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Abstract This paper studies identification problems for a class of multirate
systems—non-uniformly sampled systems. The lifting technique is employed to han-
dle the non-uniformly sampled input and output data, a lifted state-space model is
derived to represent the non-uniform discrete-time systems, and a novel subspace
identification method is proposed to deal with the casuality constraints in the lifted
model. Simulation results show that the algorithm is effective.

Keywords Parameter estimation · Subspace identification · Casuality constraint ·
Lifting technique · Non-uniform sampling

1 Introduction

For conventional discrete-time sampled-data systems, the input and output are sam-
pled at a single rate and the sampling intervals are assumed to be equally spaced
in time [1, 3–6]. In practice, different variables of a system may be sampled at dif-
ferent sampling rates [2, 22] and the sampling frequency may be varying, namely,
non-equally spaced in time. The non-uniform sampling scheme has advantages over
the uniform one, such as always preserving controllability and observability in dis-
cretization when a non-uniformly sampled system is described by a lifted state-space
model [11, 17].

Literature on non-uniformly sampled multirate systems includes the generalized
predictive control [26], the fault detection and isolation with non-uniformly sampled
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data [18, 19], the system reconstruction from non-uniformly sampled discrete-time
systems [11], etc. Recently, the non-uniformly sampled multirate system identifica-
tion has attracted much attention. Using lifting technique which is a standard tool
of dealing with multirate systems, Ding et al. proposed a hierarchical identification
method [11] for the lifted state-space model of the non-uniformly sampled systems
[20].

The direct input–output representation is frequently considered when dealing with
the non-uniformly sampled systems. Zhu et al. proposed the output error method
for slowly and irregularly sampled system [35]. Ding et al. developed the partially
coupled stochastic gradient algorithm for non-uniformly sampled-data systems [10].
Liu et al. proposed a recursive least squares algorithm for non-uniformly sampled
systems with the aid of an auxiliary model [21]. See also [32–34] and the references
therein.

Most of the existing systems can be modeled by state-space equations [12, 14],
and the subspace identification methods are quite effective for the identification of
state-space models of single-rate discrete-time linear systems [15, 16, 24, 27, 28].
This paper is concerned with the extension of the subspace identification from dual-
rate sampled systems [25] to non-uniformly sampled multirate systems. The main
purpose of this paper is to develop a subspace identification method that could cope
with the causality constraints.

The rest of this paper is organized as follows. In Sect. 2, the lifted state-space
model is derived by using the lifting technique, and the identification problem is dis-
cussed. Further, a subspace identification algorithm taking the causality constraints
into consideration is presented in Sect. 3. In Sect. 4, a simulation example is illus-
trated for the proposed algorithm. Finally, some concluding remarks are offered in
Sect. 5.

2 Problem Description

Consider a class of periodically non-uniformly sampled systems as depicted in Fig. 1
[11, 26], where Sc is a continuous process,

Sc :
{

ẋ(t) = Acx(t) + Bcu(t),

y(t) = Ccx(t) + Dcu(t),
(1)

x(t) ∈ R
n is the state vector, u(t) ∈ R is the control input, y(t) ∈ R is the system

output, Ac,Bc,Cc,Dc the matrices with proper dimensions; HT and ST are the
non-uniformly periodical zero-order holder and sampler with the frame period T ,
and with the updating and sampling intervals {τ1, τ2, . . . , τp}, namely, the zero-order
holder/sampler non-uniformly updates/samples at time t = kT + ti , i = 1,2, . . . , p,

Fig. 1 The periodically
non-uniformly sampled systems
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k = 0,1,2, . . . , where ti := τ1 + τ2 + · · · + τi (t0 = 0), thus the frame period
T := τ1 + τ2 + · · · + τp .

In the kth period [kT , (k + 1)T ), the control input u(t) and output y(t) are non-
uniformly updated at time t = kT + ti (i = 0,1,2, . . . , p − 1), the non-uniformly
updating properties [10, 11] are

u(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(kT ), kT ≤ t < kT + t1,

u(kT + t1), kT + t1 ≤ t < kT + t2,

...

u(kT + tp−1), kT + tp−1 ≤ t < (k + 1)T .

(2)

The system input and output are updated by {τ1, τ2, . . . , τp} periodically, thus the
discrete-time system from the input to output is a time-varying single-input single-
output system. By the lifting technique, p inputs are grouped and p outputs are listed
together to form u and y, leading to a time-invariant multi-input multi-output sys-
tem:

S :
{

x(kT + T ) = Ax(kT ) + Bu(kT ),

y(kT ) = Cx(kT ) + Du(kT ),
(3)

with the available non-uniformly sampled data {u(kT + ti ), y(kT + ti ), i =
0,1,2, . . . , p − 1}.

Referring to the method in [11] and discretizing (3) yields

x(kT + T ) = eAcT x(kT ) +
∫ (k+1)T

kT

eAc((k+1)T −τ)Bcu(τ )dτ (4)

=: Ax(kT ) +
p∑

i=1

Biu(kT + ti−1), (5)

=: Ax(kT ) + Bu(kT ), (6)

where

A := eAcT ∈ R
n×n, (7)

B := [B1,B2, . . . ,Bp] ∈R
n×p, (8)

Bi := eAc(T −ti )

∫ τi

0
eAct dtBc, (9)

u(kT ) := [
u(kT ), u(kT + t1), . . . , u(kT + tp−1)

]T ∈ R
p. (10)

Because of the non-uniformly zero-order holder in system (1), it is easy to obtain
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x(kT + ti ) = eActi x(kT ) +
∫ kT +ti

kT

eAc(kT +ti−τ)Bcu(τ )dτ

= eActi x(kT )

+ [B1,B2, . . . ,Bi]
[
u(kT ),u(kT + t1), . . . , u(kT + ti−1)

]T
.

(11)

The output equation is given by

y(kT + ti ) = Ccx(kT + ti ) + Dcu(kT + ti )

= CceActi x(kT ) + [CcB1,CcB2, . . . ,CcBi]u(kT ) + Dcu(kT + ti )

=: Cix(kT ) + [D1,D2, . . . ,Di,Dc]

⎡
⎢⎢⎢⎢⎢⎣

u(kT )

u(kT + t1)
...

u(kT + ti−1)

u(kT + ti )

⎤
⎥⎥⎥⎥⎥⎦ , (12)

where Ci =: CceActi , Di =: CcBi , i = 1,2, . . . , p − 1. Thus, we obtain the lifted
state-space model in (3) for the multirate system, where

y(kT ) = [
y(kT ), y(kT + t1), . . . , y(kT + tp−1)

]T ∈R
p, (13)

C =

⎡
⎢⎢⎢⎢⎢⎣

Cc

C1
C2
...

Cp−1

⎤
⎥⎥⎥⎥⎥⎦ ∈R

p×n (14)

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Dc 0 . . . . . . 0

D1 Dc

...

D1 D2
. . .

...
...

. . . Dc 0
D1 D2 . . . Dp−1 Dc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈R
p×p. (15)

Replacing the lifted output y(kT ) by the lifted noise-contaminated one z(kT ) and
omitting the frame period T yields

{
x(k + 1) = Ax(k) + Bu(k),

z(k) = Cx(k) + Du(k) + v(k),
(16)

with v(k) := [v(k), v(k + t1), . . . , v(k + tp−1)]T ∈ R
p the lifted noise vector.
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3 Subspace Identification Method

Given the periodically non-uniformly sampled data {u(kT + ti ), z(kT + ti ), i =
0,1,2, . . . , p − 1}, the lifted input and output data are {u(k),z(k)}, while the input
and output block Hankel matrices can be defined as

U0|l−1 :=

⎡
⎢⎢⎢⎣

u(0) u(1) . . . u(N − 1)

u(1) u(2) . . . u(N)
...

...
...

u(l − 1) u(l) . . . u(l + N − 2)

⎤
⎥⎥⎥⎦ ∈ R

lp×N, (17)

Z0|l−1 :=

⎡
⎢⎢⎢⎣

z(0) z(1) . . . z(N − 1)

z(1) z(2) . . . z(N)
...

...
...

z(l − 1) z(l) . . . z(l + N − 2)

⎤
⎥⎥⎥⎦ ∈R

lp×N, (18)

where l is strictly greater than the dimension n of state vector, N is sufficiently large,
the indices 0 and l −1 denote the arguments of the upper-left and lower-left elements,
respectively.

U l|2l−1 and Zl|2l−1 can be defined in a similar way. The block Hankel matrices
U0|l−1 and Z0|l−1 are usually called the past inputs and outputs, respectively, whereas
the block Hankel matrices U l|2l−1 and Zl|2l−1 are called the future inputs and outputs,

respectively. Define Wp := [ U0|l−1
Z0|l−1

] ∈ R
2lp×N , the LQ decomposition of the input

and output block Hankel matrices can be performed as

⎡
⎣U l|2l−1

Wp

Zl|2l−1

⎤
⎦ =

⎡
⎣R11 0 0

R21 R22 0
R31 R32 0

⎤
⎦

⎡
⎢⎣

QT
1

QT
2

QT
3

⎤
⎥⎦ (19)

where R11 ∈R
lp×lp , R22 ∈ R

2lp×2lp , Q1,Q3 ∈ R
N×lp , Q2 ∈ R

N×2lp .
Defining ξ as the oblique projection of Zl|2l−1 onto Wp along U l|2l−1, with the

above LQ decomposition, we have

ξ = R32R
†
22Wp, (20)

† denoting the pseudo inverse. The details are referred to Theorem 6.3 in [16], and
thus omitted here.

Let the SVD of ξ be

ξ = [U1,U2]
[
Σ1 0
0 0

][
V T

1

V T
2

]
= U1Σ1V

T
1 . (21)

Defining the state sequence Xl := [x(l),x(l + 1), . . . ,x(l + N − 1)], we have the
estimated state sequence

X̂ := [
x̂(l), x̂(l + 1), . . . , x̂(l + N − 1)

] ∈R
n×N. (22)

By defining
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X̂l+1 := [
x̂(l + 1), x̂(l + 2), . . . , x̂(l + N − 1)

] ∈ R
n×(N−1), (23)

X̂l := [
x̂(l), x̂(l + 1), . . . , x̂(l + N − 2)

] ∈R
n×(N−1), (24)

U l|l := [
u(l),u(l + 1), . . . ,u(l + N − 2)

] ∈R
p×(N−1), (25)

Zl|l := [
z(l),z(l + 1), . . . ,z(l + N − 2)

] ∈ R
p×(N−1), (26)

it follows that [
X̂l+1
Zl|l

]
=

[
A B

C D

][
X̂l

U l|l

]
, (27)

then the system matrices can be estimated by using the least-squares technique,

[
Â B̂

Ĉ D̂

]
=

{[
X̂l+1
Zl|l

]T [
X̂l+1
Zl|l

]}−1 [
X̂l+1
Zl|l

]T [
X̂l

U l|l

]
. (28)

Note that the upper triangular blocks in D are zero, namely, the zero-entries of this
upper triangular block in D do not need to be identified, but the upper triangular
blocks may not equal zero in D̂. In order to tackle this causality constraint for the
lifted model, we propose a two-stage way to estimate the matrices (A,B,C,D).

From (27), one can get the estimates of (A,B) by solving the following least-
squares form:

X̂l+1 = [A,B]
[

X̂l

U l|l

]
. (29)

To obtain the non-zero subblock matrices in D, we decompose the matrix Zl|l in
(26) and U l|l in (25) into p row vectors according to their row dimension,

Zl|l :=

⎡
⎢⎢⎢⎣

Z1
Z2
...

Zp

⎤
⎥⎥⎥⎦ , U l|l :=

⎡
⎢⎢⎢⎣

U1
U2
...

Up

⎤
⎥⎥⎥⎦ , (30)

From Equation (14) and

Zl|l = [C,D]
[

X̂l

U l|l

]
, (31)

we have

Z1 = [Cc,Dc]
[

X̂l

U1

]
, (32)

Z2 = [C1,D1,Dc]
⎡
⎣ X̂l

U1
U2

⎤
⎦ , (33)

...
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Zp = [Cp−1,D1,D2, . . . ,Dp−1,Dc]

⎡
⎢⎢⎢⎢⎢⎣

X̂l

U1
U2
...

Up

⎤
⎥⎥⎥⎥⎥⎦ . (34)

Note that Dc can be estimated by solving (32), thus it can be used to estimate D1 in
(33), and the rest unknown entries in D can be estimated in a similar way.

4 Example

Consider a continuous process model described by

G(s) = 1

100s2 + 10s + 1
,

its canonical state space form being

Sc :

⎧⎪⎨
⎪⎩

ẋ(t) =
[

−0.1 −0.1

1 0

]
x(t) +

[
1

0

]
u(t),

z(t) = [0,0.01]x(t) + v(t).

Taking p = 2, τ1 = 0.618 s, τ2 = 0.382 s, hence, t1 = τ1 = 0.618 s, t2 = τ1 + τ2 =
T = 1 s. Then the corresponding lifted state-space model is

x(kT + T ) = Ax(kT ) + Bu(kT )

=
[

0.9002 −0.0095
0.9500 0.9952

]
x(kT ) +

[
0.5753 0.37470
0.4113 0.07203

][
u(kT )

u(kT + t1)

]
[

z(kT )

z(kT + t1)

]
=

[
0 0.01

0.005989 0.009981

]
x(kT )

+
[

0 0
0.004113 0

][
u(kT )

u(kT + t1)

]
+

[
v(kT )

v(kT + t1)

]
.

The input signals u(kT ) and u(kT + t1) are taken as two random signal sequences
with zero mean and unit variances and two uncorrelated noise sequences with zero
mean and variances σ 2 = 0.102. The noise terms are independent of the inputs.

With the non-uniformly sampled input and output data, we apply the modified
subspace identification method respectively to the above lifted model and to the fol-
lowing single-rate model, as follows.

Taking T = 1 s for a single-rate sampled system yields the discrete-time state-
space model

Sd :

⎧⎪⎨
⎪⎩

x(kT + T ) =
[

0.9783 −0.0095

0.95 0.9952

]
x(kT ) +

[
0.95

0.4833

]
u(kT ),

z(kT ) = [0,0.01]x(kT ) + v(kT ).
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Fig. 2 The step responses of the actual system and the estimated model under non-uniform sampling

Fig. 3 The step responses of the actual system and the estimated model under single-rate sampling

The step responses of the identified lifted system and single-rate system are shown
in Figs. 2–3: The lifted model can capture the actual system dynamics better than the
single-rate model does. The estimated poles of the lifted model and the single-rate
model are listed in Table 1: the estimated poles of the lifted model are closer to the
actual system poles than that of the single-rate model.

Furthermore, the Bode diagrams of the actual system and the estimated systems
are shown in Figs. 4–5. This indicates that the estimated lifted model can achieve
satisfactory results.
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Table 1 The estimated poles of
the lifted model and the
single-rate model

Models Poles

Lifted model 0.9444 ± 0.0778i

Single-rate model 0.9409 ± 0.0733i

Actual model 0.9477 ± 0.0823i

Fig. 4 The Bode diagrams of the actual system and the estimated system

Fig. 5 The Bode diagrams of the actual system and the estimated single-rate system
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5 Conclusions

We have discussed the identification methods for periodically non-uniformly sampled
system. By using the lifting technique, we propose a two-stage subspace identifica-
tion method to identify the lifted state-space models, the advantages of the proposed
method lie in that:

– The lifted system can be estimated by using non-uniformly sampled data directly,
thus it can achieve better performance than the single-rate one.

– The developed algorithm can tackle the casuality constraints in the lifted state-
space model.

The proposed method can be extended to other linear or nonlinear systems [7–9, 13,
23, 29–31].
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