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Abstract This paper addresses the H∞ output tracking problem for a class of non-
linear systems subjected to model uncertainties and with interval time-varying delay.
The stability of the nonlinear time-delay system is analyzed with a novel delay-
interval-dependent Lyapunov–Krasovskii functional. Compared to state-of-the-art
criteria for linear and nonlinear time-delay systems, less conservative stability con-
ditions are derived with the introduction of new delay-interval-dependent terms and
the exploitation of the delay subintervals size. The proposed analysis considers that
the delay derivative is either upper and lower bounded, bounded above only, or un-
bounded, i.e., no restrictions are cast upon the derivative. Numerical examples are
provided to enlighten the importance and advantages of the present criterion which
outperforms previous criteria in time-delay systems literature. Also, an additional ex-
ample is provided to highlight the effectiveness of the proposed H∞ output tracking
control design technique for complex nonlinear systems with time-varying delay.
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1 Introduction

Time-delay systems belong to a class of infinite-dimensional systems often described
by functional differential equations. The phenomena are encountered in various prac-
tical systems, e.g., biological, chemical systems, networked control systems, etc. [1,
10, 29]. They are usually employed in the description of propagation and transport
phenomena, arising as feedback delays in control loops [19]. Since their existence can
degrade systems performance and even cause instability, time-delay systems model-
ing, stability, and stabilization problems have emerged as a topic of significant inter-
est to the control community, which is highlighted by several surveys and studies on
the subject, see, e.g., [1, 10, 19, 29]. Among recent results, the following should be
mentioned due to their contribution to time-delay systems analysis [5, 7, 8, 24, 37,
39]. Nonetheless, although being a fundamental issue in control theory, tracking per-
formance and control have received little attention in time-delay systems literature,
especially if we regard nonlinear time-delay systems. In this context, we investigate
the H∞ output tracking problem for a class of nonlinear systems subjected to model
uncertainties and with input time-varying delay.

It is well recognized that the tracking problem is more general and challeng-
ing than stability and stabilization problems [8]. The main objective of the track-
ing control is to synthesize feedback controllers to make the output of a given
plant asymptotically tracks a desired reference whereas ensuring disturbances at-
tenuation properties. The importance of tracking is reflected by the extensive cov-
erage with numerous applications in the areas of robot control, flight control, dy-
namic processes in industry, economics, etc.; see, e.g., [2, 16] and the references
therein.

Nonetheless, existing results on time-delay systems rarely focus on tracking con-
trol problems. Indeed, time-delay systems literature contain several works on con-
trol design, e.g., [9, 22, 27, 35]; however, very few regard the tracking problem.
Among these works, the following should be mentioned for their important contri-
butions. In [15], the tracking for switched linear systems with delayed states has
been investigated, but with no regard to the time-delay effects on the feedback-
loop. The authors in [34] were the first to investigate the tracking problem with
constant feedback delays, and their work has been extended to the H∞ tracking
control with time-varying delays in [5, 8]. The tracking control problem for non-
linear time-delay systems has been addressed in [13, 38]; however, the results are
only valid for state-delayed systems, i.e., the time-delay effects on the feedback-loop
were not considered. Since time-delay phenomena often arise as feedback delays in
the control loop [19], the much more general and realistic scenario regarding the
tracking of nonlinear systems with feedback delays still needs to be considered. To
the best of the authors’ knowledge, this scenario has never been considered and re-
mains challenging. In this context, the introduction of less conservative stability tech-
niques with the solution of this open problem are the major motivation of the present
study.

During the last decade, various methods have been taken for deriving stability
conditions for linear time-delay systems using different Lyapunov–Krasovskii func-
tionals (LKFs). Particularly, a recent Lyapunov-based technique must be stressed for
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its significant contributions to delay-dependent stability analysis: the piecewise anal-
ysis method (PAM). The method has similar concepts to the discretized Lyapunov
functionals technique (DLF) [10], although applied to time-varying delays, and has
been successfully employed in recent literature, see, e.g., [6, 7, 24]. Still, we believe
its potential has not been fully exploited, yet. Therefore, with novel less-restricted
delay-interval-dependent LKFs, and by introducing the interval size information to
the analysis, we improve the piecewise analysis method and considerably amend the
stability results for time-delay systems.

In this context, the present paper brings an important contribution to the H∞ out-
put tracking analysis and control design for time-delay systems. The development
of a novel delay-interval-dependent Lyapunov–Krasovskii functional, with the im-
proved PAM, provides the conditions under which the prescribed H∞ output track-
ing performance for a class of nonlinear uncertain time-delay system is achieved. The
time-varying nonlinearities are assumed to be norm-bounded, satisfying a quadratic
constraint. Moreover, it should be mentioned that the proposed tracking criterion, if
particularized to stability analysis, also yields considerably superior results compared
with state-of-the-art criteria for linear or nonlinear time-delay systems. The analysis
is enriched with numerical examples that illustrates the advantages of our criteria,
which outperform previous criteria in the literature, and with an additional example
that shows the effectiveness of the proposed H∞ output tracking control for nonlinear
time-delay systems.

Notations Throughout the paper, the superscript ‘T ’ stands for matrix transposition,
R

n denotes the n-dimensional Euclidean space, and R
n×p defines the set of all n×p

real matrices. The notation diag{· · ·} stands for a diagonal matrix, P > 0 means that
P is symmetric and positive definite, and the symmetric term in a matrix is denoted
by ∗. The notation A|s→b stands for the limit of an s-dependent matrix A as s → b.
Matrices, if not explicitly stated, are assumed to have compatible dimensions.

2 Problem Formulation and Preliminaries

Consider a class of continuous-time nonlinear uncertain systems with time-varying
delay:

⎧
⎪⎪⎨

⎪⎪⎩

ẋp(t) = (Ap + ΔAp)xp(t) + (Bp + ΔBp)up(t − d(t))

+ g(t, xp(t), xp(t − d(t))) + Bpωω(t),

yp(t) = (Cp + ΔCp)xp(t) + (Dp + ΔDp)up(t − d(t)), t > 0,

xp(t) = ρ(t), t ∈ [−τmax, 0],
(1)

where xp(t) ∈ R
rpx , up(t) ∈ R

rpu , yp(t) ∈ R
rpy denote the plant’s state, control in-

put and output vectors, respectively, ω(t) ∈ R
rpω denotes the exogenous disturbance

signal which is assumed to belong to L2[0,∞). Ap , Bp , Bpω, Cp , Dp are constant
matrices with appropriate dimensions, ρ(t) describes the state’s initial condition, and
g(t, xp(t), xp(t − d(t))) : R+ × R

rpx × R
rpx → R

rpx denotes a class of piecewise-
continuous nonlinear functions in t, xp(t), xp(t −d(t)), which are assumed to satisfy
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the quadratic condition:

gT
(
t, xp(t), xp

(
t − d(t)

))
g
(
t, xp(t), xp

(
t − d(t)

))

≤ α1x
T
p (t)HT

1 H1xp(t) + α2x
T
p

(
t − d(t)

)
HT

2 H2xp

(
t − d(t)

)
, (2)

where α1, α2 are positive known bounding parameters of g(t, xp(t), xp(t − d(t))),
and H1 and H2 are known constant matrices. The systems uncertainties are assumed
to be time-varying matrices
[
ΔAp ΔBp

] := ΞxΔ(t)
[
ΞA ΞB

]
,

[
ΔCp ΔDp

] := ΞyΔ(t)
[
ΞC ΞD

]
,

(3)
where Ξx,ΞA,ΞB,Ξy,ΞC,ΞD are known matrices with appropriate dimensions,
and Δ(t) is an unknown time-varying matrix, which is Lebesgue measurable in t and
satisfies ΔT (t)Δ(t) ≤ I .

We consider the reference signal, yr(t) ∈ R
ryr , to be the output of the given linear

system:

ẋr (t) = Arxr(t) + r(t), (4a)

yr(t) = Crxr(t), (4b)

where xr(t), r(t) ∈ R
rr are the reference state vector and the energy bounded refer-

ence input, respectively, Ar is a Hurwitz matrix, and Cr is a constant matrix with
appropriate dimensions.

Finally, the continuous function d(t) denotes the time-varying delay which satis-
fies

τmin ≤ d(t) ≤ τmax, (5a)

dmin ≤ ḋ(t) ≤ dmax, (5b)

where the constants 0 ≤ τmin ≤ τmax and dmin ≤ dmax denote the bounding parameters
of d(t) and ḋ(t), respectively. In this paper, we also consider the case when dmin is
unknown, and when no restrictions are cast upon the delay derivative, i.e., when it is
assumed to be fast-varying.

Considering (1)–(5b) with a state feedback control law up(t) = K̄[xT
p (t) xT

r (t)]T ,
we obtain the augmented closed-loop nonlinear system with time-varying delay

ẋ(t) = (Ā + ΔĀ)x(t) + (B̄ + ΔB̄)K̄x
(
t − d(t)

)

+ ḡ
(
t, x(t), x

(
t − d(t)

)) + B̄ωω̄(t),

e(t) = (C̄ + ΔC̄)x(t) + (D̄ + ΔD̄)K̄x
(
t − d(t)

)
,

(6)

where xT (t) := [xT
p (t) xT

r (t)] ∈R
rx , ω̄T (t) := [ωT (t) rT (t)] ∈ R

rω ,

Ā :=
[
Ap 0
0 Ar

]

, B̄ :=
[
Bp

0

]

, B̄ω :=
[
Bω 0
0 I

]

,

C̄ := [
Cp −Cr

]
, D̄ := Dp,

(7a)
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[
ΔĀ ΔB̄

] := Ξ̄xΔ(t)
[
Ξ̄A ΞB

]
, Ξ̄x := [

ΞT
x 0

]T
, Ξ̄A := [

ΞA 0
]
,

(7b)
[
ΔC̄ ΔD̄

] := Ξ̄eΔ(t)
[
Ξ̄C ΞD

]
, Ξ̄e := Ξy, Ξ̄C := [

ΞC 0
]
, (7c)

ḡ
(
t, x(t), x

(
t − d(t)

)) := [
I 0

]T
g
(
t, xp(t), xp

(
t − d(t)

))
. (7d)

The matrix K̄ is the state-feedback controller, and e(t) := yp(t) − yr(t) denotes the
output tracking error.

Tracking Problem We desire the plant’s output yp(t) to asymptotically track a given
reference signal yr(t). Our purpose is therefore to design a robust state-feedback
controller K̄ such that the output tracking performance γ is ensured in the H∞
sense.

Definition 1 For a prescribed scalar γ > 0, the nonlinear time-delay system (6)
achieves H∞ output tracking performance, if for any realization of the uncertainties
ΔĀ, ΔB̄ , ΔC̄, ΔD̄, the following hold:

1. The augmented closed-loop nonlinear system (6) with ω̄(t) ≡ 0 is asymptotically
stable;

2. Under the assumption of zero initial condition, the disturbance effect on the track-
ing error is attenuated below a prescribed level γ , ‖e(t)‖2 < γ ‖w(t)‖2, for all
nonzero w ∈ L2[0,∞).

3 H∞ Output Tracking Control Design

This section presents the main results of this paper. First, we divide the delay
range [τmin, τmax] into two equally spaced subintervals: [τ1, τ2] and [τ2, τ3], where
τ1 = τmin, τ3 = τmax, and τ2 = 1

2 (τmax + τmin). Note that one can consider different
partitioning strategies (e.g., in [23], τ2 is defined to be anywhere between τmin and
τmax). Still, choosing equal subintervals, τ3 − τ2 = τ2 − τ1, adds more information to
the analysis which is used to obtain less conservative criteria. In this context, we also
define the auxiliary variable

τσ := τ2 − τ1, (8)

and the delay-interval-dependent indicator function χ[τ1,τ2] : R+ → {0,1}, which is
assumed to be 1, if d(t) ∈ [τ1, τ2], and χ[τ1,τ2] = 0, otherwise.

The indicator function enlightens the piecewise analysis method main contribu-
tion: the establishment of different linear matrix inequalities (LMIs) for each subin-
terval, reducing the conservatism which arises from the analysis of the delay range
[τmin, τmax]. In this context, it is proposed the following delay-interval-dependent
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LKF candidate

V (t) =
3∑

i=1

Vi(t),

V1(t) = χ[τ1,τ2]xT (t)P̂1
(
d(t)

)
x(t) + (1 − χ[τ1,τ2])xT (t)P̂2

(
d(t)

)
x(t),

V2(t) =
∫ t−τ1

t−d(t)

xT (s)Qx(s) ds

+
∫ t

t− τ1
2

[
xT (s) xT (s − τ1

2 )
]
N1

[
xT (s) xT (s − τ1

2 )
]T

ds

+
(

τσ − τ1

2

)∫ t− τ1
2

t−τσ

xT (s)N2x(s) ds

+ (τσ − τ1)

∫ t−τ1

t−τσ

xT (s)N3x(s) ds +
∫ t

t−τσ

ϕT (s)N4ϕ(s) ds,

V3(t) =
2∑

k=1

(
τ1

2

∫ − τ1
2 (k−1)

− τ1
2 k

∫ t

t+β

ẋT (s)Skẋ(s) ds dβ (9)

+
(

τσ − τ1

2
k

)∫ − τ1
2 k

−τσ

∫ t

t+β

ẋT (s)Sk+2ẋ(s) ds dβ

)

+
2∑

k=0

(

τσ

∫ −τk

−τk−τσ

∫ t

t+β

ẋT (s)Zkẋ(s) ds dβ

)

+
∫ 0

−d(t)

∫ t

t+β

ẋT (s)(R1 + R2)ẋ(s) ds dβ

+
∫ −d(t)

−τ3

∫ t

t+β

ẋT (s)(R3 + R4)ẋ(s) ds dβ

+ χ[τ1,τ2]
∫ −d(t)

−τ2

∫ t

t+β

ẋT (s)(R1 − R3)ẋ(s) ds dβ

+ (1 − χ[τ1,τ2])
∫ −τ2

−d(t)

∫ t

t+β

ẋT (s)(R3 − R1)ẋ(s) ds dβ,

where ϕT (s) = [xT (s) xT (s − τ1) xT (s − τ2)], and the function matrices in V1(t) are
defined as follows

P̂1
(
d(t)

) := d(t) − τ1

τ2 − τ1

P1 + P2

2
+ τ2 − d(t)

τ2 − τ1
P1,

P̂2
(
d(t)

) := d(t) − τ2

τ3 − τ2
P2 + τ3 − d(t)

τ3 − τ2

P1 + P2

2
.

(10)
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Note that the aforementioned delay-interval-dependent terms, firstly exploited in [7],
together with the novel terms in V3(t), are continuously differentiable in t , and that
the Lyapunov candidate (9) is positive definite if the following hold:

P1 > 0, P2 > 0, Q ≥ 0, Z0 > 0, Z1 > 0, Z2 > 0,

Ni ≥ 0, Si > 0, i = {1,2,3,4}, R1 + R2 > 0, R3 + R4 > 0,

Z2 >
1

τσ

(R1 − R3) > −Z1.

(11)

It is interesting to highlight that the novel delay-dependent, delay-derivative-
dependent, and delay-interval-dependent LKF terms that are introduced in the Lya-
punov candidate (9) lead to less-restricted stability conditions. The novel and en-
hanced stability analysis presented in the next subsection and the improvements il-
lustrated in Sect. 4 stem mostly from this new set of Lyapunov terms.

Remark 1 Different strategies for the delay range partitioning have been previously
considered, leading to different results. In [23], the dividing parameter τ2 is manu-
ally defined at any point within the delay range, whereas in [36], an iterative opti-
mization procedure based on the Nelder–Mead simplex algorithm [21] is proposed
to define the partitioning points. Still, by simply choosing equally spaced subinter-
vals, we add more information to the analysis. Indeed, the exact new partitioning
subinterval size, together with the knowledge of the relationship between the sys-
tem’s states x(t), x(t − τσ ), x(t − τi), i = {1,2,3}, deem the new auxiliary variable
τσ essential for the construction of Lyapunov candidate, as we can switch among
these states solely by adding/subtracting a delay equal to τσ , e.g., V2(t). The amount
of information and the relationship described solely by τσ can only stem from an
equal partitioning technique, and that leads to an improved exploitation of the delayed
states during the design of the Lyapunov candidate (10), e.g., by adding a delay τσ

to ϕT (t), we obtain ϕT (t − τσ ) = [xT (t − τσ ) xT (s − τ2) xT (s − τ3)]. Furthermore,
since we are adding non-diagonal terms to relate the states x(t), x(t − τσ ), x(t − τi),
i = {1,2,3}, we indeed obtain less restrictive LMIs constraints, which in turn leads
to less conservative results.

3.1 Robust H∞ Output Tracking Performance analysis

In this subsection, we derive conditions under which the closed-loop uncertain non-
linear system (6) achieves H∞ output tracking performance γ , namely, the aug-
mented closed-loop system is asymptotically stable and satisfies the performance
conditions described in Definition 1. The following result stems from the proposed
Lyapunov candidate (9), and describes a novel robust criterion for the output tracking
in the H∞ sense.

Theorem 1 For a prescribed γ > 0, given scalars τmin, τmax, dmin, dmax such that
0 ≤ τmin ≤ τmax and dmin < dmax, and given controller gain K̄ , the augmented
closed-loop nonlinear system (6) with time-varying delay satisfying (5a)–(5b), pa-
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rameter uncertainties and nonlinearities described in (7a)–(7d) and (2), respec-
tively, achieves H∞ output tracking performance γ if there exist positive scalars
ε11, ε12, ε21, ε22, η1, η2, matrices P1,P2,Q,Z0,Z1,Z2Ni,Si,Ri , i = {1,2,3,4},
with appropriate dimensions, satisfying (11) and free-weighting matrices F1,F2 ∈
R

8rx×rx , V1,V2 ∈R
8rx×2rx such that the following inequalities

Ω1k|ḋ(t)→dmax
< 0, Ω2k|ḋ(t)→dmax

< 0, Sk + U1|ḋ(t)→dmax
> 0, (12a)

Ω1k|ḋ(t)→dmin
< 0, Ω2k|ḋ(t)→dmin

< 0, Sk + U1|ḋ(t)→dmin
> 0, (12b)

hold for k = {1,2}, where

Ω1k =
⎡

⎣
Π1 + Ψ (1)|d(t)→τk

τσV1Jk Υ1
∗ −τσ Λ1k 0
∗ ∗ Σ1

⎤

⎦,

Ω2k =
⎡

⎣
Π2 + Ψ (2)|d(t)→τ(k+1)

τσV2Jk Υ2

∗ −τσ Λ2k 0
∗ ∗ Σ2

⎤

⎦,

(13)

with J1 = [0 I ]T , J2 = [I 0]T and

Λ11 = τσ Z1 + R1 + R4, Γ1 = J2(I2 − I5) + J1(I6 − I2),

Σ� = I2Ξ̄eI
T
5 − diag

{
γ 2I ; I ; ε�1I ; ε�1I ; ε�2I ; ε�2I ;η�

}
,

Λ12 = τσ Z1 + UR, Γ2 = J2(I2 − I6) + J1(I7 − I2),

Π� = F�Γ
T
x + ΓxFT

� + V�Γ
T
� + Γ�VT

� + H̃�,

Λ21 = τσ Z2 + R3 + R4, Γx = ĀT
I1 + (B̄K̄)T I2 − I3,

H̃� = η�I1
(
α1H

T
1 H1

)
I
T
1 + η�I2

(
α2H

T
2 H2

)
I
T
2 ,

Λ22 = τσ Z2 + UR + R3 − R1, UR = R1 + ḋ(t)R4 + (
1 − ḋ(t)

)
R2,

U1 = 2

τ1
UR, if τ1 
= 0, or U1 = 0, otherwise,

Υ� = F�

(
B̄ωI

T
1 + Ξ̄xI

T
3 + I

T
7

) + (
C̄T

I1 + (D̄K̄)T I2
)
I
T
2

+ ε�1
(
I1Ξ̄

T
A + I2(Ξ̄BK̄)T

)
I
T
4 + ε�2

(
I1Ξ̄

T
C + I2(Ξ̄DK̄)T

)
I
T
6 ,

Ψ (1) = Ψ̃
(
ḋ(t)

) − (I6 − I7)
1

τσ

Λ21(I6 − I7)
T (14)

+ I3
((

τ3 − d(t)
)
R4 + d(t)R2

)
I
T
3 + I1P̂1

(
d(t)

)
I
T
3 + I3P̂1

(
d(t)

)
I
T
1 ,

Ψ (2) = Ψ̃
(
ḋ(t)

) − (I5 − I6)
1

τσ

Λ12(I5 − I6)
T + I3

((
τ3 − d(t)

)
R4 + d(t)R2

)
I
T
3

+ I1P̂2
(
d(t)

)
I
T
3 + I3P̂2

(
d(t)

)
I
T
1 ,
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Ψ̃
(
ḋ(t)

) = I3

((
τ1

2

)2

(S1 + S2) +
(

τσ − τ1

2

)2

S3 + (τσ − τ1)
2S4

+ τ 2
σ (Z0 + Z1 + Z2) + τσ R3 + τ2R1

)

I
T
3 + [

I1 I4
]
N1

[
I1 I4

]T

− [
I4 I5

]
N1

[
I4 I5

]T + [
I1 I5 I6

]
N4

[
I1 I5 I6

]T

− [
I8 I6 I7

]
N4

[
I8 I6 I7

]T − (I1 − I8)Z0(I1 − I8)
T

− (I1 − I4)(S1 + U1)(I1 − I4)
T − (I4 − I5)(S2 + U1)(I4 − I5)

T

− (I8 − I4)S3(I8 − I4)
T − (I8 − I5)S4(I8 − I5)

T

+ diag

{
ḋ(t)

τσ

P2 − P1

2
;−(

1 − ḋ(t)
)
Q;0;

(

τσ − τ1

2

)

N2;
(
Q + (τσ − τ1)N3

);0;0;−
(

τσ − τ1

2

)

N2 − (τσ − τ1)N3

}

.

The matrices Ii , i = {1,2, . . . ,8}, are block entry matrices with eight elements, e.g.,
I
T
4 = [0 0 0 I 0 0 0 0].

Remark 2 It is also interesting to consider two particular cases regarding the delay
and its derivative information: the case when the time-delay derivative lower bound is
unknown, and the case when there exist no information concerning the delay deriva-
tive, i.e., fast-varying delays. Theorem 1 can be easily adapted to deal with both
cases. For the first case, if we take the conditions P2 > P1, R2 > R4 instead of (12b),
then Theorem 1 becomes suitable for the analysis when the lower bound, dmin, is
unknown. Note that, if the above conditions and (12a) hold, then (12b) will be satis-
fied regardless of dmin. An evident consequence is the needlessness of the derivative
lower bound information for the resulting performance conditions. For the latter case,
by assuming P1 = P2, and null Q,R2,R4 matrices, all the time-delay derivative in-
formation is removed from Theorem 1, and the criterion will thus be suitable for
the analysis with fast-varying delays. Moreover, it should be mentioned that Theo-
rem 1 can also be applied for nonlinear/linear time-delay systems if one simply takes
B̄ω, C̄, D̄ to be null matrices.

Theorem 1 presents conditions which guarantee the H∞ output tracking per-
formance for nonlinear time-delay systems. The results stem from a novel delay-
dependent Lyapunov–Krasovskii functional that enhances the delay fractioning and
the piecewise analysis. With interval-dependent terms and by further exploiting the
delay partitioning information, we have weakened the positiveness constraints upon
new functional terms and matrices, whereas maintaining (9) positive definite and con-
tinuously differentiable. The proposed method therefore increases the flexibility anal-
ysis upon some matrices and relaxes resulting LMIs conditions, yielding in a consid-
erably reduction of conservatism, even if compared with state-of-the-art results for
linear time-delay systems stability analysis.
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3.2 Robust H∞ Output Tracking Controller Design

For the H∞ output tracking control, we seek conditions for the design of a state-
feedback gain K̄ which leads the nonlinear time-delay systems output to asymptot-
ically track a desired reference while ensuring disturbance attenuation properties in
the H∞ sense. The next theorem provides a solution for the above-mentioned prob-
lem, which is non-convex due to the existence of the variable K̄ . The main idea
is to transform the non-convex problem into a rank minimization problem which
may be approximated by a sequence of semi-definite problems involving the trace
minimization of certain variables. The H∞ output tracking control problem is then
solved through the use of the cone complementarity linearization algorithm (CCLA)
from [4].

Theorem 2 For a prescribed γ > 0, and given τmin, τmax, dmin, dmax, there ex-
ist a feedback gain K̄ such that the resulting closed-loop nonlinear system (6)
with input time-varying delay satisfying (5a)–(5b), uncertainties and nonlinear-
ities described in (7a)–(7d) and (2), respectively, achieves H∞ output tracking
performance γ if there exist positive scalars ε̂11, ε̂12, ε̂21, ε̂22, η̂1, η̂2, matrices
P1,P2,Q,Z0,Z1,Z2Ni,Si,Ri , i = {1,2,3,4}, satisfying (11); free-weighting ma-
trices V1,V2 ∈ R

8rx×2rx , Y ∈ R
ru×rx ; and definite positive matrices X,Fj ,Mj ,Nj ∈

R
rx×rx , j = {1,2}, such that the global minimum of the optimization problem

min tr{XX̃ +N1Ñ1 +N2Ñ2 +M1M̃1 +M2M̃2}, (15)

subject to
[

X I

I X̃

]

≥ 0,

[
Mk I

I M̃k

]

≥ 0,

[
Nk I

I Ñk

]

≥ 0, (16)

[
X̃ Fk

∗ M̃k

]

≥ 0,

[
Fk X̃
∗ Ñk

]

≥ 0,

and (12a)–(12b), for k = {1,2}, is equal to 5rx , where

Ω�k =

⎡

⎢
⎢
⎢
⎢
⎣

Π̂� + Ψ (�)|d(t)→τk
τσV�Jk Υ̂� [ Γ̂x I1XHT

1 + I2XHT
2 ]

∗ −τσ Λ�k 0 [0 0]
∗ ∗ Σ̂� [Γ̂Δ 0]
∗ ∗ ∗ diag {−M�;−(η̂�α

−1
� )I }

⎤

⎥
⎥
⎥
⎥
⎦

,

for �, k = {1,2},
Π̂� = I1Γ̂

T
x + Γ̂xI

T
1 + V�Γ

T
� + Γ�VT

� + I3(X − 4N�)I
T
3 ,

Γ̂ T
Δ = B̄ωI

T
1 + ε̂�1Ξ̄xI

T
3 + η̂�I

T
7 , (17)

Σ̂� = I2(ε̂�2Ξ̄e)I
T
5 − diag

{
γ 2I ; I ; ε̂�1I ; ε̂�1I ; ε̂�2I ; ε̂�2I ; η̂�

}
,

Γ̂ T
x = ĀXIT1 + B̄YIT2 − XIT3 ,
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Υ̂� = I1Γ̂
T
Δ + Γ̂eI

T
2 + (

I1XΞ̄T
A + I2YT Ξ̄T

B

)
I
T
4 + (

I1XΞ̄T
C + I2YT Ξ̄T

D

)
I
T
6 ,

Γ̂ T
e = C̄XIT1 + D̄YIT2 ,

with Ψ (1), Ψ (2), J1, J2, Λ11,Λ12,Λ21,Λ22, Γ1,Γ2, and Ii , i = {1,2, . . . ,8}, defined
in (14). Moreover, if the above conditions are satisfied, the stabilizing controller gain
is given by K̄ = YX−1.

Proof The proposed stabilization technique is based on the results from Theorem 1
and [4, 20]. The basic idea is to redefine the non-convex problem in a particular man-
ner to obtain nonlinear equalities constraints, e.g., XX̃ = I , which are proved to be
satisfied if a rank minimization problem involving the matrices trace is solved. To
obtain such results, we first set F� := [X−1 0 F� 0 . . . 0], and pre- and post-multiply
(12a)–(12b) by D� := diag{X; . . . ;X;0;0; ε̂�1; ε̂�1; ε̂�2; ε̂�2; η̂�}, where ε̂�k := ε−1

�k

and η̂� := η−1
� , for �, k = {1,2}. Note that all the variables in (11), which exclusively

appear in Ψ (�) and Λ�k , are pre- and post-multiplied by X. Therefore, they can be
easily redefined in such a manner that Ψ (�) ← XΨ (�)X and Λ�k ← XΛ�kX. Similar
argument is valid for the slack-matrices V�, � = {1,2}. Thus, we have

D�Ω�kD� =
⎡

⎣
�� + Ψ (�) τσV�Jk Υ̂�

∗ −τσ Λ�k 0
∗ ∗ Σ̂�

⎤

⎦ + ϑT
� β� + βT

� ϑ�, for �, k = {1,2},

(18)
with ϑ� := [(ĀXIT1 + B̄YIT2 ) 0 Γ̂ T

Δ ], β� := [F�XIT3 0 0], and

�� := I1Γ̂
T
x + Γ̂xI

T
1 + V�Γ

T
� + Γ�VT

� − 2I3(XF�X)IT3 + η̂−1
�

(
I1

(
α1XHT

1 H1X
)
I
T
1

+ I2
(
α2XHT

2 H2X
)
I
T
2

)
.

Now, using Park–Moon’s inequality [20], we have

ϑT
� β� + βT

� ϑ� ≤ (
ϑT

� − βT
� F−1

�

)
F�XF�

(
ϑ� − F−1

� β�

)

+ βT
� (F�XF�)

−1β� − 2βT
� F−1

� β�. (19)

Now, we introduce additional variables M� and N�, such that M� − (F�XF�)
−1 ≤ 0

and N� − XF�X ≤ 0. Using Schur Lemma in (18)–(19), we have the conditions in
(16)–(17) and, additionally, XX̃ = I,M�M̃� = I , N�Ñ� = I , which are proved to be
satisfied if the minimization problem (15) is solved. �

To solve the nonlinear optimization problem (15), we use a modified CCL algo-
rithm.

The first and every Step 2 of Algorithm 1 are simple LMIs problems. Hence, inte-
rior point based algorithms can solve the set of convex problems in polynomial time.
The predefined constants klim and elim denote the maximum number of iterations and
the threshold for the convergence rate, respectively.

The sequence Ok is monotonically decreasing and, according to [3, 4, 12], the
algorithm shows excellent search performance and converges for a wide set of prob-
lems when properly set. Therefore, we expect (15) to converge to 5rx , when feasible.
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Algorithm 1 H∞ output tracking controller design procedure
1. Find a feasible solution for the convex LMIs conditions in Theorem 2 (with-
out the optimization problem). If none are found, exit. Else, set X0 = X, X̃0 = X̃,
N0

i = N, Ñ0
i = Ñ, M0

i = M, M̃0
i = M̃, i = {1,2}; and k = 1.

2. For k < klim, find Xk+1 = X, X̃k+1 = X̃, Nk+1
i = N, Ñk+1

i = Ñ, Mk+1
i = M,

M̃
k+1
i = M̃, i = {1,2}, that solve the LMIs conditions in Theorem 2 with the

following linear minimization

Ok := tr
{
ε−1(XkX + X̃kX̃ +N

k
i Ni + Ñ

k
i Ñi +M

k
i Mi + M̃

k
i M̃i

)}
, i = {1,2}.

3. If ‖Ok −Ok−1‖ < elim, where elim > 0 is a predefined parameter, move to Step 4,
else, set k = k + 1 and go to Step 2.
4. Stopping criterion: reconstruct the stabilizing controller K̄ = YX−1. If (12a)–
(12b) is feasible, exit. Otherwise, set k = k + 1, reduce elim, and go back to Step 2.

Indeed, numerical experience reported shows that it is extremely efficient and fails to
compute the global optimum in very few cases [3], usually due to a small number of
iterations [12].

Remark 3 The results from Theorem 2 with proper modifications, as stressed in Re-
mark 2, are also valid when the delay derivative lower bound is unknown and for
fast-varying delays.

4 Numerical Examples

This section presents different benchmark examples1 that illustrate the effectiveness
of the proposed criteria. First, we investigate the advantages of applying Theorem 1
for the stability analysis of linear time-delay systems, i.e., when ω(t) ≡ 0, and the
reference output (4a)–(4b) is null. In the second, we show the improvements from the
proposed criteria for H∞ performance analysis. Finally, we present a simulation to
illustrate the effectiveness of the proposed H∞ output tracking control criterion for a
class of nonlinear time-delay systems.

Example 1 Consider the following linear system with time-varying delay

ẋ(t) =
[−2 0

0 −0.9

]

x(t) +
[−1 0
−1 −1

]

x
(
t − d(t)

)
.

Assuming τmin = 0, the maximum allowable upper bound for τmax from Theo-
rem 1 and from the literature [7, 14, 25, 36] are listed in Table 1. Particularly, the
results from [36] are only feasible for τmin = 0 and full knowledge about the delay

1All numerical tests have been performed with an Intel Core i7, CPU 870@2.93 GHz, 8 GB RAM, using
Matlab with SeDuMi [26] and YALMIP [18]. The configuration constants in Algorithm 1 have been set to
klim = 300 and elim = 10−3.
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Table 1 Admissible τmax value for τmin = 0 and given dmin and dmax (Example 1)

Method Unknown dmin dmin = −dmax

(dmax = 0.5) (dmax = 0.9) (dmax = 0.5) (dmax = 0.9)

Park and Ko (2007) [25] 2.337 1.873 – –

Kim (2011) [14] 2.33 1.88 – –

Fridman et al. (2009) [7] Theorem 1 2.410 2.118 2.451 2.175

Theorem 2 2.337 1.872 2.337 1.872

Zhang and Liu (2011) [36]a m = 1 2.29 1.48 2.408 1.523

m = 2 2.37 1.50 2.590 1.559

Theorem 1 2.410 2.120 2.501 2.188

aThe notation ‘m’ stands for the number of delay range ([τmin, τmax]) partitions

Table 2 Allowable upper bound value of τmax for fast-varying delays and various τmin (Example 1)

Method τmin

1 2 3 4 5

Shao (2009) [30] 1.874 2.505 3.259 4.074 –

Tang et al. (2012) [33] 2.045 2.605 3.310 4.088 –

Sun et al. (2010) [32] – 2.567 3.341 4.169 5.028

Qian and Liu (2013) [28] – 2.690 3.410 4.200 5.030

Souza (2013) [31] – – 3.418 4.210 5.044

Liu et al. (2012) [17] 2.092 2.699 3.419 4.210 5.044

Fridman et al. (2009) [7] Theorem 1 2.169 2.646 3.321 4.090 –

Theorem 2 2.120 2.724 3.458 4.257 5.097

Guo et al. (2012) [11] 2.120 2.712 3.457 4.257 5.097

Figueredo et al. (2011) [6] 2.216 2.750 3.462 4.257 5.097

Theorem 1 2.359 2.800 3.482 4.266 5.101

derivative. Hence, the derivative lower bound for [36] is set to dmin = −3 instead of
regarded to be unknown. From Table 1, it is clear that Theorem 1 provides much less
conservative results for larger (or unknown) delay derivative bounds. The results from
the proposed criterion are only outperformed by [36], and only for very slow-varying
delays and a larger number of delay partitions (m = 2 partitions compared to 1 from
Theorem 1). Indeed, for all other conditions, Theorem 1 provides considerably su-
perior results than [36], e.g., for |ḋ(t)| ≤ 0.9, the improvement over [36] is higher
than 40 %. This illustrates the importance of the proposed method for the analysis of
linear time-delay systems.

Now, assuming fast-varying delays, the maximum values for τmax which main-
tain the time-delay system stability are listed in Table 2. The results compared to
state-of-the-art criteria in the literature enlighten the advantages of Theorem 1, when
particularized to the stability analysis of linear time-delay systems. Moreover, com-
pared to the results from different authors [7, 11, 17, 28, 30–33], the improvements
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Table 3 Minimum value of γ for different values of α1 (Example 2)

Methods α2
1 = 0.05 α2

1 = 0.10 α2
1 = 0.15 α2

1 = 0.2 α2
1 = 0.25

Orihuela et al. (2011) [24] 0.92 1.20 1.60 2.66 7.70

Theorem 1 0.816 0.906 1.038 1.253 1.706

Improvements (13 %) (33 %) (54 %) (112 %) (351 %)

from the proposed method become even more evident, e.g., for τmin = 1, the delay
interval size is 16 % larger than the results from [7] (Theorem 1), and 21 % larger
than the results from [11] and [7], Theorem 2.

Example 2 Consider the following nonlinear time-delay systems

ẋ(t) =
[

1 1
0 0.99

]

x(t) +
[

0 0
−3.715 −3.514

]

x
(
t − d(t)

)

+
[

0.1
0.1

]

ω(t) + ḡ
(
t, x(t), x

(
t − d(t)

))
,

y(t) = [
0 1

]
x(t) + [−0.03715 −0.03514

]
x
(
t − d(t)

)
,

and with nonlinearity ḡ(t, x(t), x(t − d(t))) satisfying (2) with H1 = [1 0] and
H2 = 0. To allow comparison with existing methods, the reference signal yr(t) is
considered to be null.

Assuming fast-varying delay and d(t) ∈ [0,0.2509], Table 3 presents the values
for the noise to error attenuation, γ , for different values of the bounding parameter α1.
From Table 3, it can be seen that the results from Theorem 1 are considerably less
conservative than the ones from the state-of-the-art criterion given by [24]. Moreover,
in order to compare with different criteria, we also consider the case when there are
no external disturbances, ω(t) ≡ 0. In this particular case, the maximal bounding
parameters obtained with [27] and [24] are α2

1 = 0.164 and α2
1 = 0.276, respectively,

whereas using Theorem 1, we find a maximum bound α2
1 = 0.365.

Example 3 Now, consider the example of a satellite system [8] modeled by rigid bod-
ies joined through a link with torque 0.09 N m and yaw angles denoted by θ1 and θ2.
Differently from [8], a more realistic scenario is obtained with a nonlinear viscous
damping f = 0.04 + g(t, θ(t), θ(t − d(t))) N s/m. Taking the angular position θ2 as
the system’s output yp(t), the state-space representation is derived as

⎡

⎢
⎢
⎣

θ̇1(t)

θ̇2(t)

θ̈1(t)

θ̈2(t)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1

−0.09 0.09 −0.04 0.04
0.09 −0.09 0.04 −0.04

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

θ1(t)

θ2(t)

θ̇1(t)

θ̇2(t)

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦u

(
t − d(t)

)

+

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ω(t) +

⎡

⎢
⎢
⎣

0
0
0

g(t, θ, θd)

⎤

⎥
⎥
⎦ ,
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Table 4 Minimum achievable
value of γ for different values of
α1 (Example 3)

α1 = 1 α1 = 5 α1 = 10 α1 = 20 α1 = 30 α1 = 40 α1 = 50

minγ 0.395 0.429 0.470 0.575 0.705 0.990 1.921

yp(t) = [
0 1 0 0

] [
θ1(t) θ2(t) θ̇1(t) θ̇2(t)

]T
,

with the nonlinearity g(t, θ, θd) = sin(θ1(t))sgn(h(θ))
√

α1|h(θ)|, h(θ) = θ̇2
1 (t) +

2θ̇1(t)θ̇2(t) + 1
2 θ̇2

2 (t), satisfying the quadratic constraint (2) for H1 = [0 0 0.1 0.1],
H2 = 0. The reference model is defined as

ẋr (t) = −xr(t) + r(t), and yr(t) = 0.5xr(t).

In this context, we assume a fast-varying delay with τmin = 0.08 s, τmax = 0.1 s.
Our purpose is to find a stabilizing controller K̄ , which makes the system’s output,
yp(t), asymptotically track the signal yr(t), while minimizing the upper bound of the
disturbance attenuation, γ . From Algorithm 1, the minimal values of γ for different
values of the bounding parameter α1 are listed in Table 4.

Simulation In the first scenario, regard a fast-varying delay with d(t) ∈ [0.08,0.1],
and α1 = 1. From Theorem 2 and Algorithm 1, we find the stabilizing controller
K̄ = −[18.79 939.80 10.60 688.47 − 213.13], which yields an H∞ performance
with γ = 0.395. The disturbances are assumed ω(t) = 0.5 sin(0.3t), for 6 ≤ t ≤ 24
or t > 37, and ω(t) = 2.75 sin(0.7t), otherwise; and r(t) = 0.3, for 10 ≤ t ≤ 20 or
t > 33, and r(t) = 2 sin(0.9t), otherwise. The prescribed delay is achieved using
uniform distribution random delay.

The system’s and the reference output are presented in Fig. 1(a). It is clear that
yp(t) successfully tracks the reference signal, despite the nonlinearity, g(t, θ(t), θ(t −
d(t))), and the time-varying delay. Moreover, considering zero initial conditions and
numerically computing ‖ω̄(t)‖2 and ‖e(t)‖2, we find the simulated disturbance atten-
uation, ‖e(t)‖2‖ω̄(t)‖2

= 0.314, which is smaller than the minimum upper bound γ = 0.395
obtained with Theorem 2, highlighting the effectiveness of the proposed method.

To further enlighten the importance of Theorem 2, we propose a second scenario
with a higher nonlinear influence, i.e., we will increase the value of α1 to α1 = 50.
From Theorem 2 and Algorithm 1 for α1 = 50, we find a stabilizing controller that
yields an output (ynonl

p (t)) with an H∞ performance of γ = 1.921. In this scenario,

we also define a linear controller yielding an output (ylin
p (t)) that satisfies the H∞

performance of γ = 1.921; however, ignoring the existence of the nonlinear term
g(t, θ, θd). The disturbances are assumed ω(t) = 9 sin(1.25t), r(t) = 10 sin(0.5t).
The results, presented in Fig. 1(b), clearly demonstrate that (ylin

p (t)) from the lin-
ear controller (ignoring the existence of nonlinearities) is unable to track the desired
reference, whereas (ynonl

p (t)) from Theorem 2 with α1 = 50 successfully tracks the
reference with disturbance attenuation below the prescribed γ . The analysis illus-
trates the advantages and effectiveness of explicitly considering nonlinearities in the
synthesis of controllers.
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Fig. 1 The plot (a) shows the
system’s output tracking the
reference output, whereas in (b),
it is shown the desired reference
yr (t), the plant’s output with the
linear controller (ylin

p (t)), and
the output from Theorem 2 with
α1 = 50, (ynonl

p (t)). Note the
linear controller fails in tracking
the reference, whereas ynonl

p (t)

successfully tracks yr (t)

5 Conclusion

In this paper, the H∞ output tracking problem for nonlinear uncertain time-delay sys-
tems was investigated, and novel criteria were derived for the performance analysis
and control design. With a novel Lyapunov–Krasovskii functional based on a delay
partition, we improved the piecewise analysis method and introduced delay-interval-
dependent terms exploiting the delay partitioning subintervals size. The resulting H∞
output tracking performance and control criteria showed to be considerably less con-
servative than existing methods. The proposed technique, if particularized to the sta-
bility analysis of linear/nonlinear time-delay systems, also yielded superior results
compared to state-of-the-art criteria in the literature. These advantages in terms of
conservatism reduction were further illustrated with numerical examples. Two dif-
ferent simulation scenarios were also provided to demonstrate the effectiveness and
the importance of the proposed H∞ output tracking control criterion for nonlinear
time-delay systems.
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Appendix: Proof of Theorem 1

This appendix presents the proof of Theorem 1. First, we shall take the time derivative
of (9) with respect to t along the trajectory of x(t):

V̇1(t) = ḋ(t)
1

2τσ

xT (t)(P2 − P1)x(t) + 2ẋT (t)
(
χ[τ1,τ2]P̂1

(
d(t)

)

+ (1 − χ[τ1,τ2])P̃2
(
d(t)

))
x(t),

V̇2(t) = xT (t − τ1)Qx(t − τ1) − (
1 − ḋ(t)

)
xT

(
t − d(t)

)
Qx

(
t − d(t)

)

+
[

x(t)

x(t − τ1
2 )

]T

N1

[
x(t)

x(t − τ1
2 )

]

−
[
x(t − τ1

2 )

x(t − τ1)

]T

N1

[
x(t − τ1

2 )

x(t − τ1)

]

+
⎡

⎣
x(t)

xT (t − τ1)

x(t − τ2)

⎤

⎦

T

N4

⎡

⎣
x(t)

xT (t − τ1)

x(t − τ2)

⎤

⎦ −
⎡

⎣
x(t − τσ )

xT (t − τ2)

x(t − τ3)

⎤

⎦

T

N4

⎡

⎣
x(t − τσ )

xT (t − τ2)

x(t − τ3)

⎤

⎦

+ xT

(

t − τ1

2

)[(

τσ − τ1

2

)

N2

]

x

(

t − τ1

2

)

− xT (t − τσ )

[(

τσ − τ1

2

)

N2

]

x(t − τσ )

+ xT (t − τ1)
[
(τσ − τ1)N3

]
x(t − τ1) (20)

− xT (t − τσ )
[
(τσ − τ1)N3

]
x(t − τσ ),

V̇3(t) = ẋT (t)

((
τ1

2

)2

(S1 + S2) +
(

τσ − τ1

2

)2

S3 + (τσ − τ1)
2S4

+ τσ
2(Z0 + Z1 + Z2) + τ2R1 + d(t)R2 + τσ R3 + (

τ3 − d(t)
)
R4

)

ẋ(t)

−
2∑

k=1

τ1

2

∫ t− τ1
2 (k−1)

t− τ1
2 k

ẋT (s)Skẋ(s) ds −
(

τσ − τ1

2
k

)

×
∫ t− τ1

2 k

t−τσ

ẋT (s)Sk+2ẋ(s) ds −
2∑

k=0

τσ

∫ t−τk

t−τk−τσ

ẋT (s)Zkẋ(s) ds

−
∫ t

t−d(t)

ẋT (s)URẋ(s) ds −
∫ t−d(t)

t−τ3

ẋT (s)(R3 + R4)ẋ(s) ds − χ[τ1,τ2]

×
∫ t−d(t)

t−τ2

ẋT (s)(R1 − R3)ẋ(s) ds

− (1 − χ[τ1,τ2])
∫ t−τ2

t−d(t)

ẋT (s)(R3 − R1)ẋ(s) ds,
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where P̂1(d(t)), P̂2(d(t)) are defined in (10), and UR in (14). Considering the first
subinterval, χ[τ1,τ2] = 1, suppose we expand the integral terms, taking the fact that
τ1 ≤ d(t) ≤ τ2. Applying Jensen’s inequality [10], and after some manipulation, we
obtain

V̇ (t)|d(t)<τ2 ≤ ζ T
1 (t)diag

{
Ψ (1);−(

d(t) − τ1
)
Λ12;−

(
τ2 − d(t)

)
Λ11;

}
ζ1(t), (21)

where ζ T
x := [xT (t) xT (t − d(t)) ẋT (t) xT (t − τ1

2 ) xT (t − τ1) xT (t − τ2) xT (t −
τ3) xT (t − τσ )], ζ T

1 := [ζ T
x ξT

1d ξT
d2], ξ1d := 1

d(t)−τ1

∫ t−τ1
t−d(t)

ẋ(s) ds, ξd2 := 1
τ2−d(t)

×
∫ t−d(t)

t−τ2
ẋ(s) ds with limd(t)→τ1 ξ1d = ẋ(t − τ1), and limd(t)→τ2 ξd2 = ẋ(t − τ2).

Now, from Leibniz–Newton formula for definite integrals with (6), we introduce
the following null expressions:

2ζ T
x F1

(
(Ā + ΔĀ)x(t) + (B̄ + ΔB̄)K̄x

(
t − d(t)

)

+ B̄ωω̄(t) + ḡ
(
t, x(t), x

(
t − d(t)

)) − ẋ(t)
) = 0,

2ζ T
x V1

(
J1

(
x(t − τ2) − x

(
t − d(t)

) + (
τ2 − d(t)

)
ξd2

)

+ J2
(
x
(
t − d(t)

) − x(t − τ1) + (
d(t) − τ1

)
ξ1d

)) = 0,

where J1, J2 are defined in (14). Moreover, applying the inequality

2ζ T
x F1ḡ

(
t, x(t), x

(
t − d(t)

))

≤ η−1
1 ζ T

x F1FT
1 ζx + η1ḡ

T
(
t, x(t), x

(
t − d(t)

))
ḡ
(
t, x(t), x

(
t − d(t)

))
,

which arises from [20], with (2), and adding the expression

−eT (t)e(t) + γ 2ω̄T (t)ω̄(t) − γ 2ω̄T (t)ω̄(t) + ζ T
x Γ T

cdΓcdζx = 0,

with Γ T
cd := I1(C̄ + ΔC̄) + I2(D̄ + ΔD̄)K̄ , we have

V̇ (t)|d(t)<τ2 + eT (t)e(t) − γ 2ω̄T (t)ω̄(t) = [
ζ T

1 ω̄T
]
Ω1

[
ζ T

1 ω̄T
]T

, (22)

with

Ω1 =
[
Ψ (1) + Π1 + 2F1(ΔĀI

T
1 + ΔB̄K̄I

T
2 ) + Γ T

cdΓcd

∗
[V1((d(t) − τ1)J2 + (τ2 − d(t))J1 F1B̄ω]
− diag{(d(t) − τ1)Λ12; (τ2 − d(t))Λ11;γ 2I }

]

.

Now, we shall consider the matrices that arise from the analysis of Ω1 for

d(t) → τ1 and d(t) → τ2. It is straightforward to conclude that [ζ T
1 ω̄T ]Ω1[ζ T

1 ω̄T ]T
may be written as τ2−d(t)

τ2−τ1
ζ T

11(t)Ω1|d(t)→τ1ζ11(t) + d(t)−τ1
τ2−τ1

ζ T
12(t)Ω1|d(t)→τ2ζ12(t),

where ζ T
11(t) := [ζ T

x γ T
d2 ω̄(t)] and ζ T

12(t) := [ζ T
x γ T

1d ω̄(t)]. This analysis enlightens
the convex properties of Ω1 regarding d(t), which, in turn, implies that the matrix is
negative definite only if the vertices are.
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Moreover, using the Schur Lemma with the term Γ T
cdΓcd , and applying Park–

Moon’s inequality, yields

2ϑT
k Δβk ≤ ε1kϑ

T
k ϑk + ε−1

1k βT
k βk for k = {1,2}

with ϑ1 = [(F1Ξ̄x)
T 0], ϑ2 = [(I1Ξ̄

T
C + I2(Ξ̄DK̄)T )T 0], β1 = [(Ξ̄AI

T
1 +

Ξ̄BK̄I
T
2 )T 0], and β2 = [0 Ξ̄e]. Then, from Schur’s Lemma, we have the matrices

Ω11 and Ω12, described in (13). Therefore, it easy to see that Ω1 is negative definite
if Ω11 < 0 and Ω12 < 0 hold. Also, given (5b), we have that the matrices are convex
in ḋ(t) ∈ [dmin, dmax].

Therefore, if the conditions in Theorem 1 are satisfied, then

V̇ (t)|d(t)<τ2 + eT (t)e(t) − γ 2ω̄T (t)ω̄(t) < 0

holds for χ[τ1,τ2] = 1. Furthermore, using exactly the same arguments of the former
case, we may prove that analogous results can be derived for χ[τ1,τ2] = 0, i.e., τ2 <

d(t) < τ3. In this context, it is easy to conclude that if the conditions in Theorem 1 are
satisfied, then V̇ (t)|d(t)<τ2 < 0 and V̇ (t)|d(t)>τ2 < 0 must hold for ω̄(t) ≡ 0. Since (9)
is continuously differentiable, the nonlinear system is robustly asymptotically stable
for ω̄(t) ≡ 0. Moreover, we also have V̇ (t) + eT (t)e(t) − γ 2ω̄T (t)ω̄(t) < 0. Thus,
integrating the inequality, from 0 to ∞, yields

V (∞) − V (0) +
∫ ∞

0

[
eT (t)e(t) − γ 2ω̄T (t)ω̄(t)

]
dt < 0.

Assuming zero initial conditions, and the positiveness of V (t), t ∈ (0,∞], it is easy to
see that

∫ ∞
0 [eT (t)e(t)− γ 2ω̄T (t)ω̄(t)] dt < 0, and thus ‖e(t)‖2 < γ ‖w̄(t)‖2. There-

fore, the conditions in Definition 1 are satisfied. �
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