), the non-
mean square error criterion is discussed in the form of least mean forth (LMF) adaptive

algorithm in [27], in which the cost function is considered to be E
[
|e(n)|2K̄

]
for K̄ ≥ 1

(only integer values of K̄ ). In some typical cases, the LMF algorithm with K̄ > 1
outperforms the conventional LMS algorithm by providing less noise in weights for
the same speed of convergence. It has motivated the evolution of LMP algorithm for
the noisy situations, in which 1 < p < α < 2. Particularly, when �h′(n) → �h(n) in the
presence of α-stable noise, the residual imp(n) dominates in the estimation error e(n)
in Eq. (8). Therefore, the resulting estimation error may be assumed as approximately
α-stable process, such that the FLOM [22] is

E
[
|e(n)|p−2

]
= C(p − 2, α)γ ((p−2)/α) = D(p, α, γ ) (12)



Circuits Syst Signal Process (2014) 33:3931–3947 3937

Since the variance of α-stable noise is not finite, therefore, we can utilize the MED
criterion [24], i.e., the minimization of cost function

JMED( �h′) = E
[∣∣∣y(n)− �h′T (n)�x(n)

∣∣∣
p]

(13)

It is equivalent to the minimization of pth order FLOM. Unfortunately, this cost
function JMED( �h′) does not exhibit closed-form solution. Therefore, the stochastic
gradient technique can be utilized as an alternative for the minimization of JMED( �h′),
similar to the LMS adaptive algorithm. The basic idea is to minimize the error disper-
sion for each successive datum or observation as much as possible. It leads to

�h′(n + 1) = �h′(n)− μ(n)∇h JM D( �h′) (14)

Akin to the steepest descent algorithm [7],

∇h JMD( �h′) =
δE

[∣∣∣y(n)− �h′T (n)�x(n)
∣∣∣ p

]

δ �h′ (15)

Analogous to the stochastic gradient algorithm [22],

∇h JMD( �h′) ≈ δ
[|e(n)|p]

δ �h′ = p |e(n)|p−1 δ |e(n)|
δ �h′ (16)

where,
|e(n)| = sgn {e(n)} e(n)

= sgn {e(n)}
{

y(n)− �h′T (n)�x(n)
} (17)

Hence, ∇h JM D( �h′) ≈ −p |e(n)|p−1 sgn {e(n)} �x(n) (18)

By substituting (18) in Eq. (14), it can be shown that

�h′(n + 1) = �h′(n)+ {μ(n)p} |e(n)|p−1 sgn {e(n)} �x(n) (19)

The simplified version of LMP algorithm can be represented as

�h′(n + 1) = �h′(n)+ μ′(n) |e(n)|p−1 sgn {e(n)} �x(n), (20)

whereμ′(n) = μ(n)p is the variable step-size (VSS), which plays a critical role in the
convergence mode of LMP algorithm [28], for the operating range 1 < p < α < 2.
Although the convergence analysis of LMP algorithm is a tedious problem, yet the
convergence range of variable step-size μ′(n) in (20) can be approximated as

0 < μ′(n) < 2

D(p, α, γ )λMax
(loose bounded, [28]) (21)
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By invoking a better approximation, it can be shown that

0 < μ′(n) < 2

D(p, α, γ )tr( �Rxx )
<

2

3tr( �Rxx )
(tight bounded, [23, 28]), (22)

where tr( �Rxx ) symbolizes the trace of autocorrelation matrix �Rxx of the input signals.
The maximum value of VSS is tightly bounded by the maximum eigenvalue λMax of
the matrix �Rxx = E

[�x(n)�xT (n)
]
. The LMS algorithm is a special case of LMP

algorithm for p = 2 and α = 2 in Eq. (20). In the next subsection, we give details
about the proposed GVSS criterion to update μ′(n) in the aforementioned iterative
procedure.

3.2 Generalized Variable Step-Size (GVSS) Criterion

The large eigenvalue spread in the case of Volterra filtering necessitates the incor-
poration of variable step-size, in combination with the LMP adaptive algorithm, for
the improved convergence rate. Moreover, the VSS criterion is also beneficial in the
tracking of slowly time-varying channels/systems. The VSS must increase or decrease
as the mean square error increases or decreases, allowing the adaptive nonlinear filter
to track changes in the underlying system and to produce a small steady-state error. It
should reduce the tradeoff between misadjustment and the speed of adaptation under
the slowly time-varying conditions, due to its innate capability of providing both fast
tracking, as well as small misadjustment. Therefore, the generalized variable step-size
(GVSS) criterion is proposed to adjust the step-size under the stationary and nonsta-
tionary scenarios, which is as follows:

μ′(n) = ᾱμ′(n − 1)+ γ̄ J1(n − 1)+ β̄ J2(n) (23)

where, J1(n) =
P̄∑

p̄=0

λ
p̄
1 e(n)e(n − p̄)with 0 ≤ λ1 < 1 (24)

J2(n) =
⎡

⎣
Q̄∑

q̄=1

λ
q̄
2e(n − q̄) �xT (n − q̄)

⎤

⎦ �x(n)e(n) with 0 ≤ λ2 < 1 (25)

where 0 < ᾱ ≤ 1, 0 ≤ γ̄ < 1, and 0 ≤ β̄ < 1. The parameter ᾱ induces the global
exponential forgetting to the VSS, the parameter γ̄ controls the convergence time, as
well as the level of misadjustment [10], the parameter β̄ adjusts the adaptive behavior
of the step-size sequence μ′(n) [13]. However, λ1andλ2 are the local exponential
forgetting factors in Eqs. (24) and (25), respectively. For the appropriate convergence,
the VSS should be bounded in the range μ′

Min ≤ μ′(n) ≤ μ′
Max [1]. The initial

step-size is usually taken as μ′
Max, which ensures that the MED of algorithm remains

bounded. However, μ′
Min is chosen to provide the minimum level of tracking ability,

which is kept close to the step-size of FSS-LMS algorithm.
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Further in special case 1, if the values of parameter are P̄ = 0 and β̄ = 0 in Eq.
(23), then

μ′(n) = ᾱμ′(n − 1)+ γ̄ J1(n − 1) (26)

μ′(n) = ᾱμ′(n − 1)+ γ̄ e2(n − 1) (27)

The underlined term in Eq. (27) is similar to the KVSS criterion presented in [10],
(as in Eq. (33) of appendix). Next in special case 2, if the parametric values P̄ = 1
and β̄ = 0 are in Eq. (23), then

μ′(n) = ᾱμ′(n − 1)+ γ̄ e2(n − 1)+ {γ̄ λ1} {e(n − 1)e(n − 2)} (28)

The underlined term in Eq. (28) is akin to the AVSS criterion described in [1], (as
in Eq. (35) of appendix). Subsequently in special case 3, if ᾱ = 1, Q̄ = 1, and γ̄ = 0
are in Eq. (23), then

μ′(n) = μ′(n − 1)+ {
β̄λ2

} {
e(n − 1)�xT (n − 1)�x(n)e(n)

}
(29)

The underlined term in Eq. (29) is analogous to the Mathews’ algorithm proposed
in [13]. However, in special case 4, ᾱ = 1 and γ̄ = 0 in Eq. (23) results in

μ′(n)=μ′(n − 1)+{
β̄λ2

}
⎡

⎣
e(n − 1)�xT (n − 1)+λ2e(n − 2)�xT (n − 2)
+ λ2

2e(n − 3)�xT (n − 3)+ . . . . . .

. . . . . .+ λ
Q̄−1
2 e(n − Q̄)�xT (n − Q̄)

⎤

⎦�x(n)e(n)

(30)
The underlined term in Eq. (30) is similar to the SVSS criterion suggested in [2], (as

shown in Eq. (39) of appendix). Therefore, the abovementioned GVSS criterion (23)
is incorporated in Eq. (20) to formulate the proposed GVSS-LMP algorithm, which
is relatively computationally complex than FSS-LMP, KVSS-LMP, AVSS-LMP, and
SVSS-LMS algorithms.

4 Simulation Results

The performance evaluation of the proposed GVSS-LMP algorithm is performed by
comparing it with KVSS-LMP, AVSS-LMP, and SVSS-LMS algorithm under the
similar conditions, for the nonlinear system identification. The kernels of the unknown
system (as shown in Fig. 1) are assumed to follow the Random Walk model for the
slow time-variations in the system response (as discussed in Sect. 2.1). As in α-stable
noisy environment, the error signal variance could be infinite, therefore, the LMS
algorithm based on the MMSE criterion (11) seems to be an inappropriate choice in
comparison with the MED criterion JMED(h′) (12). However, the value of p in LMP
algorithm (20) is kept close to α for excellent results [10] in terms of the transient and
steady-state behavior, which are fixed at α = 1.75 and p = 1.6.

The input signal to the underlying unknown system (as shown in Fig. 1) may be
correlated or uncorrelated Gaussian sequence �x . The white Gaussian input is quite
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apposite for the identification of kernels in the Volterra system because it has adequate
spectral representatives and sufficient amplitude variations [6]. Moreover, the Volterra
series can be expressed as G-functionals [12], which form an orthogonal set when
the input is white Gaussian. However, the non-identical-independent-distributed input
signals lead to the large eigenvalue spread of the autocorrelation matrix �Rxx (particu-
larly in the case of Volterra filters), which in turn results in the slow convergence [7].
The value of minimum step-size is μ′

Min = 0.0008 and the maximum bounded value
of step-size μ′

Max is set by the Eq. (22). The signal-to-noise-ratio (SNR) is defined as
the input signal variance to the dispersion of the α-stable noise, i.e., SNR = σ 2

x /γ ,
which is kept 15 dB for all the simulations [28]. The Volterra kernel mean square
estimation error (performance appraisal factor) is calculated by the following formula

Ĵ (n) = E
[∣∣h(n)− h′(n)

∣∣2
]

(31)

As per the Monte-Carlo simulations, the performance of adaptive algorithms is
compared on the basis of measured performance appraisal factor as

Ĵ (n) =
2500∑

j=1

[∣∣h(n, j)− h′(n, j)
∣∣2

2500

]
(32)

Example 1 We consider the second-order Volterra filter with K = 2 and M = 3 in the
first simulation setup, with the uncorrelated Gaussian white input sequence. Similar
to the methodology opted in [1], the parameter values of the adaptive algorithms are
selected to produce a comparable level of misadjustment. The values of parameters
are λ1 = 0.8, λ2 = 0.5, ᾱ = 0.97, γ̄ = 15×10−5, P̄ = Q̄ = 2, ᾱA = 0.97, ᾱW =
0.8, ρ̄W = 15 × 10−5. The value of parameter β̄ is varied as β̄ = 0.00003, GVSS-
LMP1, β̄ = 0.00005, GVSS-LMP2, and β̄ = 0.00015, GVSS-LMP3. It is apparent
from the simulation results depicted in Fig. 2 that the performance of GVSS-LMP
algorithm improves as the value of β̄ increases. The performance of β̄ = 0.00015,
GVSS-LMP3 is approximately 7 dB better than AVSS-LMP algorithm in the tracking
mode, and this proposed algorithm converges at the higher rate than other conventional
algorithms.

Further, the value of β̄ = 0.00005 is fixed under the similar conditions. However,
the values of P̄ and Q̄ are varied as P̄ = Q̄ = 1, P̄ = Q̄ = 2, P̄ = Q̄ = 3 in the
GVSS-LMP algorithm. The simulation results demonstrated in Fig. 3 evidenced that
P̄ = Q̄ = 2 is the suitable preference for GVSS-LMP algorithm, which also restricts
its computational complexity.

Subsequently, the values of β̄ = 0.00005 and P̄ = Q̄ = 2 are fixed under the similar
conditions. However, the values of λ2 = 0.3, 0.5, 0.7 are varied in the proposed
GVSS-LMS algorithm. It may be inferred from the simulation results in Fig. 4 that
the performance of presented algorithm can be improved by increasing the value of
λ2. However, for λ2 > 0.75, the observed performance advantage is marginal.

Example 2 Now, we consider the third-order Volterra filter with K = 3 and M = 3
in this simulation setup with the uncorrelated Gaussian white input sequence. As
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Fig. 2 Comparison of GVSS-LMP algorithm with conventional algorithms under varying value of β̄ for
the second-order Volterra filter

Fig. 3 Effects of the variation in the value of P̄ and Q̄ on GVSS-LMP algorithm

the number of filter weights increases in this case [1,7], the parameter values need
to be changed to maintain the value of GVSS within limits. The values of parame-
ters are λ1 = 0.98, λ2 = 0.5, ᾱ = 0.91, β̄ = γ̄ = 0.000025, P̄ = Q̄ = 2,
ᾱA = 0.98, ᾱW = 0.8, ρ̄W = 15 × 10−9. The results in Fig. 5 manifest that the
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Fig. 4 Effects of variation in the value of λ2 on GVSS-LMS algorithm.

Fig. 5 Comparison of GVSS-LMP algorithm with conventional algorithms for the third-order Volterra
filter

performance advantage of GVSS-LMP algorithm is approximately 3 dB better than
the AVSS-LMP algorithm in the tracking mode. However, the convergence rate of both
algorithms is approximately same in the initial phase. But, the significant performance
degradation is observed in the case of KVSS-LMP algorithm.
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Fig. 6 Effects of variation in the value of β̄on GVSS-LMP algorithm for the correlated input signal

Example 3 Next, we consider the second-order Volterra filter with K = 2 and M = 3
in this simulation setup, when the unknown system is excited by a correlated input
signal as �x(n) = 0.9�x(n − 1) + �vx (n); where �vx (n) is a zero-mean, uncorrelated
Gaussian noise of unity variance. This type of input signals results in the flattened
elliptical contours, which usually cause difficulties in the convergence of stochastic
gradient adaptive algorithms. The values of parameters are λ1 = 0.8, λ2 = 0.5,
ᾱ = 0.97, γ̄ = 15 × 10−6, P̄ = Q̄ = 2, ᾱA = 0.97, ᾱW = 0.8, ρ̄W = 15 × 10−5.
The value of parameter β̄ is varied as β̄ = 15 × 10−6, GVSS-LMP1, β̄ = 15 × 10−7,

GVSS-LMP2, and β̄ = 15 × 10−8, GVSS-LMP3. It is observed from the results
in Fig. 6 that the performance of GVSS-LMP algorithm improves as the value of β̄
increases, but the overall performance degradation is noticed for all the algorithms.
We now fix the value of parameter β̄ = 15 × 10−6 for the simulation results in
Fig. 7, which indicate that the proposed GVSS-LMP algorithm still outperforms the
conventional algorithms. The variable step-size controls the problem of eigenvalue
spread, and consequently leads to the enhanced convergence rate in the presence of
impulse noise and correlated input signal.

On contrary to the case of uncorrelated input signal, it may be inferred from the
results presented in Fig. 6 and Fig. 7 that the gradient-misadjustment [30] is relatively
more in the case of correlated input signal. However, the convergence of GVSS-LMP
algorithm is strictly dependent on the appropriate parameter tuning/setting in (23),
while keeping the value of GVSS belowμ′

Max (22). Akin to the VSS-LMS algorithms
[4,23], the GVSS-LMP algorithm is found to be sensitive to noise disturbances in the
low signal-to-noise-ratio (SNR) environment.
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Fig. 7 Comparison of GVSS-LMP algorithm with conventional algorithms for the second-order Volterra
filter with correlated input signal

5 Concluding Remarks

This paper presents a generalized variable step-size least mean pth power (LMP) adap-
tive algorithm for theα-stable noisy environment, which is based on the MED criterion.
This algorithm is implemented to identify the unknown time-varying nonlinear sys-
tems using the Volterra filtering approach. However, the MMSE criterion is found to be
a special case of MED approach. The GVSS-LMP algorithm exploits the knowledge
about the previous step-size, the error autocorrelation values, the value of parameter α,
the crosscorrelation between error sequence and input sequence. For excellent results,
the value of parameter p is kept close to α in the range 1 < p < α < 2.

It is apparent from the simulation results that the GVSS-LMP algorithm super-
sedes the KVSS-LMP, AVSS-LMP, and SVSS-LMS algorithms in the convergence,
as well as tracking mode, when the input signal is either correlated or uncorrelated
Gaussian process. The proposed algorithm also controls the adverse effects of eigen-
value spread of the input signal autocorrelation matrix, by the GVSS criterion to track
the time-varying Volterra kernels. The outperforming GVSS-LMP algorithm may find
applications in the systems disturbed due to the presence of non-Gaussian impulsive
measurement noise, where the conventional FSS-LMS algorithm fails to perform well.
Moreover, the different LMP algorithms with p �= 2 and LMS algorithms with p = 2
can be derived from the GVSS-LMP algorithm by adjusting the parameters accord-
ing to the requirements. Future work includes the application of proposed adaptive
nonlinear Volterra filtering technique in the emerging fields of bio-signal processing,
biomedical engineering [29], nonlinearly amplified digital as well as analog commu-
nication signal processing [17] and equalization of nonlinear communication channels
[18].
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Appendix

The literature [8,30] of fixed step-size LMS (FSS-LMS) algorithm reflects a tradeoff
between the misadjustment and speed of adaptation, which depicts that a small step-
size produces small misadjustment, but at the cost of longer convergence time. Under
time-varying environment, the optimum value of the step-size in FSS-LMS algorithm
strikes a balance between the amount of lag noise and gradient noise [5]. However,
the optimum value of step-size can not be determined a priori due to the unknown
channel parameters. Therefore, in KVSS-LMS algorithm [10], the variable step-size
(VSS) is attuned using

μ′(n) = ᾱμ′(n − 1)+ γ̄ e2(n − 1) (33)

In this KVSS-LMS algorithm, a large prediction error causes the step-size to
increase in order to provide fast tracking, while a small prediction error leads to reduc-
tion in the step-size to yield small misadjustment. The step-size increases or decreases
as the MSE increases or decreases, allowing the adaptive filter to track changes in the
time-varying system, as well as to produce a small steady-state error. It also reduces
sensitivity of the misadjustment to the level of nonstationarity. This approach is heuris-
tically sound and has resulted in several ad hoc techniques, where the selection of
convergence parameters is based on the magnitude of estimation error, polarity of the
successive samples of the estimation error, measurement of the crosscorrelation of the
estimation error with input data. However, the VSS-LMS algorithms are found to be
sensitive to noise disturbances [4,23] in the low signal-to-noise-ratio (SNR) environ-
ment because the step-size update of these algorithms are directly obtained from the
instantaneous error that is contaminated by the disturbance noise.

Further in AVSS-LMS algorithm [1], the VSS is controlled using

μ′(n) = ᾱμ′(n − 1)+ γ̄ θ2(n − 1) (34)

θ(n − 1) = ᾱAθ(n − 2)+ (1 − ᾱA){e(n − 1)e(n − 2)} (35)

Here, the error autocorrelation is usually a fine measure of the proximity to the
optimum, which rejects the effect of uncorrelated noise sequence on the step-size
update. In the early stages of adaptation, the error autocorrelation estimate is large,
resulting in a large step-size. However, the small error autocorrelation leads to a small
step-size under the optimum conditions. It results in effective adjustment of the step-
size, while sustaining the immunity against independent noise disturbance, for the
flexible control of misadjustment. The AVSS-LMS algorithm [1] shows substantial
convergence rate improvement over the KVSS-LMS algorithm [10] and FSS-LMS
algorithm [30] under the stationary environment for the low SNR, as well as the high
SNR values. However, the performance of AVSS-LMS algorithm is comparable to the
FSS-LMS and KVSS-LMS adaptive algorithms under the nonstationary conditions.
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But in SVSS-LMS algorithm [2], the VSS is adjusted using the following recursive
relation by adjusting the control parameters ρ̄w and ᾱw.

μ′(n) = μ′(n − 1)+ ρ̄w �ψT (n)�x(n)e(n) (36)

�ψ(n) = ᾱw �ψ(n − 1)+ e(n − 1)�x(n − 1) (37)

The above equation can be rewritten in the expanded form as

�ψT {n} = ᾱ
Q̄
w

�ψT
{
n − Q̄

} + ᾱ
Q̄−1
w e(n − Q̄)�xT (n − Q̄)+ . . .

+ᾱwe(n − 2)�xT (n − 2)+ e(n − 1)�xT (n − 1)
(38)

For 0 ≤ ᾱw < 1 and Q̄ → high value, the Eq. (38) can be approximated as

�ψT {n} ≈ ᾱ
Q̄−1
w e(n − Q̄)�xT (n − Q̄)+ . . .

+ ᾱ2
we(n − 3)�xT (n − 3)+ ᾱwe(n − 2)�xT (n − 2)+ e(n − 1)�xT (n − 1)

(39)

This algorithm [2] outperforms the Mathews’ algorithm [13], when both are set to
track the random walk channel under the similar conditions.
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