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Abstract The exponential stability problem is considered for a class of nonlinear
impulsive and switched time-delay systems with delayed impulse effects by using
the method of multiple Lyapunov–Krasovskii functionals. Lyapunov-based sufficient
conditions for exponential stability are derived, respectively, for stabilizing delayed
impulses and destabilizing delayed impulses. It is shown that even if all the subsystems
governing the continuous dynamics without impulse input delays are not exponential
stable, if impulsive and switching signal satisfy a dwell-time upper bound condition,
stabilizing delayed impulses can stabilize the systems in the exponential stability sense.
Moreover, it is also shown that if the magnitude of the delayed impulses is sufficiently
small, the exponential stability properties can be derived irrespective of the size of the
impulse input delays under some conditions. The opposite situation is also developed.
The efficiency of the proposed results is illustrated by two numerical examples.
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1 Introduction

Impulsive systems have attracted considerable attentions on both the theoretical and
practical fronts in recent years because they provide a natural framework for mathe-
matical modeling of many real-world problems where the reactions undergo abrupt
changes [2,15]. For example, for many realistic networks, the state of nodes is often
subject to instantaneous perturbations and experience abrupt change at certain instants
which may be caused by switching phenomena, frequency change or other sudden
noise; that is, it exhibits impulsive effects [1,4,9,21,37,39]. It is found that the impul-
sive systems have important applications in various fields, such as control systems with
communication constraints [5,12], sampled-data systems [27,32], networked control
systems with scheduling protocol [13,28,29], mechanical systems [3], etc. Impulsive
systems can be viewed as a class of hybrid systems that consist of there elements:
continuous dynamics, which govern the continuous evolution of the system between
impulses; discrete dynamics, which govern the way the system states are changed at
impulse times; and a criteria for determining when the states of the system are to reset.
During the past two decades, the stability of impulsive systems has been extensively
investigated in literatures [1,4,5,20,23,33,34] and references therein. Switched sys-
tems are a special kind of hybrid systems that consist of a family of continuous time
or discrete-time dynamical systems and a rule called the switching signal (or law) to
control the switching between modes [30,46]. The different switching signals differ-
entiate switched systems from general time-varying systems, since the evolution of the
former are dependent on not only the systems’ initial conditions but also the switching
signals. We usually study the stability properties not under a particular switching sig-
nal, but rather under various classes of switching signals [11,18,38,41,47,48]. During
the past few years, switched systems have been deeply studied due to their potential
application in the control of mechanical systems, the automotive industry and com-
plex network control systems [6–8,16,40,42–45]. In the recent years, the study of
impulsive switched systems has also received more and more attentions, and a large
number of stability criteria of these systems have been reported [4,5,22,31,36].

In general, the impulses are mostly assumed to take the form: �x(tk) = x(t+k ) −
x(t−k ) = Bk x(t−k ), which indicates the state is reset at the switching instants tk . Due to
the phenomena of input delays usually existing in transmission of the impulse infor-
mation, i.e., for networked control systems, computation time and network-induced
delays result in sensor-to-controller delay and controller-to-actuator delay, the corre-
sponding impulsive control law �x(tk) becomes

�x(t) = Bk x((t − dk)
−), t = tk, k = 1, 2, . . . , (1.1)

A few interesting results on stability have been obtained for nonlinear systems with
impulse (1.1). It should be pointed out that the impulses (1.1) for modeling abrupt
state changes may have destabilizing effects.

Recently, Chen and Zheng [5] proposed more general impulse form:

x(t+) = C0k x(t−)+ C1k x((t − dk)
−), t = tk, k = 1, 2, . . . . (1.2)
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Although a great number of results on stability of impulsive time-delay systems have
been reported, there have been very few available results on stability of impulsive
systems with delayed impulses. In [11], the problem of asymptotic stability for a
class of delay-free autonomous systems with impulses of (1.1) is investigated. By
using exponential estimates of delay-free systems to obtain difference inequalities of
the system state at impulse times, a sufficient stability condition is derived involving
the sizes of impulse input delays. It seems difficult to apply the same method to
state-delayed impulsive systems. For a class of state-delayed systems with stabilizing
impulse input delay (1.2) and unstable systems matrices, the stability problem was
dealt with in [21]. By virtue of the method of variation of parameters and system
matrices, several stability criteria are established. However, those results in [25] require
the condition supk(|C0k | + |C1k |) < 1 and thus cannot be used to tackle the time-
delay system with impulses (1.1). Next, Ho et al. [13] studied the exponential stability
for a class of delayed neural networks with destabilizing impulse delays by using
the method of differential inequality. It is noted that those results in [13] impose
some restriction on delays. In order to reject the conservatism of above-mentioned
methods, an impulsive system approach was introduced for sampled-data systems
in [27] and [32]. And a less conservative stability result was given. The key technique
is to construct a novel Lyapunov functions with discontinuity at the impulse times.
Recently, by using Lyapunov–Razumikhin functions, some new results are derived for
a class of impulsive delay systems with general delayed impulses (1.2) [28]. It should
be pointed out that those results in [28] contain no information of state delay. Based
on the above consideration, an interesting question is under what conditions the less
conservative stability condition can be established and how the Lyapunov functions
can be constructed for impulsive switched system with delayed impulse.

On the other hand, in contrast with the Lyapunov–Razumikhin method presented
in [19,24,26,28,35], it is well known that the Lyapunov–Krasovskii functionals
method are sometimes more general that in the sense the former can be considered as
a special case [14,17]. Such an approach is usually more difficult than the Lyapunov–
Razumikhin technique. The reason is that, in general, we cannot expect an impulse
that occurs at a discrete time to bring the value of a functional down instantaneously,
whereas, in the Lyapunov–Razumikhin method, the value of a function can subside
simultaneously as the impulse occurs [10]. To the best of our knowledge, the problem
of exponential stability for state-delayed systems with switching and impulses input
delays based on Lyapunov–Krasovskii technique has not been fully investigated until
now, which motivates the present study.

In this paper, we pay close attention to the problem of exponential stability of
impulsive and switching time-delay systems with more general delayed impulses by
using the method of multiple Lyapunov–Krasovskii functionals. The main contribu-
tion of this paper can be listed as follows: (1) the more general system is studied which
include the system in [5] as a special case; (2) the more general Lyapunov–Krasovskii
functional technique is utilized; (3) the result developed in this paper is less conser-
vative than that in the literature [5]. Especially, when all the subsystems are stable
and impulses are not stable, not only the magnitude of impulses input delays but also
the size of state delays is taken into account. When applying our results to a class of
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impulsive and switching time-delay systems, the new stability criteria are established.
The efficiency of the proposed results is illustrated by three numerical examples.

2 Preliminaries

Let N denote the set of nonnegative integers, R+ the set of nonnegative real numbers,
and Rn the n-dimensional real Euclidean space. |·| denotes the Euclidean norm for
vectors or the spectral norm for matrices. For r > 0, let PC([−r, 0], Rn) denote
the class of functions from [−r, 0] to Rn satisfying the following: (i) it has at most
a finite number of jump discontinuities on (−r, 0], i.e., points at which the function
has finite-valued but different left-hand and right-hand limits; (ii) it is continuous
from the right at all points in [−r, 0). For function φ : [−r, 0] → Rn , a norm is
defined as ‖φ‖r = sup−r≤θ≤0 ‖φ(θ)‖. Given x ∈ PC([−r,∞] , Rn) and for each
t ∈ R+, define xt , xt− ∈ PC([−r, 0] , Rn) by xt (s) = x(t + s) for −r ≤ s ≤ 0
and xt−(s) = x(t + s) for −r ≤ s < 0, respectively. For a given scalar ρ ≥ 0, let
B(ρ) = {x ∈ Rn : |x | ≤ ρ}.

Let Nc be an arbitrary index set. Consider the following nonlinear switched time-
delay system with delayed impulses

x
′
(t) = fik (t, xt ), t > t0, t 	= tk, ik ∈ Nc, (2.1a)

x(t) = gk(x(t
−), x(t − dk)

−), t = tk, (2.1b)

x(t0 + θ) = φ(θ), θ ∈ [−r, 0], (2.1c)

where x(t) ∈ Rn is the systems state, x
′
(t) the right-hand derivative of x(t), x(t+) and

x(t−) denote the limit from the right and the left at point t , respectively, {tk : k ∈ N } ⊂
R+ a strictly increasing sequence and limk→∞tk = ∞. {dk ≥ 0 : k ∈ N } are
the impulse input delays satisfying d = maxkdk < ∞. The function φ ∈
PC([−r, 0] , Rn) is the initial state of system and τ = max{r, d}. Let D ⊂ Rn

be an open set and B(ρ) ⊂ D for some ρ > 0. We assume that, for each i ∈ NC ,
given functionals fi : R+ × PC([−r, 0] , D) → Rn and gk : D × D → Rn satisfying
fi (t, 0) ≡ gk(t, 0) ≡ 0. Moreover, we make the following assumptions on systems
(2.1).

(A1) fi (t, ψ) is composite-PC, i.e., for each t0 ∈ R+ and σ > 0, if x ∈
PC([t0 − r, t0 + σ ] , Rn) and x is continuous at each t 	= tk in (t0, t0 + σ ],
then the composite function hi defined by hi (t) = fi (t, xt ) is an element of the
function class PC([t0, t0 + σ ] , Rn).

(A2) fi (t, ψ) is quasi-bounded, i.e., for each t0 ≥ 0 and σ > 0, and for each compact
set F ⊂ Rn , there exist some Mi > 0 such that | fi (t, ψ)| ≤ Mi for all i ∈ Nc

and (t, ψ) ∈ [t0, t0 + σ ] × PC([−r, 0] , F).
(A3) For each fixed t ∈ R+, fi (t, ψ) is a continuous function of ψ on PC([−r, 0] ,

Rn).
(A4) There exist scalars K i

1 > 0 such that | fi (t, ψ)| ≤ K i
1‖ψ‖r for any ψ ∈

PC([−r, 0] , B(ρ)). Set K1 = supi∈Nc
K i

1.
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(A5) There exist nonnegative bounded scalar sequences {h0k}, {h1k} such that
|gk(x, y)− x | ≤ h0k |x | + h1k |y| for all k ∈ N and all x, y ∈ B(ρ). Set
h = supk(h0k + h1k).

(A6) There exist scalars K2 > 0 such that |gk(x, y1)− gk(x, y2)| ≤ K2 |y1−y2| for
all k ∈ N and y1, y2 ∈ B(ρ).

According to (A1)–(A3), it was shown that in [2], system (2.1) admits a solution
x(t, t0, φ) that exists in a maximal interval [t0 − τ, t0 + b) where 0 < b ≤ +∞.

Definition 2.1 V : R+ × B(ρ) → R+ is said to belong to the class v1 if

(1) V is continuous in each of the sets
[
tk−1, tk)× B(ρ) and for each x, y ∈ Rn, k ∈

N , lim(t,y)→(t−k ,x)
V (t, y) = V (t−k , x) exists;

(2) V (t, x) is locally Lipschitzian in x ∈ B(ρ), and for all t ≥ t0, V (t, 0) ≡ 0.

Definition 2.2 V : R+ × PC([−τ, 0] , B(ρ)) → R+ is said to belong to the class v0
if

(1) V is continuous on
[
tk−1, tk) × PC([−τ, 0] , B(ρ)) and for all ψ, φ ∈

PC([−τ, 0] , B(ρ)) , lim(t,ψ)→(t−k ,φ)
V (t, ψ) = V (t−k , φ) exists;

(2) V (t, ψ) is locally Lipschitzian in ψ in each compact set in PC([−τ, 0] , B(ρ)) ,
and for all t ≥ t0, V (t, 0) ≡ 0.

Definition 2.3 A functional V (t, ψ) : R+ × PC([−τ, 0] , B(ρ)) → R+ is said to
belong to the class v2 if V (t, ψ) ∈ v0 and for any x ∈ PC([t0 − τ,∞] , B(ρ)) = {x :
[t0 − τ,∞] → B(ρ) is piecewise continuous}, V (t, xt ) is continuous for t ≥ t0.

Definition 2.4 For a given impulsive time sequence {tk}, the trivial solution of system
(2.1) is said to be exponential stable if for any initial data xt0 = φ, there exist positive
scalars ρ0,M and λ such that |ϕ||τ < ρ0 implies

|x(t, t0, φ)| ≤ M‖φ‖τ e−λ(t−t0), ∀t ≥ t0. (2.2)

where ρ0 > 0 is the upper bound of ‖φ(θ)‖ over interval [−τ, 0].
To investigate the exponential stability of system (2.1), which has different modes of

the continuous dynamics given by { fi : i ∈ Nc} and impulses given by {gk : k ∈ N },
a family of multiple Lyapunov–Krasovskii functionals {Vi : i ∈ Nc} are proposed,
where each Vi is given by Vi (t, φ) = V i

1 (t, φ(0)) + V i
2 (t, φ). We shall assume that

the family
{

V i
1 : i ∈ Nc

}
are of class v1 and the family

{
V i

2 : i ∈ Nc
}

are of class v2.
Similar to the technique proposed in [22], the idea is still to break the Lyapunov–
Krasovskii functionals Vi into two parts V i

1 and V i
2 , where V i

1 reflects the impulse
effects and V i

2 is indifferent to impulses. So, the difficulties in analyzing the impulse
effects using Lyapunov–Krasovskii functionals can be effectively overcome.

Definition 2.5 For the i th mode of system (2.1), for each i ∈ NC and (t, ψ) ∈
R+ × PC([−τ, 0] , Rn), the upper right-hand derivative of Vi (t, φ) is defined by

D+Vi (t, φ) = lim
h→0+ sup

1

h
[Vi (t + h, xt+h(t, φ))− Vi (t, φ), (2.3)
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where x(t, φ) is a solution to the i th mode of system (2.1) satisfying xt0 = φ and
x

′
(t) = fi (t, xt ) for t ∈ (t0, t0 + h), where h > 0 is some positive number. To effec-

tively analyze a family of multiple Lyapunov–Krasovskii functionals {Vi : i ∈ Nc} for
system (2.1), we define v(t) = Vik (t, xt ) = V i

1 (t, x(t))+ V i
2 (t, xt ) for t ∈ (tk, tk+1).

3 Main Results

In this section, Lyapunov-based sufficient conditions for exponential stability of sys-
tem (2.1) are developed. Our first result is concerned with exponential stability of
system (2.1), in the case when all the subsystems governing the continuous dynamics
of (2.1) are stable and the impulses, on the other hand, are destabilizing. Intuitively,
the conditions in the following theorem consist of four aspects: (i) the Lyapunov–
Krasovskii functionals satisfy certain positive definite and decrescent conditions; (ii)
there exist some negative estimates of the upper right-hand derivatives of the function-
als with respect to each stable mode of system (2.1); (iii) the dwell time of each mode
of system (2.1) satisfy some lower bounds; (iv) the jumps induced by the destabilizing
impulses satisfy certain growth conditions and the estimates on the decay rate of con-
tinuous dynamics and the delayed impulse; moreover, the estimates on the magnitude
of the delayed impulses satisfy certain balancing conditions in terms of the decay.

Theorem 1 Consider system (2.1) satisfying assumptions (A1)–(A6). Suppose that
there exist a family of functions

{
V i

1 : i ∈ Nc
}

of class v1 and a family of functionals{
V i

2 : i ∈ Nc
}

of class v2, positive scalars a, b, c, p1, p2(p1 ≥ p2 ≥ 1), μi , βi , such
that

(i) a|x |p1 ≤ V i
1 (t, x) ≤ b|x |p1 , 0 ≤ V i

2 (t, φ) ≤ c ‖φ‖p2
τ ;

(ii) D+
i Vi (t, φ) ≤ −μi Vi (t, φ);

(iii) for each i ∈ Nc and any k ∈ N , tk − tk−1 ≥ βi ;
(iv) Define β = inf i∈Nc {βi }. If there exist positive scalars ϕi ≥ 1, Li

1, Li
2 such that

(1) V ĩ
1 (t, g j (x, x)) ≤ ϕi V i

1 (t
−, x), V ĩ

2 (t, φ) ≤ ϕi V i
2 (t, φ) , for all t = tk;

(2) V i
1 (t, x + y) ≤ Li

1V i
1 (t, x)+Li

2V i
1 (t, y) for all t = tk and all x, y ∈ B(ρ), x +

y ∈ B(ρ), and there exists a scalar d ≥ 0 such that

(Li
1 + 1)ϕi e

−μiβi + Li
2(b/a)(K2)

p1(dl K1 + lh)p1 < 1, (3.1)

where l is a nonnegative integer satisfying lβ ≤ d ≤ (l + 1)β, then system (2.1)
is exponential stable for any impulse input delays dk ≤ d, k ∈ N;

(v) If there exist nonnegative bounded scalar sequences {υ0k} and {υ1k} such that
V ĩ

1 (t, g j (x, y)) ≤ υ0k V i
1 (t

−, x)+υ1k V i
1 ((t − dk)

−, y), V ĩ
2 (t, φ)≤υ0k V i

2 (t
−, φ)

for all t = tk and all x, y ∈ B(ρ), and

sup
k
υ1k < 1, e−μiβi < inf

k
((1 − υ1k)/υ0k), (3.2)

then system (2.1) is exponential stable for any impulse input delays dk, k ∈ N.
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Proof In view of condition (3.1), we can choose positive constants 0 < λ < μi and
σ > 0 such that

e−(μi −λ)βi < σ < σ1, (3.3)

whereσ1
�=

[
1−Li

2(b/a)(K2)
p1(dl K1eλ(r+d)/p1 + lhe2λd/p1)

p1
]
/(Li

1 + 1)ϕi . If con-

ditions (3.2) holds, set υ1 = supkυ1k, σ2 = infk((1 − υ1k)/υ0k), then υ1 < 1, and
there exist scalars λ ∈ {0,min {μi , ln(1/υ1)/d}} and σ > 0 such that

e−(μi −λ)βi < σ < σ2(1 − υ1eλd)/1−υ1. (3.4)

Let x(t) = x(t, t0, φ) is a solution of (2.1) satisfying xt0 = φ, set v1(t) =
V ik

1 (t, x(t)), v2(t) = V ik
2 (t, xt ), and v(t) = v1(t)+ v2(t) for t ∈ [

tk, tk+1) , k ∈ N .
It is clear that v(t) defines a right-continuous function on [t0,∞). We will prove that

v(t)eλ(t−t0) ≤ (b + c) ‖φ‖p1
τ , t ≥ t0. (3.5)

Without loss of generality, we assume ‖φ‖τ > 1, 0 ≤ p2 ≤ p1. We first prove
that (3.5) holds for t ∈ [t0, t1). When t = t0, v(t0) = v1(t0, x(t0)) + v2(t0, xt0) ≤
b ‖φ‖p1

τ + c ‖φ‖p2
τ ≤ (b + c) ‖φ‖p1

τ . It is clear that (3.5) holds for t = t0. Define
t∗ = inf

{
t ∈ [t0, t1) , v(t)eλ(t−t0) > (b + c) ‖φ‖p1

τ + δ
}
, where δ > 0 is an arbitrarily

fixed number. It is obvious that t∗(δ) = t1 implies that v(t)eλ(t−t0) ≤ (b+c) ‖φ‖p1
τ +δ.

So, if t∗(δ) = t1 for all δ > 0, we must have (3.5) holds on [t0, t1). If this is not true, i.e.,
t∗(δ∗) < t1 for some δ∗ > 0, one observes that v(t∗)eλ(t∗−t0) = (b + c) ‖φ‖p1

τ + δ∗ >
0. Hence, from condition (ii), it follows that

D+ [
v(t∗)eλ(t∗−t0)

]
= eλ(t

∗−t0)D+v(t∗)+ λv(t∗)eλ(t∗−t0)

≤ −μiv(t
∗)eλ(t∗−t0) + λv(t∗)eλ(t∗−t0)

= −(μi − λ)v(t∗)eλ(t∗−t0) < 0,

which clearly contradicts with the choice of t∗. Therefore, Eq. (3.5) holds on [t0, t1).
Next under the assumption that (3.5) is satisfied on [t0, tm) where m ≥ 1, we will
show that (3.5) is true on

[
tm, tm+1) as well. By condition (ii), we have

D+v(t) ≤ −μiv(t),

on
[
tm−1, tm). On the other hand, from (3.5) on [t0, tm), we can obtain

v(tm−1)e
λ(tm−1−t0) ≤ (b + c) ‖φ‖p1

τ . (3.6)

Integrating this differential inequality on
[
tm−1, tm) and (3.6) gives

v(t−m ) ≤ e−μim−1 (tm−tm−1)v(tm−1)
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≤ e−μim−1 (tm−tm−1)e−λ(tm−1−t0)(b + c) ‖φ‖p1
τ

≤ e−(μim−1−λ)(tm−tm−1)e−λ(tm−t0)(b + c) ‖φ‖p1
τ

≤ e−(μim−1−λ)βim−1 e−λ(tm−t0)(b + c) ‖φ‖p1
τ

< σe−λ(tm−t0)(b + c) ‖φ‖p1
τ . (3.7)

In the following, we distinguish two cases to prove v(tm)eλ(tm−t0) ≤ (b + c) ‖φ‖p1
τ .

Case (A) Assumption (iv) and (3.1) holds. From condition (iii) and lβ ≤ d ≤
(l+1)β, it follows that there are at most l impulse times on [tk − dk, tk]. We assume that
these impulsive instants in [tm − dm, tm] are tmi , i = 1, 2, . . . , i0, i0 ≤ l. Combining
condition (i) and v(t)eλ(t−t0) ≤ (b + c) ‖φ‖p1

τ for t ∈ [t0, tm] gives

|x(t)| ≤ ((b + c)/a)1/p1‖φ‖τ e−(λ/p1)(t−t0), t ∈ [t0, tm) . (3.8)

According to (A4)–(A5) and (3.8), we can get

∣∣x(t−m )− x((tm − dm)
−)

∣∣ =

∣∣∣∣∣∣
∣

t−m∫

tm−dm

ẋ(s)ds −
i0∑

i=1

Δx(tmi )

∣∣∣∣∣∣
∣

≤
i0∑

i=1

t−m∫

tm−dm

| fi (s, xs)| ds +
i0∑

i=1

∣∣gmi (x(t
−
mi
), x((tmi − dmi )

−))− x(t−mi
)
∣∣

≤
i0∑

i=1

K1

t−m∫

tm−dm

‖xs‖r ds +
i0∑

i=1

[
h0k

∣∣x(t−mi
)
∣∣ + h1k

∣∣x((tmi − dmi )
−)

∣∣]

≤ (dl K1eλ(r+d)/p1 + lhe2λd/p1)((b + c)/a)1/p1‖φ‖τ e−(λ/p1)(tm−t0). (3.9)

Based (A6) and (3.9), it follows that

|�gm |p1 �= ∣∣gm(x(t
−
m ), x((tm − dm)

−))− gm(x(t
−
m ), x(t−m ))

∣∣p1

≤ (K2)
p1(dl K1eλ(r+d)/p1 + lhe2λd/p1)p1((b + c)/a)‖φ‖τ e−λ(tm−t0).(3.10)

In light of condition (i), (iv), and (3.10), one gets

v1(tm, gm(x(t
−
m ), x((tm − dm)

−))) = v1(tm, gm(x(t
−
m ), x(t−m ))+Δgm)

≤ Lim
1 ϕiv1

(
tm, gm

(
x(t−m ), x(t−m )

)) + Lim
2 v1(tm,Δgm)

≤ Lim
1 ϕiv1

(
tm, gm

(
x(t−m ), x(t−m )

))

+Lim
2 (K2)

p1 b(dl K1eλ(r+d)/p1 + lhe2λd/p1)p1 ((b + c)/a) ‖φ‖p1
τ e−λ(tm−t0).

(3.11)
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According to the definition of v2(t), we have

v2(tm) ≤ ϕimv2(t
−
m ). (3.12)

Combining (3.11) and (3.12), and taking into account condition (iii) and (3.3), (3.7),
we obtain that

v(tm) = v1(tm)+ v2(tm) = v1(tm, gm(x(t
−
m ), x((tm − dm)

−)))+ v2(tm)

≤ Lim
1 ϕiv1(t

−
m , x(t−m ))+ ϕiv2(t

−
m )+ Lim

2 v1(tm,Δgm)

≤ (Lim
1 + 1)ϕimv(t

−
m )+ Lim

2 b|Δgm |p1

≤ σ(Lim
1 + 1)ϕim (b + c) ‖φ‖p1

τ e−λ(tm−t0)

+Lim
2 (b/a)(K2)

p1(dl K1eλ(r+d)/p1 +lhe2λd/p1)p1(b+c) ‖φ‖p1
τ e−λ(tm−t0)

≤
[
σ(Lim

1 + 1)ϕim + Lim
2 (b/a)(K2)

p1(dl K1eλ(r+d)/p1 + lhe2λd/p1)
p1

]

(b + c) ‖φ‖p1
τ e−λ(tm−t0)

≤ (b + c) ‖φ‖p1
τ e−λ(tm−t0), (3.13)

i.e., (3.5) holds for t = tm .
Case (B) Condition (v) and (3.2) hold. By (v), it is obtained from (3.4) and (3.7)

that

v(tm)e
λ(tm−t0) = (v1(tm)+ v2(tm))e

λ(tm−t0)

≤ [
υ0mv1(t

−
m )+ υ1mv1((tm − dm)

−)+ υ0mv2(t
−
m )

]
eλ(tm−t0)

≤ [
υ0mv(t

−
m )+ υ1mv((tm − dm)

−)
]

eλ(tm−t0)

≤ (συ0m + υ1meλd)(b + c) ‖φ‖p1
τ

=
[
(1 − υ1m)(σ/σ2)+ υ1meλd

]
(b + c) ‖φ‖p1

τ

≤
[
(σ/σ2)+ υ1(e

λd − σ/σ2)
]
(b + c) ‖φ‖p1

τ

≤ (b + c) ‖φ‖p1
τ , (3.14)

i.e., (3.5) holds for t = tm .
Applying the argument used to show (3.5) over [t0, t1), we can prove that (3.5) is

true on [tm, tm+1). By induction, (3.5) is true for all t ≥ t0. Rewrite (3.1) as

v(t) ≤ (b + c) ‖φ‖p1
τ e−λ(t−t0).

By condition (i), one gets

|x(t)| ≤ ((b + c)/a)1/p1‖φ‖τ e−(λ/p1)(t−t0), t ≥ t0.

From Definition 2.4, it is concluded that system (2.1) is exponential stable. The above
estimate also establishes boundedness of the state, which further implies global exis-
tence of solutions [2]. The proof is complete.
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Remark 1 Observe that condition (iv)(1) in Theorem 1, V ĩ
1 (tk) is used to define the

Lyapunov function which reflects the impulse effects and V ĩ
2 (tk) is used to define

the Lyapunov function which is indifferent to impulses at constant tk , respectively.
Correspondingly, the items V i

1 (tk) and V i
2 (tk) stands for the value at constant t−k ,

respectively.

Remark 2 From condition (ii) in Theorem 1, it is seen that each of the continuous
dynamics is exponential sable. On the other hand, from condition (iv), we see that
each of the discrete dynamics can be destabilizing (ϕi ≥ 1). It is well known that
a well-behaved system may lose its stability due to uncontrolled impulsive input.
Theorem 1 shows if system (2.1) satisfies a dwell-time lower-bound condition given
by condition (iii), then it is exponential stable. It implies that, if the impulses and
switching occur not too frequently, the exponential stability of a time-delay impulsive
switched system with stable continuous dynamics can be preserved under destabilizing
impulsive perturbations. So, the upper bound of dwell time is not necessary.

Remark 3 In the proof of Theorem 1, the effect of delayed impulses satisfying con-
dition [iv,(1)] can be used to achieve (3.13). If no impulse occurs, i.e., d = 0,
then assumption [iv,(2)] will be removed and condition (3.1) can be rewritten as
ϕi e−μiβi < 1. The condition is reduced to that of hybrid systems without delayed
impulse. Therefore, Theorem 1 is the generalization of exponential stability of nonlin-
ear hybrid systems with/without delayed impulse. Moreover, condition (3.1) is divided
into two parts in which the first part reflects the effect of the delay-free impulse and
the decay rate of the continuous dynamics, while the second part reveals the effects
of delayed impulses. Condition (v) investigates the influence of the magnitude of
the delayed impulses. If the magnitude is sufficiently small satisfying (3.2), then the
delayed impulses cannot destroy the stability.

Remark 4 Besides, condition (iv) characterizes possible jumps in terms of the multiple
Lyapunov–Krasovskii functionals Vi at the impulsive and switching times. Actually,
when there is only impulse or there is only switching, the comparison condition among
the multiple Lyapunov–Krasovskii functionals is necessary to analyze the stability of
systems based the dwell-time approach.

Corollary 1 Assume that hypotheses (A1)–(A6) are satisfied and there a family of
functions

{
V i

1 : i ∈ Nc
}

of class v1 and a family of functionals
{

V i
2 : i ∈ Nc

}
of class

v2, positive scalars a, b, c, p1, p2(p1 ≥ p2 ≥ 1), λ , such that conditions (ii) and
(3.1), (3.2) in Theorem 1 are replaced by the following (ii)* D+

i Vi (t, φ) ≤ 0;

(Li
1 + 1)ϕi e

λ(tk−tk−1) + Li
2(b/a)(K2)

p1(dl K1 + lh)p1 < 1, (3.15)

sup
k
υ1k < 1, eλ(tk−tk−1) < inf

k
((1 − υ1k)/υ0k) , (3.16)

and all other assumptions remain the same. Then system (2.1) is exponentially stable
for any impulse input delays dk, k ∈ N.

Proof In light of the procedure of Theorem 1, the result can be derived.
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Remark 5 From Theorem 1 and Corollary 1, we see that when the underlying contin-
uous system is stable, impulses are not required to be very frequent. Thus, the upper
bound on the time interval between consecutive impulses and switching is not needed.

In the second part, we proceed to consider the exponential stability of systems (2.1).
It is supposed that all the subsystems governing the continuous dynamics of (2.1) can be
unstable while the impulse are stabilizing. Intuitively, the conditions in the following
theorem consist of aspects: (i) the Lyapunov–Krasovskii functionals satisfy certain
positive definite and decrescent conditions; (ii) there exist some positive estimates of
the upper right-hand derivatives of the functionals with respect to each unstable mode
of system (2.1); (iii) the dwell time of each mode of system (2.1) satisfy some supper
bounds; (iv) the jumps induced by the stabilizing impulses satisfy certain diminishing
conditions; moreover, the estimates on the magnitude of the delayed impulse satisfy
certain balancing conditions in terms of the growth rate of the continuous dynamics
and the dwell-time upper bounds.

Theorem 2 Consider system (2.1) satisfying assumptions (A1)–(A6). Suppose that
there exist a family of functions

{
V i

1 : i ∈ Nc
}

of class v1 and a family of function-
als

{
V i

2 : i ∈ Nc
}

of class v2, positive scalars a, b, c, p1, p2(p1 ≥ p2 ≥ 1), μi (≤
0), κi , β0 = inf i∈Nc {βi }, β1 = supi∈Nc

{βi }, such that

(i) a|x |p1 ≤ V i
1 (t, x) ≤ b|x |p1 , 0 ≤ V i

2 (t, φ) ≤ c ‖φ‖p2
τ ;

(ii) D+
i Vi (t, φ) ≤ −μi Vi (t, φ);

(iii) for each i ∈ Nc and any k ∈ N , β0 ≤ tk − tk−1 ≤ β1;
(iv) If there exist positive scalars ϕi < 1, Li

1, Li
2, κi such that

(1) V ĩ
1 (t, gk(x, x)) ≤ ϕi V i

1 (t
−, x), V ĩ

2 (t, φ) ≤ κi sup−r≤s≤0V i
1 (t + s, φ(s)) ,

for all t = tk;
(2) V i

1 (t, x + y) ≤ Li
1V i

1 (t, x)+Li
2V i

1 (t, y) for all t = tk and all x, y ∈ B(ρ), x +
y ∈ B(ρ) , and there exists a scalar d ≥ 0 such that

eμiβ1 > (Li
1ϕi + κi e

λr )+ Li
2(b/a)(K2)

p1(dl K1 + lh)p1 , (3.17)

where l is a nonnegative integer satisfying lβ0 ≤ d ≤ (l + 1)β0, then system
(2.1) is exponential stable for any impulse input delays dk ≤ d, k ∈ N;

(v) If there exist nonnegative bounded scalar sequences {υ0k} and {υ1k} such
that V ĩ

1 (t, gk(x, y)) ≤ υ0k V i
1 (t

−, x) + υ1k V i
1 ((t − dk)

−, y); V ĩ
2 (t, φ) ≤ κi

sup−r≤s≤0V i
1 (t + s, φ(s)) for all t = tk and all x, y ∈ B(ρ), and

eμiβ1 > sup
k
(υ0k + υ1k), (3.18)

where υ0k = υ0k + ρi and ρi = κi eλr , then system (2.1) is exponen-
tial stable for any impulse input delays dk, k ∈ N. Moreover, suppose that
supi∈Nc

ϕi < ∞, inf i∈Ncδi > 0, then system (2.1) is uniformly exponential
stable over

⋂
i∈Nc

{tk − tk−1 ≥ βi , ik = i}.
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Proof If condition (3.17) holds, then there exist positive scalars λ, σ > 0 such that

e(−μi +λ)β1 < σ < ηi , (3.19)

where ηi
Δ=

[
(Li

1ϕi + ρi )+ Li
2(b/a)(K2)

p1(dl K1eλ(r+d)/p1 + lhe2λd/p1)
p1

]−1
and

ρi = κi eλr . If conditions (3.18) holds, set υ1 = supkυ1k, σ2 = supk(υ0k + υ1k),
then σ2 < 1, and there exist scalars λ, σ > 0 such that

e(−μi +λ)β1 < σ <
[
σ2 + υ1(e

λd − 1)
]−1

. (3.20)

Let x(t) = x(t, t0, φ) is a solution of (2.1) satisfying xt0 = φ, set v1(t) =
V ik

1 (t, x(t)), v2(t) = V ik
2 (t, xt ), and v(t) = v1(t)+ v2(t) t ∈ [

tk, tk+1) , f or k ∈ N .
We will prove that

v(t)eλ(t−t0) ≤ σ(b + c) ‖φ‖p1
τ , t ≥ t0. (3.21)

We first prove that (3.21) holds for t ∈ [t0, t1). The first thing to do is to show (3.21)
holds when t = t0. One has

v(t0) = v1(t0, x(t0))+ v2(t0, xt0)

≤ b ‖φ‖p1
τ + c ‖φ‖p2

τ ≤ (b + c) ‖φ‖p1
τ < σ(b + c) ‖φ‖p1

τ .

It is clear that (3.21) holds for t = t0. Suppose for the sake of contradic-
tion that v(t)eλ(t−t0) > σ(b + c) ‖φ‖p1

τ for some t ∈ [t0, t1). Let t∗ =
inf

{
t ∈ [t0, t1) , v(t)eλ(t−t0) ≥ σ(b + c) ‖φ‖p1

τ

}
. It is clear that t∗ ∈ (t0, t1) and

v(t∗)eλ(t∗−t0) = σ(b+c) ‖φ‖p1
τ . Now suppose that t = sup{t ∈ [t0, t∗), v(t)eλ(t−t0) ≤

σ(b + c)‖φ‖p1
τ }, we claim that t ∈ (t0, t∗) and v(t)eλ(t−t0) = σ(b + c) ‖φ‖p1

τ . From
condition (ii), we have D+v(s) ≤ −μiv(s) for s ∈ [

t, t∗
]
. Integrating this differential

inequality on
[
t, t∗

]
gives

v(t∗) ≤ e−μ0(t∗−t)v(t) = e−μ0(t∗−t)e−λ(t−t0)(b + c) ‖φ‖p1
τ

≤ e−μ0(t∗−t)e−λ(t∗−t0)eλ(t
∗−t)(b + c) ‖φ‖p1

τ

≤ e(−μ0+λ)β1 e−λ(t∗−t0)(b + c) ‖φ‖p1
τ

< σe−λ(t∗−t0)(b + c) ‖φ‖p1
τ ,

which clearly contradicts with v(t∗) = σ(b + c) ‖φ‖p1
τ eλ(t

∗−t0). So (3.21) holds for
t ∈ [t0, t1).

Suppose that (3.21) holds for t ∈ [t0, tm) where m ∈ {1, 2, . . . k − 1}. Then
we will show that (3.21) holds on

[
tm, tm+1) as well. Combining condition (i) and

v(t)eλ(t−t0) ≤ σ(b + c) ‖φ‖p1
τ for t ∈ [t0, tm] gives

|x(t)| ≤ σ 1/p1((b + c)/a)1/p1‖φ‖τ e−(λ/p1)(t−t0), t ∈ (t0, tm) . (3.22)
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From condition (iii) and lβ0 ≤ d ≤ (l + 1)β0, i ∈ Nc, it follows that there are at
most l impulse times on [tm − dm, tm]. Then applying the same argument as used in
the proof of (3.13) and (3.14), from (3.17) and (3.22), eventually, this would lead to

v(tm) = v1(tm)+ v2(tm) = v1(tm, gm(x(t
−
m ), x((tm − dm)

−)))+ v2(tm)

≤ Lim
1 ϕimv1(t

−
m , x(t−m ))+ κim sup

−r≤s<0
|v1(tm + s)| + Li

2v1(tm,Δgm)

≤ (Lim
1 ϕim + κim eλr )v(t−m )+ Lim

2 b|Δgm |p1

≤ σ(Lim
1 ϕim + κim eλr )(b + c) ‖φ‖p1

τ e−λ(tm−t0)

+ σ Lim
2 (b/a)(K2)

p1(dl K1eλ(r+d)/p1 + lhe2λd/p1)p1(b + c) ‖φ‖p1
τ e−λ(tm−t0)

≤
[
(Lim

1 ϕim + κim eλr )+ Lim
2 (b/a)(K2)

p1(dl K1eλ(r+d)/p1 + lhe2λd/p1)
p1

]

σ(b + c) ‖φ‖p1
τ e−λ(tm−t0)

≤ (b + c) ‖φ‖p1
τ e−λ(tm−t0) ≤ σ(b + c) ‖φ‖p1

τ e−λ(tm−t0), (3.23)

or

v(tm)e
λ(tm−t0) = (v1(tm)+ v2(tm))e

λ(tm−t0)

≤ [
υ0mv1(t

−
m )+ υ1mv1((tm − dm)

−)+ κim sup−r≤s<0v1(tm + s)
]

eλ(tm−t0)

≤ [
(υ0m + κim eλr )v(t−m )+ υ1mv((tm − dm)

−)
]

eλ(tm−t0)

≤ (υ0m + υ1meλd)σ (b + c) ‖φ‖p1
τ

≤
[
σ2 + υ1(e

λd − 1)
]
σ(b + c) ‖φ‖p1

τ

≤ (b + c) ‖φ‖p1
τ ≤ σ(b + c) ‖φ‖p1

τ . (3.24)

Finally, it is concluded that

v(tm)e
λ(tm−t0) ≤ σ(b + c) ‖φ‖p1

τ . (3.25)

Hence, from induction, (3.21) is true for all t ≥ t0. From Definition 2.4, it is shown
that system (2.1) is exponential stable. The proof is complete.

Corollary 2 Suppose that there exist positive constants a, b, c, p1, p2, μi , β0, β1(i ∈
Nc) , such that conditions [iv (1)] and conditions (v) in Theorem 2 are replaced
by the following (iv)* If there exist positive scalars ϕi < 1, Li

1, Li
2, κi such that

(1) V ĩ
1 (t, g j (x, x)) ≤ ϕi V i

1 (t
−, x) for all t = tk; (v)* If there exist nonnegative

bounded scalar sequences {υ0k} and {υ1k} such that V ĩ
1 (t, gk(x, y)) ≤ υ0k V i

1 (t
−, x)+

υ1k V i
1 ((t − dk)

−, y) for all t = tk and all x, y ∈ B(ρ), and

eμiβ1 > sup
k
(υ0k + υ1k), (3.26)
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where υ0k = υ0k + κi eλr in which υ0k = υ0k + ρi and ρi = κi eλr , and all other
conditions remain the same. Then system (2.1) is exponential stable for any impulse
input delays dk, k ∈ N.

Proof It suffices to verify that condition (iv) in Theorem 2 is satisfied with κi = c
a .

Correspondingly, the item ρi = κi eλr in the proof is replaced by ρi = c
a eλr .

Remark 6 From condition (ii) in Theorem 2, it is seen that each of the continuous
dynamics can be unstable (−μi > 0). Nevertheless, from condition (iv), we see that
each of the discrete dynamics is stabilizing (ϕi < 1). Theorem 2 shows if system
(2.1) satisfies a dwell-time upper bound condition given by condition (iii), then it is
exponential stable. It implies that, the impulses and switching must be frequent and
their amplitude must be suitably related to the growth rate of Vi . In other words,
a time-delay impulsive switched system with unstable continuous dynamics can be
impulsively stabilized in the exponential stability sense.

Remark 7 Condition (iv) in Theorem 2 characterizes the key distinction of the idea
of impulsive stabilization of time-delay systems using the method of Lyapunov–
Krasovskii functionals. By condition (iv), it is only needed that the function part
of Vi (i.e., V i

1 ) is stabilized by the impulses (ϕi < 1). Because at a discrete time, there
exist impulse, so we cannot always expect the impulse bring the value of a purely
functional part of V2(i.e., V i

2 ) down. The tuning parameter κi in V i
2 establishes the

relationship between the functional part of Vi and Ṽi . Of course, if condition (iv)

V ĩ
2 (t, φ) ≤ κi sup−r≤s≤0V i

1 (t + s, φ(s)) is changed into V ĩ
2 (t, φ) ≤ ϕi V i

2 (t
−, φ), the

result is still hold. But it is obviously observed that the result is more conservative
than Theorem 2.

Remark 8 Noting μi ≤ 0 and from (3.17), it is easily obtained that Li
1ϕi +κi eλr < 1.

It appears that the state delay size r and the factor κi have to be sufficiently small.
However, as we can from example 1, we may always depend on a tuning parameter
as the coefficient of V i

2 and hence make κi sufficiently small. By using this technique,
the restriction on the delay size r can be also be resolved. Moreover, when state delay
r is very small, by using the design, information of state delay is not be ignored which
may cause system instability.

Now consider the following time-varying nonlinear impulsive switched time-delay
system

x
′
(t) = Ai (t)x(t)+ F(t, x(t), x(t − r1(t)), x(t − r2(t)), . . . , x(t − rm(t))),

t > t0, t 	= tk,

x(t) = C0k x(t−)+ C1k x((t − dk)
−), t = tk, (3.27)

where x(t) ∈ Rn is the state, Ai (t) : R+ → Rn×n, Fi : R+ × Rn × · · · × Rn are
continuous functions, and C0k,C1k ∈ Rn×n . And

|F(t, x, y1, . . . ym)| ≤ M0(t) |x | +
m∑

j=1

M j (t)
∣
∣y j

∣
∣,∀x, y1, . . . , ym ∈ Rn, (3.28)
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where M j (t), j = 0, 1, . . . ,m are nonnegative continuous functions. The delays ri (t)
are continuous and satisfy 0 ≤ ri (t) ≤ r, i = 1, 2, . . . ,m.

Corollary 3 Consider system (3.27) satisfying (3.28). Set cik = |Cik | , i =
0, 1, c0k= |C0k − I |. Suppose that there exist positive scalars c0, c1, μ

i
0, μ

i
1(i ∈

S),M, c ≥ 1 such that supkcik = ci , i = 0, 1,
supk |C0k + C1k | ≤ c, λmax((Ai (t)+ AT

i (t))/2)+ M0(t) ≤ μi
1,

∑m
j=1 M j (t) ≤ M.

(i) If c1 < 1, 1 < c0, and there exists scalars βi > 0 such that

2μi
1 + max

{
1, supk

c0k

1 − c1k

}
M + 2

βi
ln max

{
1, supk

c0k

1 − c1k

}
< 0, (3.29)

then system (3.27) is exponential stable for any bounded impulse input delays
dk, k ∈ N.

(ii) If

|Ai (t)| + M0(t) ≤ μi
0, t ≥ 0. (3.30)

and there exist scalars βi > 0 such that

wi
0
Δ= c1

[
dl(μi

0 + M)+ lsupk(c0k + c1k)
]
< 1, (3.31)

μi
1 + max

{

1,

√
2c

1 − wi
0

}

M + 1

βi
ln max

{

1,

√
2c

1 − wi
0

}

< 0, (3.32)

where l is a nonnegative integer satisfying lβ0 ≤ d ≤ (l + 1)β0, then system
(3.27) is exponential stable for any bounded impulse input delays dk, k ∈ N.

(iii) If there exist scalars α ∈ (0, 1) and βi > 0 such that

sup
k
(c0k + c1k) ≤ α, (3.33)

2μi
1 + 1

α
M − 2

βi
ln

1

α
< 0, (3.34)

then system (3.27) is s exponential stable for any bounded impulse input delays
dk, k ∈ N.

(iv) Under the same condition as in (3.30), suppose that there exist scalars α ∈ (0, 1)
and 0 ≤ β0 ≤ β1 such that (3.31) is satisfied, where l satisfying lβ0 ≤ d ≤
(l + 1)β0, moreover,

c ≤ α ≤ 1 − wi
0, (3.35)

μi
1 + 1

α + wi
0

M + 1

β1
ln

1

α + wi
0

< 0, (3.36)

then system (3.27) is exponential stable for any bounded impulse input delays
dk, k ∈ N.
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Proof We only prove part(ii) due to space limitations. The other parts can be obtained
in light of part (ii). One can verify that for systems (3.27), conditions (A1)–(A6)
are satisfied with ρ = ∞, K i

1 = μi
0 + M, h0k = c0k, h1k = c1k, h = supk(c0k +

c1k), K2 = c1. Condition (3.31)–(3.32) imply that there exist scalars k > 0 and ε > 0
such that

max

{

1,

√
2c

1 − wi
0

}

< k + 1

k
<

1

M

[

μi
1 + min

{

0,
1

βi
ln

1 − wi
0√

2c

}

− ε

]

.

(3.37)

Set wi
1 = − min

{
0, 1

βi
ln

1−wi
0√

2c

}
+ ε, then wi

1 > 0, and

√
2αi e

−wi
1βi + wi

0 < 1, (3.38)

where αi = max
{√

2c, 1 − wi
0

}
. Choose the Lyapunov–Krasovskii functionals Vi =

V i
1 + V i

2 , where V i
1 = |x |2, V i

2 = M
k sup−r≤s≤0

∫ 0
−r |φ(s)|2ds. For any 0 < t 	= tk ,

by (3.37), we have

D+Vi (x(t)) = 2xT (t) (A(t)x(t)+ f (t, x(t), x(t − r1(t)), . . . x(t − rm(t))))

+ M
k |x(t)|2 − M

k sup−r≤s≤0|x(t + s)|2
≤ λmax(A(t)+ AT (t))|x(t)|2 + 2M0(t)|x(t)|2
+ ∑m

j=1 M j (t)2 |x(t)| ∣∣x(t − r j (t))
∣∣ + M

k |x(t)|2
− M

k sup−r≤s≤0|x(t + s)|2
≤ 2μi

1 |x(t)|2 + k M |x(t)|2 + M
k sup−r≤s≤0|x(t + s)|2 + M

k |x(t)|2
− M

k sup−r≤s≤0|x(t + s)|2
≤ 2μi

1 |x(t)|2 + (k + 1
k )M |x(t)|2

≤ − 2wi
1Vi (x(t)).

That is, condition (ii) in Theorem 1 holds with μi = 2wi
1.

Next we consider condition (iv). From the definition of Vi (x(t)), we have
V ĩ

1 (t,C0k x + C1k x) ≤ |C0k + C1k |2|x |2 ≤ c|x |2, which implies that condition [(iv

(1)] holds with ϕi = c, and V ĩ
2 (t, φ) = M

k sup−r≤s≤0

∫ 0
−r |φ(s)|2ds ≤ ϕi V i

2 (t, φ).

Since V i
1 (t, x1 + x2) = |x1 + x2|2 ≤ (1 + ε)|x1|2 + (1 + 1

ε
)|x2|2 for any ε > 0, con-

dition [iv (2)] holds with Li
1 = 1 + ε, Li

2 = 1 + 1
ε
. By choosing ε = wi

0(αi e−wi
1βi )−1

and using (3.32), we have that (Li
1 + 1)ϕi e−μiβi + Li

2(b/a)(K2)
p1(dl K1 + lh)p1 =

(2 + ε)(αi e−wi
1βi )2 + (1 + 1

ε
)(wi

0)
2 ≤ (

√
2αi e−wi

1βi + wi
0)

2 < 1. This implies (3.1)
holds. Therefore, by Theorem 1, system (3.27) is exponential stable.
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4 Numerical Examples

The applicability of the results derived in the preceding section is illustrated by the
following three examples.

Example 1 Consider the nonlinear impulsive time-delay switched system as follows
Mode 1, i.e., ik = 1;

x
′
1(t) = −x2(t) sin(x1(t − r))− 6x1(t)+ 0.5x2

2 (t − r), t 	= tk,
x

′
2(t) = 0.8x1(t) sin(x1(t − r))− 6x2(t)+ 0.4x2

2 (t − r), t 	= tk,
x1(t) = x1(t−)+ c1x1((t − dk)

−), t = tk,
x2(t) = x2(t−)+ c1x2((t − dk)

−), t = tk .

Mode 2, i.e., ik = 2;

x
′
1(t) = −x2(t) sin(x1(t − r))− 3x1(t)+ 0.5x2

2 (t − r), t 	= tk,
x

′
2(t) = x1(t) sin(x1(t − r))− 3x2(t)+ 0.5x2

2 (t − r), t 	= tk,
x1(t) = x1(t−)+ c2x1((t − dk)

−), t = tk,
x2(t) = x2(t−)+ c2x2((t − dk)

−), t = tk .

(4.1)

where r ≥ 0, dk ∈ [0, d], and β1 = 0.6, β2 = 1.2. By choosing ρ = 1, condition
(A1)–(A3) is clearly satisfied. It is easy to see that (A5) is satisfied with h0k = 0
and h1k = c1, and (A5) is satisfied with K2 = c1. So h = c1. Moreover, for any
φ ∈ PC([−r, 0] , B(ρ)) , one has that | f1(t, φ)|2 ≤ 47.3144‖φ‖2, | f2(t, φ)|2 ≤
17.156‖φ‖2 which implies K 1

1 = √
47.3144, K 2

1 = √
17.156.

According to Theorem 1, our purpose here is to find the upper bound of c1 such that
system (4.1) is exponential stable for any bounded impulse input delays dk . Choose
the Lyapunov–Krasovskii functionals Vi (t, φ) = V i

1 + V i
2 . For i = 1, we have

V 1
1 (t, φ(0)) = 1

2φ
2
1(0)+ 1

1.6φ
2
2(0) and V 1

2 (t, φ) = 0.5
√

2
∫ 0
−r φ

2(s)
[
k1 + 1 + k1s

r

]
ds

for 0 < k1 < 9.6082 with a = 1
2 , b = 1

1.6 . For i = 2, we choose V 2
1 (t, φ(0)) =

1
2φ

2
1(0) + 1

1.6φ
2
2(0) and V 2

2 (t, φ) = 0.5
√

2
∫ 0
−r φ

2(s)
[
k2 + 1 + k2s

r

]
ds with a =

1
2 , b = 1

2 for 0 < k2 < 3.2433. It follows that

D+V1(t, φ) = −6φ2
1(0)− 12

1.6φ
2
2(0)+ kφ2

2(0)+ 0.5(φ1(0)+ φ2(0))φ2
2(−r)

+ 0.5
√

2(k + 1)φ2
2(0)− 0.5

√
2φ2

2(−r)− k
r 0.5

√
2

∫ 0
−r φ

2(s)ds

≤ − 6φ2
1(0)− (

12−0.8
√

2(k+1)
1.6 )φ2

2(0)+ (0.5
√

2 |φ(0)| − 0.5
√

2)φ2
2(−r)

− k
r 0.5

√
2

∫ 0
−r φ

2(s)ds

≤ −
[
12 − 0.8

√
2(k + 1)

]
V 1

1 (t, φ(0))− k
(k+1)r V 1

2 (t, φ)

≤ −min
{

12 − 0.8
√

2(k + 1), k
(k+1)r

}
V1(t, φ),

which implies that condition (ii) holds with μ1 = min{12 − 0.8
√

2(k + 1), k
(k+1)r }.

Similarly, we can obtain μ2 = min{6 − √
2(k2 + 1), k2

(k2+1)r }.
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Fig. 1 Example 1: State response of system (4.1) under delayed impulsive perturbations

One can check that for any ε > 0, condition (v) is satisfied with v0k = 1 +
ε, v1k = 1 + 1

ε
. By choosing ε = c1e

μ1
2 β1 , it can be proved that condition (3.2)

holds if and only if c1 < 1 and e−μ1β1 + 2c1e−μ1
2 β1 + c2

1 − 1 < 0. This means that
when k1 = 1.5, c1 < 0.7631, system (4.1) is exponential stable for any bounded
impulse delays {dk}. For i = 2, by using similar analysis, it is followed that when
k2 = 1.5, c2 < 0.6988 , system (4.1) is exponential stable for any bounded impulse
delays {dk}.

Next, turning to using Theorem 1, for the case of c1 = c2 = 0.8, we proceed
to determine the upper bound d of impulse input delays dk such that system (4.1)
is exponential stable for any dk ≤ d. It is noted that condition (iv) is satisfied with
ϕ1 = (1.6)2 and L1

1 = 1 + ε, L1
2 = 1 + 1

ε
. Then, define υ0 = √

b/aK2(dl K1 + lh)

and choose ε = √
2υ0/

√
v1υ

1
1 where υ1

1 = e−μ1
2 β1 . In this case, condition (3.1) is

satisfied if and only if υ0 < 1 and
√

2ϕ1υ
1
1 +υ0 < 1. Then we can obtain υ1

0 < 0.4639
which implies d < 0.0543. By using similar analysis, it is followed that d < 0.0373.
Thus, according to above result, it follows that system (4.1) is exponential stable for
any dk ≤ d = 0.0309. Finally, Fig. 1 displays the simulation results of system (4.1)
is given with r = 1, c1 = c2 = 0.8 and d = 0.03.

Example 2 Consider the nonlinear impulsive delay system with time delay at impul-
sive moment

Mode 1, i.e., ik = 1;

x
′
(t) =

[ 1−|sin t |
2 −0.1t,

−0.1t 1−|sin t |
2

]
+ f (t, x(t), x(t − r)), t 	= tk,

x(t) = 0.1x(t−)+ gk(x(t−), x(t − d)−). t = tk .
(4.2)

Mode 2, i.e., ik = 2;

x
′
(t) =

[ 1−|sin t |
4 −0.2t,

−0.2t 1−|sin t |
4

]
+ f (t, x(t), x(t − r)), t 	= tk,

x(t) = 0.1x(t−)+ gk(x(t−), x(t − d)−). t = tk .
(4.3)
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Fig. 2 Example 2: State response of system (4.2) and (4.3) without impulses

Fig. 3 Example 2: State
response of system (4.2) and
(4.3) with impulses
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where β1 = 0.3, β2 = 0.8. f : R+× R2 × R2 → R2 and gk : R2 × R2 → R2 are con-
tinuous and satisfying the condition: | f (t, x, y)| ≤ 1

2 |sin t | |x | + 1
2 |y| , |gk(x, y)| ≤

c0k |x |+c1k |y|. When r = d = 0.2, by the result of [5], the upper bound α of c0k +c1k

for exponential stability of system (4.2) is α < 0.2326. And, using part (iii) of our
result (Corollary 3) and noticing that μ1

1 = μ2
1 = 0.5, M = 0.5, it is obtain that

when α < 0.4130, system (4.2) and (4.3) is exponentially stable. This shows that our
results are less conservative than those in [5] and [21]. To illustrate our conditions
numerically, we choose the functions as

f (t, x(t), x(t − r)) =
[

0.5(sin(t)x1(t)+ x2(t − 0.2))
0.5(sin(t)x2(t)+ x1(t − 0.2))

]
,

gk(x(t
−), x(t − d)−) =

⎡

⎣
0.05

√∣∣x1(t
−
k )x2(t

−
k − 0.2)

∣∣

0.05
√∣∣x2(t

−
k )x1(t

−
k − 0.2)

∣∣

⎤

⎦ ,

so c0k = c1k = 0.05. Figure 2 shows that the corresponding subsystem without
impulses is unstable, but it can be exponentially stabilized by impulses, as shown in
Fig. 3.
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Fig. 4 Schematic overview of the networked control system

Example 3 An example is given to illustrate the studied systems is of actual back-
ground in the following (Fig. 4).

The two-channel network control systems (NCSs) are schematically depicted in
Fig. 4. It consists of a continuous-time plant and a discrete-time controller, which
receives information from the plant only at the k-th sampling instant sk . The sensor acts
in a time-driven (though variable) fashion and the controller and actuator [including
the zero-order-hold (ZOH) in Fig. 4] act in an event-driven fashion in the sense that the
controller and the actuator update their outputs as soon as they receive a new sample.
In this example, plant is usually assumed to take the form:

x
′
(t) = Ai t + Bi u

∗(t), u∗(t) = uk .

and the output yk is transmitted through a digital communication network, i.e., yk =
Ck x(t−k ). Owing to the fact that computation time and network-induced delays result in
sensor-to-controller delay (τ sc

k ) and controller-to-actuator delay (τ ca
k ), the k-th control

input update time tk at which the k-th sample arrives to the destination may be greater
than sk . Denote dk the k-th total delay with dk = τ sc

k +τ ca
k . Then, we have tk = sk +dk .

Assume that we adopt the impulsive control law of �x(tk) = Bkuk to stabilize the
plant. If the control input uk is taken as the form of uk = K yk , then the above form
of impulses should be modified as follows

�x(t) = Bk K x((t − dk)
−), t = tk .

Then, in this paper, the more general impulses are given:

x(t+) = B1k x(t−)+ B2k x((t − dk)
−), t = tk .

5 Conclusions

In this paper, a method of multiple Lyapunov–Krasovskii functionals has been applied
to deal with the effects of delayed impulses on exponential stability of impulsive and
switching time-delay systems. We have established sufficient conditions for expo-
nential stability of time-delay systems with destabilizing impulses and stabilizing
impulses. When the delayed impulses are sufficiently small, the exponential stabil-
ity of impulsive and switching time-delay systems is robust. If the magnitude of the
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delayed impulses is sufficiently small, then under some conditions, the exponential
stability properties can be derived irrespective of the size of the impulse input delays. It
is shown that if the magnitude of the delayed impulses is sufficiently small, destabiliz-
ing delayed impulses cannot destroy the stability under some conditions. Applying our
results to a class of nonlinear impulsive and switching time-delay systems, the deduced
new stability criteria can relax some restrictions on delays and impulses imposed by
the existing results. Two illustrative examples have been provided to demonstrate the
main theoretical results.
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