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Abstract The radar signal sorting method based on traditional support vector clus-
tering (SVC) algorithm takes a high time complexity, and the traditional validity in-
dex cannot efficiently indicate the best sorting result. Aiming at solving the problem,
we study a new sorting method based on cone cluster labeling (CCL) method. The
CCL method relies on the theory of approximate coverings both in feature space and
data space. Also a new cluster validity index, similitude entropy (SE), is proposed. It
can be used to evaluate the compactness and separation of clusters with information
entropy theory. Simulations including the performance comparison between the pro-
posed method and the conventional methods are presented. Results show that while
maintaining the sorting accuracy, the proposed method can reduce the computing
complexity effectively in sorting the signals.

Keywords Signal sorting · Clustering algorithms · Support vector clustering · Cone
cluster labeling · Similitude entropy

1 Introduction

The sorting of radar signal is to separate the interleaved radar pulse signal flow
from different sources. As an important part of electronic intelligence (ELINT) and
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electronic support measure (ESM) system, signal sorting affects the performance of
electronic reconnaissance equipments directly, and is a key technology to campaign
decision-making [22].

In general, parameters used in sorting algorithms are extracted from the pulses and
mainly composed of direction of arrival (DOA), radio frequency (RF), pulse ampli-
tude (PA), pulse width (PW) and time of arrival (TOA), which together form pulse
descriptor word (PDW) [20]. Radar signal sorting approaches are mostly based on
single parameter, parameter for parameter or multiple-parameter sorting, namely in-
cluding three aspects as follows:

(1) The sorting method relying on single parameter mainly focuses on the parameter
of TOA by which the pulse repetition interval (PRI) can be obtained. Then some
different algorithms could be used to perform the signal sorting with PRI [6, 28].
However, with more and more complex waveform design and electromagnetic
environment, sorting with single parameter has some limitations and the sorting
rate is not high either.

(2) The parameter for the parameter sorting method is a serial regulation detection
system. Pulse parameters such as RF, PA, PW and DOA, are compared with pulse
groups that are confirmed in advance, and it should be detected that whether each
parameter drops into the existent cell with certain tolerance range or not [25].
This method not only has a slow sorting speed but also is inefficient for sorting
the parameters which are incomplete or under the influence of jamming or noise.

(3) The multiple-parameter sorting method is usually performed with clustering
method using several parameters in PDW [7, 8, 12]. This approach can acquire a
better sorting result compared to those two sorting methods mentioned above.

As with the above aspects, the radar signal sorting method should mainly focus
on the clustering sorting method. As the most efficient clustering method, the support
vector clustering (SVC) algorithm [1] has been widely researched in both theoretical
developments and practical applications due to its outstanding features such as in [9,
13, 15, 16, 18, 19, 21, 24]. Zhang et al. [27] deal with an application of SVC to radar
emitter signal (RES) recognition. And in [7] the algorithm is used to perform the
radar signal sorting and gets a good sorting result. However, as a common agreement
the SVC algorithm is time-consuming (as shown in experiment result) because of its
optimization problem and cluster labeling method [17].

This paper presents a new sorting algorithm: firstly using SVC algorithm to map
the radar signal data points to a high dimensional feature space and form some sep-
arate clusters of points; then differentiating between points that belong to different
clusters with cone cluster labeling (CCL) method, we regard these two steps as cone
mapping support vector clustering (CMSVC); finally indicating the best sorting re-
sult efficiently with the proposed validity index of similitude entropy (SE), which
assesses the compactness and separation of clusters with information entropy theory.

The paper is organized as follows. In Sect. 2 the signal sorting model based on
SVC with the cluster labeling method of CCL is introduced. The proposed similitude
entropy (SE) index for indicating the correct sorting clusters is derived, and then the
radar signal sorting system based on CMSVC and SE index is presented in Sect. 3.
Section 4 implements the sorting algorithm by adjusting the parameters of CMSVC
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and updating the dynamic library of radar signal clusters. In Sect. 5, several experi-
mental results are presented and discussed. The paper is concluded in Sect. 6.

2 Cone Mapping Support Vector Clustering-Based Signal Sorting

In this section, we introduce the signal sorting model based on SVC with the cluster
labeling method of CCL, namely based on the cone mapping support vector clustering
(CMSVC) algorithm.

2.1 Sorting Model Based on Support Vector Clustering

While using the sorting methods based on clustering, the greatest obstacle of clus-
tering sorting is that features used to cluster cannot obtain satisfactory separation of
clusters. This drawback hinders the practical effects of clustering sorting. But support
vector clustering (SVC) hold the edge to resolve the above issue.

The SVC is an unsupervised and non-parametric clustering algorithm, presented
by Ben-Hur et al. [1] based on the support vector domain description (SVDD) al-
gorithm. This method takes the support vector machine (SVM) as a tool to perform
clustering and its basic idea is as follows: first, mapping the data points by means of
a Gaussian kernel to a high dimensional feature space from data space; then looking
for the optimum hypersphere that can enclose the image of the data in this new space;
and finally mapping this hypersphere back to data space and forming a set of contours
which enclose the data points. Theses contours are interpreted as cluster boundaries.
Points enclosed by each separate contour are associated with the same cluster.

The SVC algorithm is the most effective method for unsupervised classification
and has several unique advantages—generating cluster boundaries of arbitrary shape,
enabling analyzing noisy data points and separating between overlapping clusters.
This is what other clustering algorithms cannot accomplish. And the linear separable
probability of data points is enhanced with the algorithm by a nonlinear transforma-
tion. As a result, the useful feature is probably recognized, extracted and magnified
relatively [2, 26]. Meanwhile, by employing slack variables the SVC is able to deal
with outliers and get rid of the influence of noise.

Let G ⊆ �3 be a subset of a PDW, here G = {RF,DOA,PW}, and {gi} ⊆ G be
the radar signal pulse parameters vector, here i = 1, 2, . . . ,N , N denoting the num-
ber of vector. By mapping the parameters, namely data points to feature space we
get a smallest closed sphere with the center a and the radius R. Thus the signal sort-
ing problem can be converted to solve the optimization problem described by the
constraints [1]

minR2 + C
∑

i

ξi s.t.
∥∥Φ(gi ) − a

∥∥2 ≤ R2 + ξi&&ξi ≥ 0 (1)

where C is the constant penalty factor, Φ is a nonlinear transformation, Φ(g) denotes
the image of g, ‖ • ‖ is the Euclidean norm and ξi the slack variable.
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To solve the problem, the Lagrangian is introduced as

L = R2 −
∑

i

(
R2 + ξi − ∥∥Φ(gi ) − a

∥∥2)
βi −

∑

i

ξiμi + C
∑

i

ξi (2)

where the βi and μi are Lagrange multipliers.
Setting to zero the derivate of formula (2), we can deduce the equivalent problem

of formula (1) from the Wolfe dual form as

max
β

(∑

i

βiΦ
T (gi )Φ(gi ) −

∑

i,j

βiβjΦ
T (gi )Φ(gj )

)

s.t. 0 ≤ βi ≤ C&&
∑

i

βi = 1 (3)

In this paper we use the Gaussian kernel K(gi ,gj ) = ΦT (gi )Φ(gj ) =
e−q‖gi−gj ‖2

with width parameter q to present the dot products as a Mercer ker-
nel [1]. Incorporating the constraints of formula (2), the distance between image
points and the center of sphere is defined as

R2(g) = ∥∥Φ(g) − a
∥∥2 = 1 − 2

∑

j

βjK(gj ,g) +
∑

i,j

βiβjK(gi ,gj ) (4)

In view of (3) and (4) we get the optimum βi and the optimum hypersphere ra-
dius R. The contours defined by the set {g : R(g) = r} are formed in the data space.

Combining with the Karush–Kuhn–Tucker (KKT) complementarity condition [14]
we conclude:

(1) A point Φ(gi ) only with βi �= 0 can be used to define the optimum center, then
we have:
(1) A point Φ(gi ) with 0 < βi < C is mapped to the surface of the feature space

sphere. The points as gi will be called Support Vectors (SVs) which sat-
isfy R(vi ) = R and lie on cluster boundaries. The points lying on the same
boundary contour in data space confirm the cluster boundary of the same type
radar signal instances, and the boundary shape depends on kernel function.

(2) A point Φ(gi ) with βi = C is mapped to the outside of the feature space
sphere. The points as gi will be called Bounded Support Vectors (BSVs),
which imply r > R and lie on external contours. These points denote the
outliers or noise.

(2) A point Φ(gi ) with βi = 0 is mapped to the inside of the feature space sphere.
The points as gi lie on internal contours. And the same internal contours confirm
the same type radar signal instances.

2.2 Support Vector Clustering with Cone Clustering Labeling Method

In order to solve the problem that contours cannot differentiate between points that
belong to different clusters, the complete graph (CG) and support vector graph (SVG)
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cluster labeling methods are discussed in [1]. The improved method proximity graph
(PG) and gradient descent (GD) are proposed in [11, 23]. But these methods still take
on a high time complexity because they sample a line segment to decide whether a
pair of data points is in the same cluster. So these algorithms cannot meet the real-
time and accuracy requirements of sorting radar signals in the dense and complex
electromagnetic environment.

For decreasing the consuming time of the cluster labeling method ulteriorly, the
cone clustering labeling (CCL) algorithm in [10] is applied to label clusters. This
algorithm avoids the clustering inaccuracy caused by calculating the adjacent matrix
with sampling a path between two data points which are in the same cluster while
decreasing the time complexity.

The main idea of this algorithm is to find cones which include the image of SV,
namely Φ(vi ), and cover a key portion of the minimal hypersphere in feature space.
In data space these cones correspond to hyperspheres. And a data point gj with the
image of Φ(gj ) which is inside of the cones lies inside of the hyperspheres. The
data points as gj possess strong intra-class compactness and satisfy ‖vi − gj‖ ≤
‖v‖i −Φ−1(a)‖. The union of the hyperspheres forms an approximate covering of the
data space contours. All the SVs are clustered and then the data points corresponded
to SVs in the same class form a single cluster using the approximate covering. Thus
the remaining data points can be easily clustered.

The formula ‖v‖i −Φ−1(a)‖ = x1/2 is deduced in [10], where x = − ln(
√

1 − R2)

/q . Setting Z = ‖v‖i − Φ−1(a)‖, then the main CCL algorithm can be described as
follows:

Step 1. Compute Z for q .
Step 2. Compute the Euclid distance between pairs of SVs. Iff the distance is less

than 2Z, the data points pairs lie in the same cluster.
Step 3. Repeat the step 2 until finishing the SVs clustering.
Step 4. Compute the distance, namely d , between the rest of data gj and SV, and

then rank the gj to the class which contains the nearest SV from gj .
Step 5. Repeat the step 4 until all the remaining data points are clustered.

3 Radar Signal Sorting System Based on CMSVC and SE Index

Traditional cluster validity index cannot evaluate the clustering results well to find the
partitioning that best fits the radar data as the pulse signal flow is badly interleaved. So
a new-type validity index is required to fit the complicated signal environment. The
radar signals with period repetition from one emitter strongly resemble themselves,
and the ones from different emitters have poor resemblance. Based on this, the resem-
blance degree can be used to depict the resemblance by calculating the resemblance
coefficient between the signal flows. The resemblance coefficient is defined as

S(g1,g2) = gT
1 g2

‖g1‖‖g2‖
(5)

where {g1,2(u), u = 1,2,3} denotes the sample vector of two emitter signals,
‖g‖ = (

∑
g2(u))1/2, S ∈ (0,1]. S can be viewed as the resemblance probability of
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two sample vectors. Under this consideration, in order to get better clustering results,
we always expect that the within-cluster resemblance should be as strong as possi-
ble after clustering and between-cluster resemblance should be as poor as possible.
According to the physical significance of information entropy and the characteristics
of radar pulse signal, the information entropy can be combined with the resemblance
among signals. The poorer resemblance the sample vectors have, the bigger value the
entropy is, and vice versa. Thus, we try to introduce the information entropy index
to represent the resemblance level of clustering signals. The index is proportional
to within-cluster resemblance and inversely proportional to between-cluster resem-
blance. Within-cluster resemblance is denoted by the within-cluster similitude en-
tropy Hcomp(C) and between-cluster resemblance by the between-cluster similitude
entropy Hsep(C). The index is called the similitude entropy (SE), which is defined as

SE = Hsep(C)/Hcomp(C) (6)

where Hsep(C) denotes the between-cluster similitude entropy and Hcomp(C) denotes
within-cluster one. These two variables are expressed as follows:

Hsep(C) =
c∑

k=1

min
l=1,...,c,l �=k

{Hlk}, Hcomp(C) = 1

c

c∑

k=1

Hkk (7)

where

Hlk = − 1

nk

nk∑

i=1

Sl,ki logSl,ki (8)

Sl,ki = S(ml ,gki) = mT
l gki

‖ml‖‖gki‖
(9)

where ml denotes the center of cluster Cl , gki denotes the ith sample vector in cluster
Ck , and Sl,ki denotes the resemblance coefficient between ml and gki , respectively.
When l = k, Hlk denotes the within-cluster similitude entropy of Cl . When l �= k,
Hlk denotes the within-cluster similitude entropy between Cl and Ck .

Hence, a greater value of SE predicates a better compactness and separation of the
clusters. So by maximizing the value of SE the correct clustering result could be de-
termined. Then we run CMSVC algorithm with different value of q and get different
class numbers of c, c ∈ [2,N − 1]. In the spirit of the analysis mentioned above we
conclude that the similitude entropy value should satisfy SE = max{SEc, 2 ≤ c ≤
N − 1}.

It can be viewed as a cluster validity index whereas the SE index can depict the
within-cluster compactness and between-cluster separation efficiently while the PDW
subset G is partitioned to c classes under the term SE index. Meanwhile, in view of
the low time complexity of CCL algorithm, we propose a sorting method for radar
signal aggregating CMSVC algorithm and SE index as shown in Fig. 1. The main
steps are as follows:

Step 1. Extract the subset G of PDW by a real-time processing method in subsection,
where i denotes the ith extracting operation and G = {RF,DOA,PW}i .
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Fig. 1 Framework of radar
signal sorting system based on
the combination of CMSVC and
SE index

Step 2. Pre-sort the sample vectors constituted with RF, DOA and PW via running
CMSVC algorithm and adjust the parameters of q , the Gaussian kernel, and
C, the soft margin constant with SE index.

Step 3. Sort the sample vectors of G using optimum parameters for final output
which would be processed according to SE index once more and update the
dynamic library of radar signal clusters.

4 Algorithm Implementation

In this section we introduce the parameters adjustment algorithm with the proposed
validity index SE and perform the CMSVC algorithm with these optimal parameters.
Finally, the dynamic library of radar signal clusters is updated using the SE index.
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4.1 Adjust Parameters Using SE Index

In SVC sorting algorithm, as q increases the cluster boundaries become more and
more rough, and forming an increasing number of clusters, the same as in CMSVC.
Thus, The SVC algorithm runs from a small value of q which increases by using
the heuristic algorithm. And the heuristic algorithm is used to get the optimal value
of q . In the beginning starting out with the penalty factor C = 1, we do not allow
for any outliers or need to handle the BSVs. If the number of SVs is excessive, or a
number of singleton clusters form when we heuristically increase the value of q , the
clusters should contain BSVs. One should decrease the value of C to smooth cluster
boundaries and avoid the impact on clustering accuracy caused by BSVs [1]. Thus the
correct radar signal sorting result is observed. The parameter adjustment algorithm
with SE index is typically implemented by the following steps:

Step 1. Initialize the value of q as q = 1/maxij ‖gi − gj‖2.
Step 2. Perform the CMSVC algorithm with the parameter of q and obtain a tempo-

rary clustering result.
Step 3. Evaluate the following two conditions according to the clustering result in

Step 2:
(1) whether the number of SVs is excessive;
(2) whether a number of singleton clusters form.
If any one of conditions (1) or (2) occurs, we heuristically decrease the value
of C and go to Step 2, otherwise go to Step 4.

Step 4. Compute the SE validity measure according to the clustering result obtained
in Step 2.

Step 5. If the maximum SE is obtained, go to Step 6. Otherwise heuristically increase
the value of q and go to Step 4.

Step 6. Identify the clustering parameters of q and C and perform the clustering
algorithm with these two parameters again. Then stop and output the best
clustering result.

4.2 Update the Dynamic Library of Radar Signal Clusters

When the real-time radar signal sorting method is implemented, it is necessary to
compare the data clusters between existing ones in dynamic library and new ob-
tained ones. Via this operation it can decide whether one cluster in the new clus-
ters or in existing ones belongs to the same class. We solve this problem using
the following method. Assuming that the new clusters set obtained in Sect. 4.1
is U ′ = {Cl, l = 1,2, . . . , c′}, and the existing clusters set in dynamic library is
U = {Ck, k = 1,2, . . . , c}. Then the algorithm of updating the dynamic library of
radar signal clusters is as follows:

Step 1. Initialize l = 1.
Step 2. Calculate the SE validity measure between new cluster Cl and clusters set U

according to (8), and these values are expressed as {Hlk, k = 1,2, . . . , c}.
Step 3. Sort the Hlk ascendingly, namely Hlt1 < Hlt2 < · · ·Hltp · · · < Hltc , where

{t1, t2, . . . , tp, . . . , tc} denotes a rank of k.
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Table 1 The radar pulse signal parameters information

Radars PRF/KHz RF/MHz PW/us DOA/° Ns

Type Range Type Range

1 Jittered 0.52–0.58 Agile 2400-2550 1.15–1.25 28–40 1988

2 Staggered 0.8–1 Jumping 2550–2650 1.15–1.2 48–60 3264

3 Jittered 0.76–0.84 Agile 2855–3050 1.25–1.35 35–45 2891

4 Staggered 0.5–0.6 Agile 3050–3150 0.95–1.05 40–60 1973

Where Ns means number of pulses

Step 4. Initialize p = 1.
Step 5. Calculate the SEold of clusters set U firstly, then incorporate the new cluster

Cl into the existing cluster Ctp and form a cluster of C′
tp

, and calculate the
SEnew of clusters set U after replacing Ctp with C′

tp
. If SEnew ≥ SEold, the

incorporation is confirmed and go to step 6, otherwise retract the incorpora-
tion. When the incorporation is retracted, if p < c, set p = p + 1 and repeat
step 5, otherwise add the new cluster Cl to clusters set U and set c = c + 1.

Step 6. If all the new clusters have been processed, stop the algorithm; otherwise set
l = l + 1 and go to step 2.

5 Simulation Experiment Result

In order to verify the efficacy of the proposed SE index and the low time complexity
of the CCL algorithm, a series of radar pulse signal data is simulated. The experi-
ments data used in this paper include 10116 radar pulse signals. The simulated data
after preprocessing is as in Table 1. Here, we compare the validity measures, the DB
[4], Dunn [5] and PS index [3] and the proposed SE validity measure to illustrate the
performances. We adopt the datasets of data1, data2 and data3 from the simulated
pulse datasets of the sample vectors of 1–200, 201–400 and 401–600 to compare
the performances. And the result is as in Table 2. Meanwhile more experiments are
conducted in Table 3. The accuracy and consuming time are compared in Table 4
using the different cluster labeling method of CG, SVG, PG, GD and CCL under the
guidance of SE index. In Table 4 the accuracy is equal to (n − n1 − n2)/n, where
n denotes the number of all sample vectors, n1 denotes that of the missing vectors
when the datasets are clustered and n2 denotes that of vectors clustered incorrectly.
The worst-case asymptotic time complexity means sorting signals without BSVs.

It is proved that when the DB and PS index is minimized, the crisp and compact
clusters in the data can be obtained in [4] and [3] using the clustering method. As an
indication of the optimal clustering scheme, the Dunn presented in [5] is the point at
which it takes its maximum value.

However, from the above experimental comparison, we affirm that using these
three indices we cannot well determine the optimal value of q or the correct number
of clusters that exist in our dataset of data1, data2 and data3, which means the dense



1994 Circuits Syst Signal Process (2014) 33:1985–1996

Table 2 The optimal number of clusters and value of q comparison using several validity indices

q c DB Dunn PS SE

Data1
(2 classes)

220 2 0.157 1.010 0.001 3.014

310 3 0.431 1.014 0.010 0.706

330 4 0.385 0.657 0.035 0.014

345 5 0.743 0.033 0.019 0.170

346 6 0.654 0.033 0.021 0.140

Data2
(4 classes)

6 2 0.654 0.222 0.022 1.778

11 3 0.126 0.170 0.007 0.707

41 4 0.131 0.177 0.005 1.948

110 5 0.176 0.183 0.007 0.665

130 6 0.384 0.119 0.022 0.431

Data3
(4 classes)

0.8 2 0.107 0.005 0.064 0.524

16 3 1.382 0.144 0.010 1.279

66 4 0.285 0.204 0.003 1.388

100 5 0.269 0.027 0.002 0.723

140 6 0.570 0.022 0.029 0.324

Where q is the width parameter of Gaussian kernel and c is the clusters number obtained when the signal
is sorted by SVC with CCL labeling method under different q

radar signal pulse flow cannot be sorted efficiently with these three indices. For in-
stance, Index Dunn proposes the partitioning of data1 into three clusters as the best
partitioning while the correct number of clusters fitting the dataset is two. Moreover,
the Indices DB and Dunn select the clustering scheme of three and clusters, respec-
tively, for data2 which actually contains four clusters. In the case of data3, the Indices
DB and PS select two and five clusters, respectively, as the optimal scheme while the
correct number is four.

On the contrary to DB, Dunn and PS indices, SE finds the correct number of
clusters for all these three datasets. It means that the SE validity index can indicate the
best sorting result efficiently for radar signal under the complicated electromagnetic
environments.

While in order to verify further that the strategy can improve efficiency without
sacrificing sorting accuracy, we introduce Q. Guo’s pulse data which include 5687
radar pulse signals. These supplementary data are as in Table 3. Based on this, more
experiments are conducted. These signals are sorted with the method of Multiple-
parameter Radar Signal Sorting. And the parameters are adjusted using the SE index.

Here the first group data including 10116 radar pulse signals is called “G 1st”, and
the second group data including 5687 radar pulse signals “G 2nd”. After several statis-
tics about the sorting results, accuracy, and runtime comparisons with other cluster
labeling methods are as in Table 4.

Table 4 illustrates that the computing efficiency is enhanced extremely when we
sort the signals with CCL cluster labeling method compared to CG, SVG, PG and
GD method. Meanwhile it can keep the sorting accuracy when the CCL algorithm
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Table 3 The radar pulse signal parameters information from Q. Guo

Radars PRF/KHz RF/MHz PW/us DOA/° Ns

Type Range Type Range

1 Slippery 0.3–0.4 Agile 2080–2250 1.2–1.3 48–60 824

2 Jittered 0.3–0.4 Agile 2750–2850 1–1.1 60–80 823

3 Staggered 0.8–1 Jumping 2250–2350 1.2–1.25 68–80 2149

4 Jittered 0.7–0.9 Agile 2550–2750 1.3–1.4 56–64 1891

Where Ns means number of pulses

Table 4 Accuracy and runtime comparison using several cluster labeling methods under SE

Cluster labeling method Accuracy (%) Worst-case asymptotic
time complexity

Total execution time (s)

G 1st G 2nd G 1st G 2nd

CG 98.92 98.12 O(mN2Nsv) 87.646 53.283

SVG 98.92 98.12 O(mNN2
sv) 72.967 43.121

PG 97.93 97.61 O(N2 + mNNsv) 41.419 25.785

GD 97.89 97.56 O(mN2(k + Nsv)) 144.614 83.599

CCL 98.92 98.12 O(NNsv) 6.013 4.380

Where k is the number of iterations for GD to converge to a stable equilibrium points, m is the number of
sample points along a line segment typically adopted as 10 to 20 and Nsv is the number of SV

enhances the computing efficiency compared to CG cluster labeling method used in
[7]. In addition, compared to the others CCL method decreases the consuming time a
lot as the dataset become large. To sum up, the proposed method keeps the advantage
of sorting signal with SVC; and that it is more suitable for the radar signal processing
system.

6 Conclusions

For the purpose of reducing the processing time of the radar signal sorting, enhancing
the sorting accuracy and meeting the real-time and accuracy requirements of elec-
tronic warfare, we introduce the CMSVC algorithm into the radar signal sorting in
complicated electromagnetic environments. Meanwhile we use information entropy
theory to verify the clustering validity and update the library of radar signal clusters
dynamically. And we conduct performance simulations for both typical methods and
our proposed method. Experimental results show that the proposed method can re-
duce the computing complexity to decrease the consumed time in course of sorting
the signals and also it can keep the sorting accuracy.
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