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Abstract This paper deals with the regulator problem for linear continuous-time
systems with asymmetric saturations on the control. The main contribution of this
work is to extend the available results for symmetrical saturations, in term of LMIs, to
systems with asymmetric saturations. Hence, LMIs formalism is obtained for the first
time for asymmetrical saturation. New less conservative result on saturation is used.
An example is presented to illustrate the obtained results.
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1 Introduction

This paper studies the stability of linear systems with asymmetric constraints on the
control. A main problem which is always inherent to all dynamical systems is the
presence of actuators saturations. The class of systems with saturations has obtained
great interest during the last decades. Even for linear systems, this problem has been
an active area of research for many years. Two main approaches have been developed
in the literature:

– The first is the so-called positive invariance approach. It is based on the design
of controllers which work inside a region of linear behavior where saturations do not
occur (see [1–3,9,10,12] and the references therein). The stabilizing gain regulator F
obtained with this approach is a solution to the non-linear algebraic equation F A +
F B F = H F , where matrix H satisfies the main condition of positive invariance.
One can cite the work of [4,7] where the resolution of this equation is presented as a
technique of partial eigenstructure assignment. This resolution was also associated to
the constrained regulator problem.

The Positive Invariance approach was selected, for the first time, in [20,21] to deal
with the problem of linear systems with input saturation and asymmetric constraints
on the control increment or rate. It gives simple methods to calculate constant state
feedback controllers, in both the continuous and the discrete-time cases, and with
asymmetric constraints and disturbances. The gain controller is calculated by solving
a linear program problem. This technique does not use LMIs formulation. Note that this
approach is based on constraint avoidance: preventing the saturation, the closed-loop
system, therefore, stays in a region of linear behavior.

– The second approach allows saturations to take effect while guaranteeing asymp-
totic stability (see [17–19] and the references therein). This approach leads to a
bounded region of stability which, although can be obtained easily by the resolution
of a set of LMIs, is ellipsoidal and symmetric.

The main challenge in these two approaches is to obtain a large enough domain of
initial states which ensures asymptotic stability for the system despite the presence of
saturations [5,15,17,23].

It is well known that only works using constraints of symmetric nature as in [8,
14,17–19] can be expressed under LMI form. To the best of the authors knowledge,
no work on asymmetrical constraints using LMIs exist in the literature. However, the
asymmetric character of the actuator constraints is very important in practical situations
since these constraints are inherently asymmetric. Many attempts were developed to
emphasis LMIs and problems with asymmetric saturations but without great success
as in [6,7].

In this paper, we address the regulator problem for linear continuous systems with
asymmetric saturations on the control in terms of an LMI problem. The main contribu-
tion of this work is to overcome the drawback encountered by the based LMI approach
developed by [17–19] which is limited only to symmetric constraints very far from the
practical reality of actuators. Hence, this work presents for the first time the solution,
expressed under LMIs form, dealing with the problem of non-symmetrical saturations.
These results extends those of the same authors developing unsaturating controllers
working inside a region of linear behavior [11].
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The remainder of the paper is organized as follows: The problem studied hereafter
is stated in Sect. 3. Section 4 presents the main results of this paper, which consist
in new LMIs allowing a direct solution of the regulator problem for continuous-time
linear systems with asymmetrical saturations on the control. Examples illustrating this
new technique are also presented in this section. Finally some conclusions are given.

2 Problem Formulation

The saturated studied system is given by

ẋ = Ax(t) + BSat (u(t)), (1)

x0 = x(0),

where x(t) ∈ R
n is the state vector and u ∈ R

m is the control.
The expression of each component of the vector Sat (u) can be described by the
following relation:

Sat (u)i =
⎧
⎨

⎩

αi if ui ≥ αi

ui if −βi ≤ ui ≤ αi

−βi if ui ≤ −βi

for i = 1, . . . , m (2)

To stabilize the unsymmetrically saturated system a state feedback control of type,

u(t) = L K x(t) + Ko (3)

is used.
The gain K has to stabilize the system, while the gains Ko, L play the role of sym-
metrizing the asymmetrical set £(K ) induced in the state space by the constraints and
given as follows:

£(K ) = {
x ∈ �n| − �ζ ≤ L K x + Ko ≤ �ζ

}
, (4)

where the diagonal matrices � and � are given by

� =

⎡

⎢
⎢
⎣

α1 0 . . . 0
∗ α2 . . . 0
∗ ∗ . . . 0
∗ ∗ ∗ αm

⎤

⎥
⎥
⎦, (5)

� =

⎡

⎢
⎢
⎣

β1 0 . . . 0
∗ β2 . . . 0
∗ ∗ . . . 0
∗ ∗ ∗ βm

⎤

⎥
⎥
⎦ (6)
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The problem studied thereafter is to stabilize by state feedback control (3) the
saturated system (1)–(2). It is a classical problem where the novelty is to handle
unsymmetrical saturations on the control in the frame work of LMIs.
The objective of this work is to design the gains K , L , Ko for the unsymmetrical
saturated controller.

3 Preliminary Results

In this section, the cornerstone of developments allowing to transform the asymmet-
rical problem to a symmetrical one is presented. Further, the main lemma of the work
[23] is recalled. This last enables to write a saturated system in closed-loop, as a convex
combination of 2m linear systems:

Lemma 3.1 [23] For all z ∈ �m and ν ∈ �m̄, m̄ = m2m−1 such that |νi | ≤ 1, i =
1, . . . , m̄.:

sat (z) ∈ co{Ds z + D̂−
s ν}, s ∈ [1, N ], (7)

where Ds are diagonal matrices with each element of the diagonal either 1 or 0,
Ds + D−

s = Im, N = 2m, and D̂−
s ∈ �m×m̄ is defined by

D̂−
s = e fm (s) ⊗ D−

s , s ∈ [1, N ] (8)

and e fm (s) ∈ �1×2m−1
is the row vector with zeros except 1 in the position fm(s) which

is defined by

fm(s) =
{

fm(s − 1) + 1, Ds + D j �= Im, ∀ j ∈ [1, s]
fm( j), Ds + D j = Im, ∃ j ∈ [1, s] (9)

The Lemma 3.1 allows to rewrite the saturated control using an auxiliary control ν

which satisfies |νi | ≤ 1. Hence, there exist scalars δs ≥ 0 (s = 1, . . . , N ) with∑N
s=1 δs = 1, such that

sat (z(t)) =
N∑

s=1

δs(t)(Ds z(t) + D̂−
s ν(t)). (10)

The obtained closed-loop system becomes linear.
On the other hand, for each component of the control ui , one can make the following
change of variables:

wi = ui − αi − βi

2
. (11)

With this change, one can then rewrite the saturation of the control as

Sat (ui ) = sats(wi ) + αi − βi

2
, (12)
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with sats(wi ) is considered as the symmetrical non normalized saturation defined by

sats(wi ) =
⎧
⎨

⎩

αi +βi
2 if wi ≥ αi +βi

2
wi if −αi +βi

2 ≤ wi ≤ αi +βi
2 , i = 1, . . . , m.

−αi +βi
2 if wi ≤ −αi +βi

2

(13)

A second change of variable is used:

zi = wi
2

αi + βi
, (14)

and let sat (zi ) stands for the normalized symmetric saturation as

sat (zi ) =
⎧
⎨

⎩

1 if zi ≥ 1
zi if −1 ≤ zi ≤ 1, i = 1, . . . , m
−1 if zi ≤ −1

(15)

With the change of variables (11) and (14), one can rewrite ui as follows:

ui = αi + βi

2
zi + αi − βi

2
. (16)

or in matrix notation, the expression (16) can be written as

u = � + �

2
z + � − �

2
ζ. (17)

With relation (16), we prove in lemma below that the expression of Sat (ui ) given by
(2) is equivalent to sat (zi ) given by (15):

Lemma 3.2 The non-symmetrical saturation Sat (u) is linked to the normalized sym-
metric saturation by the following relation:

Sat (u) =
(

� + �

2

)

sat (z) +
(

� − �

2

)

ζ. (18)

Proof The proof is obvious and is omitted. ��
By introducing (18) in the state Eq. (1), the term BSat (u) can be developed as

follows:

BSat (u) = B

(
� + �

2

)

sat (z) + B

(
� − �

2

)

ζ

= B̃sat (z) + Ew, (19)

where matrices E and B̃ are given by

B̃ = B

(
� + �

2

)

, E = √
nB

(
� − �

2

)

, w = ζ√
n
. (20)
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With these notations, we can rewrite the state equation of the system as follows:

ẋ(t) = Ax(t) + B̃sat (z(t)) + Ew. (21)

Note that wT w = 1. In order to use available results on saturated systems, the obtained
system (21), which is affine since w is known and constant, can be seen as a saturated
one with a bounded disturbance.
Let us use a state feedback control of the form:

z(t) = K x(t). (22)

The link between control expression (3) and the one given by (17) is given by the
following lemma.

Lemma 3.3 The feedback control (3) with L = �+�
2 and Ko = �−�

2 ζ symmetrizes
the asymmetrical set £(K ) given by (4).

Proof The proof is obvious and is omitted. ��

Define the following sets:

£s(K ) = {
x ∈ �n| |K x |i ≤ 1, i = 1, . . . , m

}
(23)

εs(P, ρ) =
{

x ∈ �n| xT Px ≤ ρ
}

. (24)

Henceforth, for the stabilization problem, the system (21) is considered. Further, the
gain feedback we are looking for will be designed to stabilize this system that is system
(21).

Note that stabilizing this system (symmetrical saturated system) one has to design
a control using (10) with z = K x and ν = H x, H ∈ �m̄×n the auxiliary control with
|Hi x | ≤ 1, Hi the i th row of matrix H .

The matrices K and H are to be designed.
The system equation with saturation in closed loop, using Lemma 3.1, is then

written as follows:

ẋ(t) = Ax(t) + B̃
N∑

s=1

δs(t)(Ds K + D̂−
s H)x(t) + Ew, (25)

or in the equivalent form

ẋ(t) =
N∑

s=1

δs(t)As x(t) + Ew = Acx(t) + Ew, (26)
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where the matrix in closed-loop Ac is given by

Ac =
N∑

s=1

δs(t)As

As = A + B̃(Ds K + D̂−
s H). (27)

Notice that the set £(H) is defined by the same expression (4) of £(K ). While £(H)

is defined by

£s(H) = {
x ∈ �n| |H x |i ≤ 1, i = 1, . . . , m̄

}
. (28)

4 Main Results

The following theorem gives sufficient conditions for the system (25) to be strictly
invariant in the sense of the following definition.

Definition 1 [16] A set in R
n is said to be invariant if all the trajectories starting

from it will remain in it regardless of w. An ellipsoid εs(P, ρ) is said to be strictly
invariant if V̇ = 2xT P(Bsat (Fx) + Ew) < 0 for all w such that wT w ≤ 1 and all
x ∈ ∂εs(P, ρ), the boundary of εs(P, ρ), where V (x) = xT Px .

Theorem 4.1 If there exist matrices H ∈ R
m̄×n, K ∈ R

m×n, a symmetric positive
definite matrix P ∈ R

n×n and positive scalars ρ, η, such that

AT
s P + P As + 1

η
P E ET P + η

ρ
P < 0, s = 1, . . . , N , (29)

and

εs(P, ρ) ⊂ £(H), (30)

where the matrix As is given by (27), then the set εs(P, ρ) is a strictly invariant set
for system (26).

Proof The proof follows the same reasoning as the one of [16] where the classical
convex writing of the saturation is replaced by the one given by Lemma 3.1. ��

Similar result can be found in [22] where state constraints are also considered.
With the equivalent writing of the unsymmetrically saturated system in closed loop
under symmetrical form developed above, we are able to derive sufficient condi-
tions of stabilizability using LMIs. The previous result gives sufficient conditions for
stabilizability for the closed-loop system. Below we reformulate these conditions in
the form of LMIs that allows to deduce the controller gain.
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Corollary 4.1 For positive scalars ρ, η if there exist matrices Z ∈ �m̄×n, Y ∈ �m×n

and X = X T ∈ �n×n, X > 0 such that the following LMIs are satisfied:

[AX + B(DsY + D̂−
s Z)] + [AX + B(DsY + D̂−

s Z)]T

+η

ρ
X + 1

η
E ET < 0, s = 1, . . . , N , (31)

[
μ Zi

∗ X

]

> 0, i = 1, . . . , m̄, (32)

with matrix Ds stands for a diagonal matrix with component either �s+βs
2 or 0, Ds +

D−
s = �+�

2 and D̂−
s is defined by

D̂−
s = e fm (s) ⊗ D−

s , s ∈ [1, N ], (33)

then the set εs(P, ρ) is a strictly invariant set for system (26), with μ = 1/ρ, Zi is the
ith row of matrix Z. The controller gains are given by

K = Y X−1 and H = Z X−1, with P = X−1. (34)

Proof The sufficient condition of invariance of the set εs(P, ρ) with respect to the
saturated system is given by (29)

AT
s P + P As + η

ρ
P + 1

η
P E ET P < 0, s = 1, . . . , N . (35)

Multiplying the left and right of inequality (35) by X = P−1 leads to LMIs (31) while
replacing B̃ D by BD and using the change of variables Y = K X , Z = H X . These
conditions are equivalent to the sufficient conditions of strict invariance (29), for the
closed-loop system, for any initial state within the set εs(P, ρ).
Furthermore, the inclusion (30) is equivalent to ρHi P−1 H T

i ≤ 1, i = 1, . . . , m̄ [13].
Develop equivalently as follows:
ρ(H X)i X−1(H X)T

i ≤ 1, i = 1, . . . , m̄, which is equivalent to ρZi X−1 Z T
i ≤ 1,

i = 1, . . . , m̄.
Using the Schur complement, we obtain the LMIs (32). ��

Instead of using Lemma 3.1, one can use the convex writing of saturation given in
[17,19],

sat (z) ∈ co{Ds z + D−
s ν}, s ∈ [1, N ] (36)

the closed-loop system becomes

ẋ(t) =
N∑

s=1

δs(t)As x(t) + Ew = Acx(t) + Ew, (37)
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where the matrix in closed-loop Ac is given by

Ac =
N∑

s=1

δs(t)As

As = A + B̃(Ds K + D−
s H). (38)

In this case, Corollary 4.1 can be announced as follows:

Corollary 4.2 For positive scalars ρ, η if there exist matrices Z ∈ �m×n, Y ∈ �m×n

and X = X T ∈ �n×n, X > 0 such that the following LMIs are satisfied:

[AX + B(DsY + D−
s Z)] + [AX + B(DsY + D−

s Z)]T

+ η
ρ

X + 1
η

E ET < 0, s = 1, . . . , N , (39)

[
μ Zi

∗ X

]

> 0, i = 1, . . . , m, (40)

then the set εs(P, ρ) is a strictly invariant set for system (26), with μ = 1/ρ, Zi is the
ith row of matrix Z. The controller gains that stabilizes the system are as follows:

K = Y X−1 and H = Z X−1, with P = X−1. (41)

Comment 4.1 • It is worth noting that the convex expression (36) is more conserv-
ative than expression (7) for m > 1, according to [23]. In order to compare results
obtained upon both expressions, Corollary 4.1 and Corollary 4.2 are presented
and tested in the example below.

• These LMIs are established by the symmetric control z. However, by replacing
matrix B̃ and E by their expressions with �i and �i , one take account of the
asymmetry of the saturation on the control. Consequently, the derived LMIs (31)–
(32) deal in reality with unsymmetrical saturations. This result is obtained for the
first time reducing considerably the conservatism of the results of [23].

In the following example, we illustrate the obtained results.

Example Consider the system governed by (1) with the following matrices:

A =
[−1 0.7

1 1

]

; B =
[

1 0.2
−0.3 0.5

]

. (42)

For this example, we have n = 2, m = 2 and the control bounds are α1 = 5, β1 = 10,
α2 = 10 and β2 = 5.
It follows:

B̃ =
[

7.5 1.5
−2.25 3.75

]

,

E =
[−3.5355 −0.7071

−1.0607 1.7678

]

.
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We solve LMIs (31) and (32). The obtained solutions in this case for ρ = 1 and η = 1
are:

X =
[

401.3375 −161.6653
−161.6653 67.4476

]

;

Y =
[

22.9276 −20.2454
−11.8235 −35.2446

]

;

Z =

⎡

⎢
⎢
⎣

5.2535 −3.0268
−5.6885 0.9464

0.0496 −0.0218
−0.3650 0.1467

⎤

⎥
⎥
⎦;

and thus gains K and H for the closed-loop system, with a non-symmetrical saturated
control, are

K =
[−1.8494 −4.7330

−6.9574 −17.1987

]

;

H =

⎡

⎢
⎢
⎣

−0.1446 −0.3915
−0.2471 −0.5782
−0.0002 −0.0008
−0.0010 −0.0001

⎤

⎥
⎥
⎦.

Figure 1 represents the inclusion of the ellipsoid set εs(P, ρ) inside the polyhedral
set of saturation £(H). Figure 2 shows some trajectories of the state vector x with
different initial states x0. If x0 ∈ ε(P, ρ), then the trajectory converges surely to the
equilibrium point given by xe = −(A + B̃K )−1 Ew which is closed to the origin due
to the presence of the pseudo permanent perturbation w.

In order to compare between Corollary 4.1 and Corollary 4.2, system (42) is slightly
modified as follows:

A =
[

a 0.7
1 1

]

; B =
[

b 0.2
−0.3 0.5

]

.

The feasibility of LMIs (39)–(40) and (31)–(32) is tested for a, b varying from −1
to 2 by a step of 0.1. The result of comparison is plotted in Fig. 3 showing the less
conservatism of Corollary 4.1 based on the approach of [23].

5 Conclusion

In this paper, the regulator problem for linear continuous-time systems with asym-
metric saturations on the control is developed in terms of an LMI problem. The main
contribution of this work is to allow to the results of [18,23] that make possible to
consider only symmetric constraints, easily written under LMIs, to be also extended to
systems with asymmetric saturations formulated under LMIs form for the first time.
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Fig. 1 Inclusion εs (P, ρ) ⊂ £(H) with the equilibrium point xe
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Fig. 2 Trajectories of the state vector x converging to the equilibrium point xe
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Fig. 3 Feasibility of LMIs (39)–(40) indicated with x and (31)–(32) with o

These results extend those of the same authors developing unsaturating controllers
working inside a region of linear behavior [11]. Two numerical examples are studied
to illustrate the proposed methodology and to show that the less conservative result is
the one based on the approach of [23].
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