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Abstract Recently, the mem-elements-based circuits have been addressed frequently
in the nonlinear circuit theory due to their unique behavior. Thus, the modeling and
characterizing of the mem-elements has become essential, especially studying their
response under any excitation signal. This paper investigates the response of the me-
minductor under DC, sinusoidal, and periodic current signals for the first time. Fur-
thermore, a meminductor emulator is developed to fit the obtained formulas which are
built using commercial off the shelf components. The proposed analysis offers closed
form expressions for the meminductance for each case. Moreover, many fundamen-
tals and properties are derived to understand the responses such as the maximum
saturation time in case of the DC response. A general closed form expression for the
meminductance is derived under any periodic waveform, and this formula has been
validated by applying a square wave as an example.

Keywords Mem-element · Meminductor · Nonlinear circuits · Modeling ·
Mem-circuits

1 Introduction

Scientists have been aware of the existence of mem-elements for two centuries [19],
but they were not discussed until Chua postulated the existence of the first mem-
element which represents the missing link between the charge q(t) and the flux ϕ(t)

which is called the memristor (from memory + resistor) [8]. Recently, the theory of
mem-elements was generalized [9, 23] to include higher-order elements such as the
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memcapacitor which offers a link between time integral of charge σ(t) and flux ϕ(t),
and the meminductor which links charge q(t) and time integral of the flux ρ(t). The
SPICE model of the mem-elements is introduced in [1, 18].

Nowadays, the mem-elements are very useful in different applications such as
chaotic oscillators [5, 6], synapse modeling [14, 17], memories [16, 21], biomedical
applications [7, 16], phase locked loops [24], and relaxation oscillators [11–13].

The first general meminductor model was introduced in [9] which described the
nth-order current-controlled meminductive system

ϕ(t) = Lm(x, i, t)i(t), (1a)

ẋ = f (x, i, t), (1b)

where Lm is the meminductance.
However, there has not been any solid-state meminductor fabricated until now.

Biolek et al. introduced a meminductor model based on the idea of a simple electro-
mechanical system (any other meminductor model can be analyzed by following the
same procedure used in this paper) [4]. The meminductance introduced by Biolek’s
Lm is enclosed between the minimum meminductance Lmin and the maximum me-
minductance Lmax which is given as follows:

Lm(t) ≈ (√
Lmin + x(t)(

√
Lmax − √

Lmin)
)2

, (2)

where the rate of change in the state variable x(t) is given by

dx

dt
= KLi(t). (3)

The rate of change of the state variable is directly proportional to the mobility
factor KL.

Mathematical modeling of mem-elements is essential for the study of their behav-
ior in order to easily implement them in circuits where different current and voltage
signals will be applied. New definitions were defined for mem-elements like satura-
tion time and mem-element range. These definitions are defined for the memristor
in [20].

This paper is arranged as follows: Sect. 2 will discuss the mathematical memin-
ductor model under general current excitations. Then, this model is used to develop a
meminductor emulator in Sect. 3. Moreover, Sect. 4 discusses the response under DC
current excitation and the saturation time of the meminductor. Then, the meminductor
is subjected to a sinusoidal current source in Sect. 5 where closed form expressions
for instantaneous meminductance are derived. Finally, the meminductor is subjected
to non-periodic signal excitations, and the instantaneous meminductance is derived.

2 Mathematical Model of a Meminductor

In the linear circuit theory, the voltage across the conventional inductor is propor-
tional to the rate of change of the current passing through the inductor, and the pro-
portionality constant is the known inductance. However, the inductance of the me-
minductor was given by (2), and it is a function of the state variable x. Therefore, the
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Fig. 1 Proposed meminductor
emulator block diagram

implicit relation of the meminductance can be obtained by differentiating (2) with
respect to time and substituting into (3)

1

2
√

Lm(t)

dLm(t)

dt
= KL(

√
Lmax − √

Lmin)i(t). (4)

By integrating both sides with respect to time, the meminductance is given by

Lm(t) = (√
Lo + K ′

Lq(t)
)2

, (5)

where K ′
L = KL(

√
Lmax − √

Lmin), q(t) = ∫ t

−∞ i(τ ) dτ , and Lo represents the ini-
tial meminductance. The instantaneous meminductance is a quadratic equation of the
charge q(t). It is important to note that the effect of any initial current in the memin-
ductor will affect the initial meminductance Lo. Therefore, there is no need to study
the effect of the initial current since it is inherently inside the initial meminductance.

3 Proposed Meminductor Emulator

A meminductor emulator is built using a memristor and mutator to transform the
memristor into a meminductor as shown in Fig. 1 [2, 22]. The relations of MR and
ML are accomplished by a linear transformation which is given by the following
matrix:

[
v1
i1

]
=

[
skx 0
0 ky

][
v2
−i2

]
, (6)

where kx and ky are real constants and their values depend on the mutator implemen-
tation. This linear transformation transforms (ϕ, q) to (ρ, q), which represents the
constitutive relation of the meminductor, so that the meminductance is given by

Lm = kx

ky

Rm. (7)

According to the previous equation, to build a meminductor having the same pro-
posed meminductance, we need to build a memristor of memristance Rm = ky

kx
Lm

and use (4). The memristance should be

Rm = ky

kx

(
Lo + 2K ′

L

√
Loq(t) + K ′2

L q2(t)
)
. (8)
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However, memristor samples are not commercially available, yet; thus we will use
a memristor emulator instead of a solid-state memristor. Also the proposed model is
different from the previous emulator models so the emulator should be modified to
fit the proposed model.

Recently, different memristor emulators were introduced, showing good behavior
[3, 15]; however, the most practical one was introduced in [10] where the authors im-
plemented and tested the emulator experimentally. Despite the fact that this emulator
is designed to model the memresistance Rm = Rs + kq(t), it should be modified to
fit the proposed model. Figure 2 shows the modified memristor’s emulator where the
input current of the memristor imr is given by

imr = Vmr − Vfb

Rs

. (9)

The feedback voltage Vfb is given by

Vfb =
(

R2

20R1C1
qmr(t) + R3

200R2
1C2

1

q2
mr(t)

)
imr. (10)

By substituting into (9), the input voltage of the memristor Vmr is given by

Vmr =
(

Rs + R2

20R1C1
qmr(t) + R3

200R2
1C2

1

q2
mr(t)

)
imr, (11)

so the input memresistance is

Rm =
(

Rs + R2

20R1C1
qmr(t) + R3

200R2
1C2

1

q2
mr(t)

)
. (12)

By comparing the coefficients in (12) and (8), the emulator parameters can be

obtained as Rs = ky

kx
Lo, R = 8 ky

kx
Lo and R1C1 = 1.6L

3/2
o

K ′
L

. Figure 3 shows the transient

input current and input voltage, and the I–V hysteresis of the proposed memristor
emulator under current excitation with i(t) = 0.5 sin(200πt) mA where the circuit
parameters are Rs = 1 k�,R = 2 k�,R1 = 0.5 k�,C1 = 1 µF and R2 = 1 k�.

The designed memristor emulator is connected to the mutator to obtain the com-
plete realization of meminductor emulator where kx and ky are equal to 0.001 and 1,
respectively. Figures 4(a)–4(b) shows a transient simulation of the meminductor cur-
rent Iml, voltage Vml and flux ϕml; moreover, Figs. 4(c)–4(d) show the I–V and I–ϕ

hysteresis, respectively.

4 Step Response

A DC current is mathematically defined by the step current i(t) = iDCu(t), where
u(t) is the unit step function and the amplitude iDC may be positive or negative. By
substituting into (5), the meminductance is given by

Lm(t) = (√
Lo + K ′

LiDCt
)2

. (13)
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Fig. 3 Circuit model simulation of modified memristor’s emulator: (a) transient input current and voltage
and (b) current–voltage hysteresis

Fig. 4 Transient simulation results of meminductor emulator

When the step input current increases, the meminductance increases in the case
iDC is positive and with a rate that depends on the amplitude of the applied cur-
rent until the meminductance reaches its maximum Lmax. Moreover, in the case of a
negative applied current, the meminductance decreases, as the absolute value of the
applied voltage increases until it reaches its minimum Lmin as shown in Figs. 5(a)–
5(b) for Lmin, Lmax, Lo and KL are equal to 0.1 mH, 10 mH, 1 mH and 10 A−1 s−1,
respectively (these values are used throughout the paper).
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Fig. 5 Step response of meminductor due to DC current excitation for (a) positive current and (b) negative
current

From the previous discussion, there is a certain time duration in which the memin-
ductance reaches its boundary value, either maximum or minimum, depending on the
sign of the input voltage so the saturation time should be calculated. The saturation
time is given by

tsat =
√

Lbd − √
Lo

K ′
LiDC

, (14)

where Lbd represents the boundary meminductance at either Lmax or Lmin depending
on the polarity of the applied current. The maximum saturation time is reached when
the meminductor changes its state from the minimum to maximum value, or vice
versa. Therefore, the maximum saturation time is

tsatmax =
√

Lmax − √
Lmin

K ′
L|iDC| = 1

KL|iDC| , (15)

where the maximum saturation time is inversely proportional to the amplitude and
mobility factor of the meminductor.

5 Sinusoidal Response

The inductor has a linear relation between flux ϕ(t) and current i(t) and a circular
relation between voltage V (t) and current i(t). But the meminductor has a pinched
hysteresis between flux ϕ(t) and current i(t) as shown in Fig. 6(a) and an nonlin-
ear persimmon-shaped relation between voltage V (t) and current i(t) as shown in
Fig. 6(b). The pinched hysteresis shrinks until it becomes linear by increasing the
applied frequency, and the elliptic relation expands till it becomes circular as shown
in Figs. 6(a) and 6(b), respectively. As obvious from Fig. 6(b), the I–V hysteresis has
an even symmetry around the voltage axis.
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Fig. 6 Sinusoidal response of meminductor for different frequencies: (a) flux–current hysteresis and
(b) current–voltage hysteresis

Fig. 7 Meminductance range
versus applied frequency

Assuming a single tone current is applied on the meminductor given by i(t) =
io sin(ωot), and then by substituting into (5), the meminductance is given by

Lm(t) =
(√

Lo + 2K ′
L

i0

ωo

sin2
(

ωot

2

))2

. (16)

The meminductance range decreases until it reaches a value of zero where the me-
minductance will not change its initial value Lo by increasing the applied frequency
as shown in Fig. 7 at Lo = 1 mH for positive or negative applied current.

6 Periodic Signals Response

Any periodic signal can be expanded using Fourier series expansion as a sum of a
DC signal and sinusoidal signals (sines and cosines)

i(t) = ao +
∞∑

n=1

ancos(nωot) + bn sin(nωot), (17)

where ao represents the average of the applied signal (DC component) and an and bn

represent the amplitude of the sinusoidal signals with different frequencies. By sub-
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stituting (17) into (5), the instantaneous meminductance is given by

Lm(t) =
(

√
Lo + k′

L

(

aot +
∞∑

n=1

1

nωo

(
ansin(nωot) + 2bn sin

(
nωot

2

))))2

. (18)

The DC component is represented by ao which causes the meminductor to saturate,
reaching one of its boundaries, so the average number of periods where the memin-
ductor saturates is given by:

Nsat =
√

Lbd − √
Lo

K ′
LaoT

. (19)

For example, we will apply this concept to the square wave signal in the following
subsection.

6.1 Square Wave Signal Response

The meminductor is biased by a square wave signal which is defined by

i(t) =
{

io1 0 < τ < αT,

io2 αT < τ < T,
0 < α < 1, (20)

where τ = t mod (T ). The applied signal alternates between positive and negative
voltages with sharp transitions. By applying Fourier series expansion to the input
signal, the coefficients are given by

ao = αio1 + (1 − α)io2, (21a)

an = (io1 − io2)

nπ
sin(2αnπ), (21b)

bn = (io1 − io2)

nπ

(
1 − cos(2αnπ)

)
. (21c)

As obvious from (18), the DC term, ao, leads to the saturation, so the square wave
signal shows two cases:

1. Zero DC component means that the accumulated charge after each period is zero,
so io1

io2
= α−1

α
should be satisfied. Figure 8(a) shows the instantaneous meminduc-

tance under a square wave input with io1, io2 and α equal to 10 mA, −10 mA, and
0.5, respectively, where the meminductance increases and decreases depending on
the sign of the applied current with nonlinear curves. Also its hysteresis curve is
shown in Fig. 8(b). The instantaneous meminductance expression can be written
by using the behavior of the square signal where the discussed step response can
be used periodically, by using the last-obtained value as the initial value of the
next step. So the meminductance changes up and down as the current changes
periodically, which is given during any period by

Lm(t) =
{

(
√

Lo + K ′
Lio1τ)2, 0 < τ < αT,

(
√

Lo + K ′
L(io1αT + io2(τ − αT )))2, αT < τ < T .

(22)
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Fig. 8 Square wave response for different frequencies: (a) instantaneous meminductance and (b) flux–cur-
rent hysteresis

Fig. 9 Instantaneous
meminductance for different
frequencies under square wave
signal with DC component

2. Nonzero DC component means that the accumulated charge, due to DC compo-
nents, leads the meminductor become saturated. Figure 9 shows that the instan-
taneous meminductance increases with time until it reaches the maximum me-
minductance Lmax where io1, io2 and α are equal to 10 mA, −10 mA, and 0.6,
respectively. The meminductance reaches saturation after an average number of
periods which is given by

Nsat =
√

Lbd − √
Lo

K ′
LT (αio1 + (1 − α)io2)

. (23)

7 Conclusion

A new emulator was introduced to emulate the behavior of the meminductor depend-
ing on the proposed mathematical model. The response of the meminductor was dis-
cussed under periodic current excitations. Moreover, expressions for instantaneous
meminductance were provided for a step current signal, where the saturation time
formula was derived. Also a closed form expression for any periodic signal was de-
rived using Fourier series expansion. An example was also introduced and analyzed
when a square wave signal was used with and without a DC component.



Circuits Syst Signal Process (2014) 33:1573–1583 1583

References

1. Z. Biolek, D. Biolek, V. Biolkova, SPICE model of memristor with nonlinear dopant drift. Radioengi-
neering 18, 210–214 (2009)

2. D. Biolek, V. Biolková, Z. Kolka, Mutators simulating memcapacitors and meminductors, in IEEE
Asia Pacific Conf. Circuits and Systems (2010), pp. 800–803

3. D. Biolek, J. Bajer, V. Biolkova, Z. Kolka, Mutators for transforming nonlinear resistor into memristor,
in European Conf. Circuit Theory and Design (2011), pp. 488–491

4. D. Biolek, Z. Biolek, V. Biolova, PSPICE modeling of meminductor. Analog Integr. Circuits Signal
Process. 66, 129–137 (2011)

5. A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, A chaotic circuit based on Hewlett–Packard
memristor. Chaos, Interdiscip. J. Nonlinear Sci. 22, 023136 (2012)

6. A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, A gallery of chaotic oscillators based on HP
memristor. Int. J. Bifurc. Chaos 23, 1330015 (2013)

7. S. Carrara, D. Sacchetto, M. Doucey, C. Baj-Rossi, G. De Micheli, Y. Leblebici, Memristive-
biosensors: a new detection method by using nanofabricated memristors. Sens. Actuators B, Chem.
171, 449–457 (2012)

8. L. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)
9. M. Di Ventra, Y. Pershin, L. Chua, Circuit elements with memory: memristors, memcapacitors, and

meminductors. Proc. IEEE 97, 1717–1724 (2009)
10. A.S. Elwakil, M.E. Fouda, A.G. Radwan, A simple model of double-loop hysteresis behavior in mem-

ristive elements. IEEE Trans. Circuits Syst. II, Express Briefs 60(8), 487–491 (2013)
11. M.E. Fouda, A.G. Radwan, Memristor-based voltage-controlled relaxation oscillators. Int. J. Circuit

Theory Appl. (2013). doi:10.1002/cta.1907
12. M.E. Fouda, A.G. Radwan, K.N. Salama, Effect of boundary on controlled memristor-based oscillator,

in Proceedings of International Conference on Engineering and Technology (2012), pp. 1–5
13. M.E. Fouda, M. Khatib, A. Mosad, A.G. Radwan, Generalized analysis of symmetric and asymmetric

memristive two-gate relaxation oscillators. IEEE Trans. Circuits Syst. I, Regul. Pap. 60(10), 2701–
2708 (2013)

14. S. Jo, T. Chang, I. Ebong, B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse
in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)

15. H. Kim, M.P. Sah, C. Yang, S. Cho, L.O. Chua, Memristor emulator for memristor circuit applications.
IEEE Trans. Circuits Syst. I, Regul. Pap. 59, 2422–2431 (2012)

16. R. Kozma, R.E. Pino, G.E. Pazienza, Advances in Neuromorphic Memristor Science and Applications
(Springer, Berlin, 2012)

17. C. Li, C. Li, T. Huang, H. Wang, Synaptic memcapacitor bridge synapses. Neurocomputing 122,
370–374 (2013)

18. Y.V. Pershin, M. Di Ventra, SPICE model of memristive devices with threshold. Radioengineering 22,
210–214 (2013)

19. T. Prodromakis, C. Toumazou, L. Chua, Two centuries of memristors. Nat. Mater. 11, 478–481 (2012)
20. A.G. Radwan, M.A. Zidan, K.N. Salama, On the mathematical modeling of memristors, in Proceed-

ings of International Conference on Microelectronics (2010), pp. 284–287
21. P. Vontobel, W. Robinett, P. Kuekes, D. Stewart, J. Straznicky, R. Williams, Writing to and reading

from a nano-scale crossbar memory based on memristors. Nanotechnology 20, 425204 (2009)
22. F. Wang, A triangular periodic table of elementary circuit elements. IEEE Trans. Circuits Syst. I,

Regul. Pap. 60, 616–623 (2013)
23. H. Wang, X. Wang, C. Li, L. Chen, SPICE mutator model for transforming memristor into memin-

ductor. Abstr. Appl. Anal. 2013, 281675 (2013)
24. Y. Zhao, C. Tse, J. Feng, Y. Guo, Application of memristor-based controller for loop filter design in

charge-pump phase-locked loops. Circuits Syst. Signal Process. 32, 1013–1023 (2013)

http://dx.doi.org/10.1002/cta.1907

	Meminductor Response Under Periodic Current Excitations
	Abstract
	Introduction
	Mathematical Model of a Meminductor
	Proposed Meminductor Emulator
	Step Response
	Sinusoidal Response
	Periodic Signals Response
	Square Wave Signal Response

	Conclusion
	References


