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Abstract This paper considers H∞ control of a class of switching nonlinear systems
with time-varying delays via T–S fuzzy model based on piecewise fuzzy weighting-
dependent Lyapunov–Krasovskii functionals (PFLKFs). The systems are switching
among several nonlinear systems. The Takagi and Sugeno (T–S) fuzzy model is em-
ployed to approximate the sub-nonlinear dynamic systems. Thus, with two level
functions, namely, crisp switching functions and local fuzzy weighting functions,
we introduce a continuous-time switched fuzzy systems, which inherently contain
the features of the switched hybrid systems and T–S fuzzy systems. Average dwell-
time approach and PFLKFs methods are utilized for the stability analysis and con-
troller design, and with free fuzzy weighting matrix scheme. Switching and control
laws are obtained such that the H∞ performance is satisfied. The conditions of sta-
bility and the control laws are given in the form of LMIs which can be obtained
by solving a set of linear matrix inequalities (LMIs) that are numerically feasible.
A numerical example and the control of an uncertain radio-controlled (R/C) hover-
craft with time-varying delay are given to demonstrate the efficiency of the proposed
method.

O. Ou
College of Information Engineering, Chengdu University of Technology, Chengdu 610059,
P.R. China
e-mail: ouou@cdut.edu.cn

Y. Mao (B) · H. Zhang · L. Zhang
Centre for Nonlinear and Complex Systems, School of Electronic Engineering, University
of Electronic Science and Technology of China, Chengdu 611731, P.R. China
e-mail: maoyanbing.g@163.com

H. Zhang
e-mail: zhanghb@uestc.edu.cn

L. Zhang
e-mail: daydream900319@gmail.com

mailto:ouou@cdut.edu.cn
mailto:maoyanbing.g@163.com
mailto:zhanghb@uestc.edu.cn
mailto:daydream900319@gmail.com


1412 Circuits Syst Signal Process (2014) 33:1411–1437

Keywords Switching fuzzy systems · Time-varying delay · Robust H∞ control ·
PFLKFs

1 Introduction

Switching systems are an important class of hybrid systems. Such systems can be
described by a family of continuous-time subsystems (or discrete-time subsystems)
and a rule that orchestrates the switching between them; for example, a given process
exhibits a switching behavior caused by abrupt changes of the environment. This
class of systems has numerous applications in the control of mechanical systems, the
automotive industry, aircraft and air traffic control, switching power converters and
many other fields. Although this class of systems can be seen as a particular case
of linear parameter varying (LPV) systems, it has specific characteristics: the first is
that the switch occurs between a finite number of subsystems; the second is that the
switching sequence has to be taken into account in practical situations. For instance,
one can only act using a certain sequence to stabilize the switched system. This class
system has received great interest from researchers during the last decade [1, 10, 14].

The stability problem, caused by various switching, is a main concern in the field
of switching systems [10]. So far, two stability issues have been addressed in liter-
ature, i.e., the stability under arbitrary switching and the stability under constrained
switching. The former case is mainly investigated based on constructing a common
Lyapunov function for all subsystems [10]. On the other hand, for switching systems
under constrained switching, it is well known that the multiple Lyapunov-like func-
tion approach is more efficient in offering greater freedom for demonstrating stability
of the system [14]. As a class of typical constrained switching signals, the average
dwell-time switching means that the number of switches in a finite interval is bounded
and the average time between consecutive switching is not less than a constant [10]
and [14]. The average dwell-time switching can cover the dwell-time switching and
its extreme case is actually the arbitrary switching. Therefore, it is of practical and
theoretical significance to probe the stability of switching systems with average dwell
time [14].

In recent years, switching linear systems have received a great deal of attention
in continuous-time domain [1, 14]. However, there is less research in the field of
continuous-time switching nonlinear systems [17, 24]. Since the introduction of T–S
fuzzy models by Takagi and Sugeno [15] in 1985, fuzzy model control has been
extensively studied because T–S fuzzy models provide an effective representation of
complex nonlinear systems [3, 4, 8, 9, 16, 18]. The objective of this paper is to study
switching nonlinear systems [11] with time-varying delay. Each subsystem is written
as an equivalent T–S fuzzy model. Recently, there has been several literature in the
field of switching fuzzy system [2, 17, 24]. However, they do not consider the average
dwell time in stability analysis which is important for switching systems.

Generally speaking, real systems with time delays are common in biology, me-
chanics, society, and economics. Moreover, time-varying delay is more important
and universal in real engineering processes and has more complex impacts on system
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dynamics than constant delay. Since time delay is a main factor of instability of time-
delay systems, the problem of stability analysis of time-delay systems has been one
of the main concerns of researchers wishing to inspect the properties of such systems.
Recently, the authors in [1] and [7, 20, 21, 25] considered switching linear systems
with delays. As for switched nonlinear systems with delays we hope we can as get
desirable result as switching linear systems such as exponential stability. Recently,
there exist some advanced methods to deal with time delay in the T–S fuzzy systems
[6, 13, 22, 23, 26], such as slack matrix, input-output method and delay partition-
ing method and fuzzy weighting-dependent Lyapunov–Krasovskii functionals to deal
with asymptotically stability. Based on these results, we can construct PFLKFs for the
exponential stability of switched fuzzy systems with delays. On the other hand, due to
modeling error or external disturbance, many practical systems are always subject to
various kinds of uncertainties. One of the most important requirements for a control
system is the so-called robustness. Since the pioneering work on the so-called H∞
optimal control theory, there has been a considerable progress in H∞ control theory
[4, 18] and [24]. In fact, the switching fuzzy systems the best of our knowledge, the
problems of stability analysis and robust H∞ control of continuous-time switching
fuzzy systems with both parametric uncertainties and time-varying delays has not
been addressed, which is very challenging and remains open.

The main contribution of the paper is that we investigate the exponential stability
of delayed switched nonlinear systems via T–S fuzzy model and get relaxed condi-
tions. In addition, we present new H∞ control design for uncertain continuous-time
switched fuzzy systems with time-varying delay based on PFLKFs. Compared with
the results based on PLKFs introduced in [14], the result based on PFLKFs is more
relaxed. Moreover, the stability checking results, the switching laws and control laws
can be obtained by solving a set of LMIs that are numerically tractable with commer-
cially available software.

The rest of this paper is organized as follows. System descriptions and preliminar-
ies are presented in Sect. 2. Stability analysis of uncertain continuous-time switching
fuzzy systems with time-varying delays is presented in Sect. 3. H∞ stability analysis
and controller design for such systems is considered in Sect. 4. In Sect. 5, a numeri-
cal example and the application to the H∞ control of uncertain radio-controlled (R/C)
hovercraft with time-varying delays are provided to demonstrate effectiveness of our
results. Finally, conclusions are given in Sect. 6.

Notations The notations used are fairly standard. We use P > 0 (≥,<,≤0) to
denote a positive definite (semi-definite, negative definite, semi-negative definite)
matrix P . R

n denotes the n-dimensional Euclidean space and L2[0,∞) is the
space of square integrable functions on [0,∞). For τ > 0, let R+ = [0,+∞] and
Cn = C1([−τ,0],Rn) be the Banach space of continuously differentiable mapping
from ([−τ,0],Rn) to R

n with topology of uniform convergence. ‖ · ‖ denotes the
usual 2-norm and ‖x(t + θ)‖d = sup−τ≤θ≤0{‖x(t + θ)‖,‖ẋ(t + θ)‖}. λmax(P ) and
λmin(P ) denote the maximum and minimum eigenvalues of P . I and O represent the
identity and zero matrices in the block matrix. The superscript ‘T ’ stands for matrix
transpose; and the symmetric terms in a matrix are denoted by ∗. Matrices, if not
explicitly stated, are assumed to have compatible dimensions.
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2 System Descriptions and Preliminaries

In this paper, we consider systems described by

ẋ(t) = fσ(t)

(
x(t)

) + hσ(t)

(
x
(
t − τσ(t)(t)

))+ dσ(t)

(
w(t)

)+ gσ(t)

(
u(t)

)
,

y(t) = lσ (t)

(
x(t)

)+ mσ(t)

(
x
(
t − τσ(t)(t)

))+ nσ(t)

(
u(t)

)
, t ∈ [0,∞),

x(t) = φσ(t)(t), t ∈ [−τσ(t),0],
(1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m, is the control, w(t) ∈ R
p is the exogenous

disturbance which belong to L2[0,∞) and y(t) ∈ R
q is the output. φ(t) is the con-

tinuous vector-value function specifying the initial state of the system and τσ(t)(t)

is the continuous time-varying delay satisfying 0 ≤ τσ(t)(t) ≤ τσ(t), τ̇σ (t)(t) ≤ κσ(t).
fσ(t)(·), hσ(t)(·), dσ(t)(·), gσ(t)(·), lσ (t)(·), mσ(t)(·), nσ(t)(·) are the Lipschitz func-
tions.

The right continuous function σ(t): [0,∞) → S = {1,2, . . . , s} is the switch-
ing signal, s is the number of switching regions. Corresponding to the switching
signal σ(t), we have the switching sequence {xt0; (i0, t0), . . . , (ik, tk), . . . , | ik ∈ S,

k = 0,1, . . .}, which means that the ik th nonlinear subsystem is activated when
t ∈ [tk, tk+1). In addition, we exclude Zeno behavior for all types of switching signals
as commonly assumed in literature. We assume that the state of the switched system
(1) does not jump at the switching instants, i.e., the trajectory x(t) is everywhere
continuous.

Takagi and Sugeno [15] have proposed a fuzzy model to represent nonlinear sys-
tems. It is proved that the Takagi–Sugeno fuzzy model is a universal approximator.
Then each nonlinear subsystem of (1) i ∈ S could be represented by a T–S fuzzy
model described by ri rules of the following uncertain form with time-varying de-
lay:

Local Plant rule k, k ∈ Ri � {1,2, . . . , ri}
IF zi

1 is Mi
k1 and . . . and zi

e is Mi
ke THEN

ẋ(t) = (Aik + �Aik)x(t) + (Aidk + �Aidk)x
(
t − τi(t)

)+ (Bik + �Bik)u(t)

+ (Dik + �Dik)w(t),

y(t) = Eikx(t) + Eidkx
(
t − τi(t)

) + Ciku(t),

x(t) = φi(t), t ∈ [−τi,0],

(2)

Mi
kl are fuzzy sets and zi

l (l = 1,2, . . . , e) are the premise variables. (Aik,Aidk,Bik,

Dik,Eik,Eidk,Cik) is the kth local model in the ith switching region of the system,
and (�Aik,�Aidk,�Bik,�Dik) is the uncertainty terms of the kth local model in the
ith switching region of the system. In this paper, the uncertainty terms are assumed
to be of the form

[�Aik,�Aidk,�Bik,�Dik] = MikFi(t)[Ni1k,Ni2k,Ni3k,Ni4k], (3)
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where Mik,Ni1k,Ni2k,Ni3k and Ni4k are known real constant matrices and Fi(t) is
an unknown time-varying matrix function satisfying

FT
i (t)Fi(t) ≤ I, t ≥ 0. (4)

From [3, 15], through the use of “fuzzy blending” the final switching fuzzy system
(2) is inferred as follows:

ẋ(t) =
{

ri∑

k=1

vik(t)
[
(Aik + �Aik)x(t) + (Aidk + �Aidk)x

(
t − τi(t)

)

+ (Bik + �Bik)u(t) + (Dik + �Dik)w(t)
]
}/ ri∑

k=1

vik(t)

=
ri∑

k=1

hik(t)
[
(Aik + �Aik)x(t) + (Aidk + �Aidk)x

(
t − τi(t)

)

+ (Bik + �Bik)u(t) + (Dik + �Dik)w(t)
]
,

y(t) =
∑ri

k=1 vik(t)[Eikx(t) + Eidkx(t − τi(t)) + Ciku(t)]
∑ri

k=1 vik(t)

=
ri∑

k=1

hik(t)
[
Eikx(t) + Eidkx

(
t − τi(t)

)+ Ciku(t)
]
,

x(t) = φi(t), t ∈ [−τi,0],

(5)

with vik(t) = ∏ei

p=1 Mi
kp(zi

p(t)), hik(t) = vik(t)∑ri
k=1 vik(t)

, and Mi
kp(zi

p(t)) is the grade of

the membership function of zi
p in Mi

kp . It is assumed that vik(t) ≥ 0 for all t ≥ 0,
i ∈ S, k ∈ Ri . Therefore the normalized membership function hik(t) satisfies
hik(t) ≥ 0,

∑ri
k=1 hik(t) = 1, t ≥ 0.

For convenient notation, we introduce Āik = Aik + �Aik, Āidk = Aidk +
�Aidk, B̄ik = Bik + �Bik, D̄ik = Dik + �Dik . Then, using this notation, the sys-
tem model (5) can be expressed as

ẋ(t) =
ri∑

k=1

hik(t)
[
Āikx(t) + Āidkx

(
t − τi(t)

) + B̄iku(t) + D̄ikw(t)
]
,

y(t) =
ri∑

k=1

hik(t)
[
Eikx(t) + Eidkx

(
t − τi(t)

) + Ciku(t)
]
,

x(t) = φi(t), t ∈ [−τi,0].

(6)

To end this section we state the following definitions and lemmas which will be
used throughout the paper.
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Definition 1 The equilibrium x∗ = 0 of system (5) is said to be robust expo-
nentially stable under control law u(t) and switching signal σ(t) if the solution
x(t) of system (1) with w(t) = 0 through (t0, φσ(t)) ∈ R+ × Cn satisfies ‖x(t)‖ ≤
K‖x(t0)‖de−λ(t−t0), ∀t ≥ t0, for constant K > 0 and λ > 0.

Definition 2 [1] For any T2 > T1 ≥ 0, let Nσ (T1, T2) denote the number of switching
of σ(t) over (T1, T2). If Nσ (T1, T2) ≤ N0 + (T2 − T1)/Tα holds for Tα > 0,N0 ≥ 0,
then Tα is called average dwell time.

Definition 3 For γ > 0, system (5) is said to have H∞ performance γ , if it is ex-
ponentially stable and under zero initial condition φi(θ) = 0, θ ∈ [−τi,0], i ∈ Si , we
have

∫ ∞
0 yT (s)y(s) ds ≤ γ 2

∫ ∞
0 wT (s)w(s) ds.

Lemma 1 [5] For any real matrices Xi,Xij for i, j = 1,2, . . . , r , and Q > 0 with
appropriate dimensions, we have

r∑

i=1

r∑

j=1

hi(t)hj (t)X
T
i QXj ≤

r∑

i=1

hi(t)X
T
i QXi,

r∑

i=1

r∑

j=1

r∑

k=1

r∑

l=1

hi(t)hj (t)hk(t)hl(t)X
T
ijQXkl ≤

r∑

i=1

r∑

j=1

hi(t)hj (t)X
T
ijQXij ,

where hi(t) ≥ 0,
∑r

i=1 hi(t) = 1 (1 ≤ i ≤ r).

Lemma 2 [12] Given matrices Q = QT ,H,E and R = RT > 0 of appropriate di-
mensions, Q + HFE + ET FT HT < 0 holds for all F satisfying FT F ≤ R, if and
only if there exists scalar β > 0 such that Q + βHT RH + β−1ET RE < 0.

3 Robust Stability

In this section, we consider the stability analysis of the systems (6) described in the
last section. The stability condition for the system without control input and external
disturbance can be summarized in the following theorem.

Theorem 3.1 The system (5), or equivalently (6) with u(t) ≡ w(t) ≡ 0, suppose
that the time-varying delay τi(t) satisfies 0 ≤ τi(t) ≤ τi, τ̇i (t) ≤ κi(τi > 0, i ∈ S).
For given positive constants α and β , if there exist matrices P T

i = Pi > 0,QT
ik =

Qik > 0,RT
ik = Rik > 0, Xik = [Xik11 Xik12

∗ Xik22

] ≥ 0, and any matrices Yik and Tik with
appropriate dimensions such that

Θimkl < 0, k ≤ l,m ∈ Ri, i ∈ S (7)

Φik ≥ 0, k ∈ Ri, i ∈ S (8)
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where

Φik =
⎡

⎢
⎣

Xik11 Xik12 Yik

∗ Xik22 Tik

∗ ∗ e−ατi Qik

⎤

⎥
⎦ ,

Θimkl =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ψi11 Ψi12 AT
ikQil AT

ilQik PiMik PiMil NT
i1,k NT

i1l

∗ Ψim22 AT
idkQil AT

idlQik 0 0 NT
i2k NT

i2l

∗ ∗ −τ−1
i Qil 0 QilMik 0 0 0

∗ ∗ ∗ −τ−1
i Qik 0 QikMil 0 0

∗ ∗ ∗ ∗ −βI 0 0 0

∗ ∗ ∗ ∗ ∗ −βI 0 0

∗ ∗ ∗ ∗ ∗ ∗ −β−1I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −β−1I

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

with

Ψi11 = ϕik11 + ϕil11,Ψi12 = ϕik12 + ϕil12,

Ψim22 = ϕikm22 + ϕilm22,

ϕik11 = PiAik + AT
ikPi + αPi + Rik + Yik + YT

ik + τiXik11,

ϕik12 = PiAidk − Yik + T T
ik + τiXik12,

ϕikm22 = −T T
ik − Tik + τiXik22 + (

κi − e−ατi
)
Rim.

(9)

Then, system is exponentially stable for any switching signal with average dwell
time satisfying

Tα > T ∗
α = lnμ

α
. (10)

Moreover, an estimate of state decay is given by

∥
∥x(t)

∥
∥ ≤

√
b

a
μN0/2e−λ(t−t0)

∥
∥x(t0)

∥
∥

d
, (11)

where

a = min
i∈S

λmin(Pi),

b = max
i∈S

λmax(Pi) + max
i∈S,k∈Ri

τ 2
i

2
λmax(Qik) + max

i∈S,k∈Ri

τiλmax(Rik)

(12)

and λ = 1/2(α − lnμ/Tα), μ ≥ 1 satisfies

Pi ≤ μPj , Qik ≤ μQjn, Rik ≤ μRjn, ∀(i, j, k, n) ∈ S × S × Ri × Ri. (13)
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Proof Consider the following PFLKFs for the system (6) with u(t) ≡ w(t) ≡ 0:

Vi(t) = Vi1(t) + Vi2(t) + Vi3(t), i ∈ S, (14)

where Vi1(t) = xT (t)Pix(t), Vi2(t) = ∫ 0
−τi

∫ t

t+θ
ẋT (s)e−α(t−s)Qi(s)ẋ(s) ds dθ with

Qi(s) = ∑ri
k=1 hik(s)Qik , Vi3(t) = ∫ t

t−τi (t)
xT (s)e−α(t−s)Ri(s)x(s) ds with Ri(s) =

∑ri
k=1 hik(s)Rik .
Then, one has

V̇i1(t) = 2xT (t)Pi ẋ(t)

=
ri∑

k=1

hik(t)
[
xT (t)(2PiĀik)x(t) + xT (t)(2PiĀidk)x

(
t − τi(t)

)]
, (15)

V̇i2(t) ≤ −αVi2(t) + τi ẋ
T (t)Qi(t)ẋ(t) −

∫ t

t−τi (t)

ẋ(s)e−ατi Qi(s)ẋ(s) ds, (16)

V̇i3(t) ≤ −αVi3(t) + xT (t)Ri(t)x(t)

+ xT
(
t − τi(t)

)[(
κi − e−ατi

)
Ri

(
t − τi(t)

)]
x
(
t − τi(t)

)
. (17)

Let ηT (t) = [xT (t), xT (t − τi(t))], X̂ik = [Āik, Āidk] and by Lemma 1 we have

τi ẋ
T (t)Qi(t)ẋ(t) =

ri∑

k=1

ri∑

l=1

hik(t)hil(t)
[
ηT (t)X̂T

ikτiQi(t)X̂ilη(t)
]

≤
ri∑

k=1

hik(t)
{
ηT (t)X̂T

ikτiQi(t)X̂ikη(t)
}

=
ri∑

k=1

hik(t)

{

ηT (t)

[
ĀT

ikτiQi(t)Āik ĀT
ikτiQi(t)Āidk

∗ ĀT
idkτiQi(t)Āidk

]

η(t)

}

.

(18)

From Leibniz–Newton, we obtain

2
[
xT (t)Yi(t)+xT

(
t − τi(t)

)
Ti(t)

][
x(t)−x

(
t − τi(t)

)−
∫ t

t−τi (t)

ẋ(s) ds

]
= 0 (19)

with Yi(t) = ∑ri
k=1 hik(t)Yik and Ti(t) = ∑ri

k=1 hik(t)Tik .
It holds that

τiη
T (t)Xikη(t) −

∫ t

t−τi (t)

ηT (s)Xikη(s) ds ≥ 0. (20)
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Combining (14)–(20), V̇i (t) + αVi(t) can be presented totally as follows:

V̇i (t) + αVi(t) ≤
ri∑

m=1

him(t)

{
ri∑

k=1

ri∑

l=1

hik(t)hil(t)η
T (t)Ξimklη(t)

}

−
ri∑

k=1

hik(t)

∫ t

t−τi (t)

ηT (t, s)Φikη(t, s) ds

=
ri∑

m=1

him(t)

{
ri∑

k=1

h2
ik(t)η

T (t)
[
(Ξimkk + Ξimkk)/2

]
η(t)

+
ri−1∑

k=1

ri∑

l>k

hik(t)hil(t)η
T (t)(Ξimkl + Ξimlk)

}

−
ri∑

k=1

hik(t)

∫ t

t−τi (t)

ηT (t, s)Φikη(t, s) ds, (21)

where

Ξimkl =
[

φik11 + τiĀ
T
ikQilĀik φik12 + τiĀ

T
ikQilĀidk

∗ φikm22 + τiĀ
T
ikQilĀidk

]

,

ηT (t, s) = [
ηT (t), ẋT (s)

]
,

φik11 = PiĀ
T
ik + ĀikPi + Rik + αPi + YT

ik + Yik + τiXik11,

φik12 = PiĀ
T
idk − Yik + T T

ik + τiXik12,

φikm22 = −Tik − T T
ik + (

κi − e−ατi
)
Rim + τiXik22.

Next, let

M̂T
ikl =

[
MT

ikPi 0 MT
ikQil 0

MT
il Pi 0 0 MT

il Qik

]

, N̂T
ikl =

[
Ni1k Ni2k 0 0

Ni1l Ni2l 0 0

]

,

then by Schur complement, conditions (7) is equivalent to the following inequalities:

⎡

⎢⎢⎢⎢
⎣

ϕik11 + ϕil11 ϕik12 + ϕil12 AT
ikQil AT

ilQik

∗ ϕikm22 + ϕilm22 AT
idkQil AT

idlQik

∗ ∗ −τ−1
i Qil 0

∗ ∗ ∗ −τ−1
i Qik

⎤

⎥⎥⎥⎥
⎦

︸ ︷︷ ︸
(:=∇)

+ β−1M̂iklM̂
T
ikl + βN̂iklN̂

T
ikl < 0. (22)
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From Lemma 2 and (4) we know that when (22) is satisfied, the following inequal-
ities hold:

∇ + M̂iklF
T
i (t)N̂T

ikl + N̂iklFi(t)M̂
T
ikl

=

⎡

⎢⎢⎢⎢
⎣

φik11 + φil11 φik12 + φil12 ĀT
ikQil ĀT

ilQik

∗ φikm22 + φilm22 ĀT
idkQil ĀT

idlQik

∗ ∗ −τ−1
i Qil 0

∗ ∗ ∗ −τ−1
i Qik

⎤

⎥⎥⎥⎥
⎦

< 0. (23)

Then using Schur complement again, inequalities in (23) are equivalent to the
following condition:

[
φik11 + φil11 φik12 + φil12

∗ φikm22 + φilm22

]

+
[

ĀT
ikQil ĀT

ilQik

ĀT
idkQil ĀT

idlQik

]

·
[

τiQ
−1
il 0

∗ τiQ
−1
ik

]

·
[

ĀT
ikQil ĀT

ilQik

ĀT
idkQil ĀT

idlQik

]T

= Ξimkl + Ξimlk < 0, k ≤ l,m ∈ Ri, i ∈ S. (24)

Thus from (24) and (21) we conclude that (7) and (8) imply V̇i (t) + αVi(t) < 0,
then integrating V̇i (t) + αVi(t) < 0 from tk to t gives

Vσ(t)(t) ≤ e−α(t−tk)Vσ(tk)(tk), t ∈ [tk, tk+1), i ∈ S. (25)

There exists matrix Q0 such that μQjl ≥ Q0 ≥ Qik , then we have

rj∑

l=1

hjl(k)μQjl ≥
rj∑

l=1

hjl(k)Q0 = Q0, Q0 =
ri∑

k=1

hik(t)Q0 ≥
ri∑

k=1

hik(t)Qik.

Obviously, from (14) we have Vi2(t) ≤ μVj2(t). Similarly, Vi3(t) ≤ μVj3(t). Finally,
using (13) and (14) at switching time ti , we have

Vσ(ti )(ti ) ≤ μVσ(ti− )(ti−), i ∈ S (26)

Therefore, it follows from (10), (25) and (26) and the relation k = Nσ(t) ≤ N0 +
(t − t0)/Tα with N0 ≥ 0 that

Vσ(ti )(ti ) ≤ e−α(t−tk)μVσ(t−k )

(
t−k

) ≤ · · · ≤ e−α(t−t0)μkVσ(t0)(t0)

≤ μN0e−(α−lnμ/Tα)(t−t0)Vσ(t0)(t0). (27)

According (12) and (14) we have

a
∥∥x(t)

∥∥2 ≤ Vσ(t)(t), Vσ(t0)(t0) ≤ b
∥∥x(t0)

∥∥2
d
. (28)



Circuits Syst Signal Process (2014) 33:1411–1437 1421

Let λ = 1/2(α − lnμ/Tα), combining (27) and (28) gives rise to

∥∥x(t)
∥∥2 ≤ 1

a
Vσ(t)(t) ≤ b

a
μN0e−(α−lnμ/Tα)(t−t0)

∥∥x(t0)
∥∥2

d
. (29)

Therefore ‖x(t)‖ ≤
√

b
a
μN0/2e−λ(t−t0)‖x(t0)‖d , thus the proof is completed. �

Corollary 3.1 For ḋ(t) does not exist or is unknown, when (7) with Rik = 0 and
(8) hold, the system (5), or equivalently (6) with u(t) ≡ w(t) ≡ 0 is exponentially
stable for any switching signal with average dwell time satisfying (10). Moreover, an
estimate of state decay is given by (11), where λ = 1/2(α − lnμ/Tα), a and b are
given in (12) with Rik = 0, and μ ≥ 1 satisfies (13) with Rik = Rjn = 0.

Proof The proof is similar to that of Theorem 3.1. �

Remark 3.1 PLKFs used in [3] to study switching linear system with delays can
also be extended to switching fuzzy system with Qik = Qi,Rik = Ri , Xik11 =
Xi11,Xik12 = Xi12,Xi22 = Xi22, Yik = Yi and Tik = Ti . But the results summa-
rized as follows are conservative compared with the result in Theorem 3.1 based
on PFLKFs.

Corollary 3.2 The system (5), or equivalently (6) with u(t) ≡ w(t) ≡ 0, suppose that
the time-varying delay τi(t) satisfies 0 ≤ τi(t) ≤ τi and τ̇i (t) ≤ κi(τi > 0, i ∈ S). For
given positive constants α and β , if there exist matrices P T

i = Pi > 0,QT
i = Qi > 0,

RT
i = Ri > 0, Xi = [Xi11 Xi12

∗ Xi22

] ≥ 0, and any matrices Yi and Ti with appropriate
dimensions such that

⎡

⎢
⎣

Xi11 Xi12 Yi

∗ Xi22 Ti

∗ ∗ e−ατi Qi

⎤

⎥
⎦ ≥ 0, i ∈ S, (30)

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

ωik11 ωik12 AT
ikQi PiMik NT

i1k

∗ ωi22 AT
idkQi 0 NT

i2k

∗ ∗ −τ−1
i Qi QiMik 0

∗ ∗ ∗ −βI 0

∗ ∗ ∗ ∗ −β−1I

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, k ∈ Ri, i ∈ S (31)

with

ωik11 = PiAik + AT
ikPi + αPi + Ri + Yi + YT

i + τiXi11,

ωik12 = PiAidk − Yi + T T
i + τiXi12,

ωi22 = −T T
i − Ti + τiXi22 + (

κi − e−ατi
)
Ri.

(32)
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Then, system is exponentially stable for any switching signal with average dwell
time satisfying (10). Moreover, an estimate of state decay is given by (11) where

a = min
i∈S

λmin(Pi), b = max
i∈S

λmax(Pi) + max
i∈S

τ 2
i

2
λmax(Qi) + max

i∈S
τiλmax(Ri),

(33)
λ = 1/2(α − lnμ/Tα), and μ ≥ 1 satisfies

Pi ≤ μPj , Qi ≤ μQj , Ri ≤ μRj , ∀(i, j) ∈ S × S. (34)

Proof The proof is similar to that of Theorem 3.1, here it is omitted. �

4 H∞ Analysis and Controller Design

In this section, we first analyze the H∞ disturbance attenuation performance for the
open loop continuous-time system. Consider the continuous-time system with time-
varying delay as in (6) without control input, then we are ready to present the follow-
ing H∞ performance analysis result.

Theorem 4.1 Consider continuous-time system as in (6) with u(t) ≡ 0, suppose that
the time-varying delay τi(t) satisfies 0 ≤ τi(t) ≤ τi and τ̇i ≤ κi(τi > 0, i ∈ S). Given
positive constants α, β , γ and there exist matrices

Pi = P T
i > 0, Qik = QT

ik > 0, Rik = RT
ik > 0,

Λik =
⎡

⎢
⎣

Xik11 Xik12 Xik13

∗ Xik22 Xik23

∗ ∗ Xik33

⎤

⎥
⎦ ≥ 0,

and any matrices Yik, Tik,Lik, k ∈ Ri, i ∈ S, with appropriate dimensions such that
⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Θ̂imkl Âikl Âilk Êikl M̂ik M̂il N̂ikl

∗ −τ−1
i Qil 0 0 QilMik 0 0

∗ ∗ −τ−1
i Qik 0 0 QikMil 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −βI 0 0

∗ ∗ ∗ ∗ ∗ −βI 0

∗ ∗ ∗ ∗ ∗ ∗ −β−1I

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0,

k ≤ l,m,∈ Ri, i ∈ S, (35)
⎡

⎢⎢⎢
⎢
⎣

Xik11 Xik12 Xik13 Yik

∗ Xik22 Xik23 Tik

∗ ∗ Xik33 Lik

∗ ∗ ∗ e−ατi Qik

⎤

⎥⎥⎥
⎥
⎦

≥ 0, k ∈ Ri, i ∈ S, (36)
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where

Θ̂imkl =
⎡

⎢
⎣

�ik11 + �il11 �ik12 + �il12 �ik13 + �il13

∗ �ikm22 + �ilm22 �ik23 + �il23

∗ ∗ �ik33 + �il33

⎤

⎥
⎦ ,

Âikl =
⎡

⎢
⎣

AT
ikQil

AT
idkQil

DT
ikQil

⎤

⎥
⎦ , Êikl =

⎡

⎢
⎣

ET
ik ET

il

ET
idk ET

idl

0 0

⎤

⎥
⎦ , M̂ik =

⎡

⎢
⎣

PiMik

0

0

⎤

⎥
⎦ ,

N̂ikl =
⎡

⎢
⎣

NT
i1k NT

i1l

NT
i2k NT

i2l

NT
i4k NT

i4l

⎤

⎥
⎦ , �ik11 = ϕik11, �ik12 = ϕik12,

�ikm22 = ϕikm22, �ik33 = τiXik33 − γ 2I,

�ik13 = PiDik + LT
ik + τiXik13, �ik23 = −LT

ik + τiXik23,

(37)

and ϕik11, ϕik12, ϕikm22 are defined in (9).
Then the system is exponentially stable and has H∞ γ performance as in Defi-

nition 3 for any switching signal with average dwell time satisfying (10) and μ ≥ 1
satisfies (13).

Proof It is easy to see that the LMIs (35) and (36) imply LMIs (7) and (8), respec-
tively; therefore, it follows from Theorem 3.1 that the system as in (6) with u(t) ≡ 0
is exponentially stable. Now, we show that the system have H∞ performance by Def-
inition 3.

Under zero initial condition, for system (6) considering PFKLFs (14) and by
Lemma 1 we have (16), (17) and the following results:

yT (t)y(t) − γ 2wT (t)w(t)

≤
ri∑

k=1

hik(t)η
T (t)

[
ET

ik

ET
idk

][
ET

ik

ET
idk

]T

η(t) − γ 2wT (t)w(t)

=
ri∑

k=1

hik(t)ξ
T (t)

⎡

⎢
⎣

ET
ikEik ET

ikEidk 0

∗ ET
idkEidk 0

0 0 −γ 2I

⎤

⎥
⎦ ξ(t), (38)

V̇i1(t) =
ri∑

k=1

hik(t)
[
xT (t)(2PiĀik)x(t) + xT (t)(2PiĀidk)x

(
t − τi(t)

)

+ xT (t)(2PiD̄ik)w(t)
]
, (39)
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τi ẋ
T (t)Qi(t)ẋ(t)

≤
ri∑

k=1

hik(t)

⎧
⎪⎨

⎪⎩
ξT (t)

⎡

⎢
⎣

ĀT
ikτiQi(t)Āik ĀT

ikτiQi(t)Āidk ĀT
ikτiQi(t)D̄ik

∗ ĀT
idkτiQi(t)Āidk ĀT

idkτiQi(t)D̄ik

∗ ∗ D̄T
ikQi(t)D̄ik

⎤

⎥
⎦ ξ(t)

⎫
⎪⎬

⎪⎭
,

(40)

where ηT (t) = [xT (t), xT (t − τi(t))], ξT (t) = [xT (t), xT (t − τi(t)),w
T (t)].

From Leibniz–Newton, we obtain

2ξT (t)
[
YT

i (t) T T
i (t) LT

i (t)
]T

[
x(t) − x

(
t − τi(t)

)−
∫ t

t−τi (t)

ẋ(s) ds

]
= 0,

(41)
with Yi(t) = ∑ri

k=1 hik(t)Yik , Ti(t) = ∑ri
k=1 hik(t)Tik and Li(t) = ∑ri

k=1 hik(t)Lik .
For Λik ≥ 0 given in Theorem 4.1, we have

τiξ
T (t)Λikξ(t) −

∫ t

t−τi (t)

ξT (s)Λikξ(s) ds ≥ 0. (42)

Define ςT (t, s) = [ξT (t), ẋT (s)], then combine (14), (16)–(17) and (38)–(42)
yields

V̇i(t) + αVi(t) + yT (t)y(t) − γ 2wT (t)w(t)

≤
ri∑

m=1

ri∑

k=1

ri∑

l=1

him(t)hik(t)hil(t)ξ
T (t)Ωimklξ(t)

−
ri∑

k=1

hik(t)

∫ t

t−τi (t)

ςT (t, s)Λikς(t, s) ds

=
ri∑

m=1

him(t)

[
ri∑

k=l=1

h2
ik(t)ξ

T (t)
Ωimkk + Ωimkk

2
ξ(t)

+
ri−1∑

k=1

ri∑

l>k

hik(t)hil(t)ξ
T (t)(Ωimkl + Ωimlk)ξ(t)

]

−
ri∑

k=1

hik(t)

∫ t

t−τi (t)

ςT (t, s)Λikς(t, s) ds, (43)

where

Ωimkl

=

⎡

⎢
⎢
⎣

μik11 + τi Ā
T
ikQilĀik + ET

ikEik μik12 + τi Ā
T
ikQil Āidk + ET

ikEidk μik13 + τi Ā
T
ikQilD̄ik

∗ μimk22 + τi Ā
T
idkQilĀidk + ET

idkEidk μik23 + τi Ā
T
idkQilD̄ik

∗ ∗ μik33

⎤

⎥
⎥
⎦ ,
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μik11 = φik11, μik12 = φik12, μimk22 = φimk22, μik23 = τiXik23 − LT
ik,

μik33 = τiXik33 − γ 2I, μik13 = τiXik13 + PiD̄ik + LT
ik

with φik11, φik12, φimk22 are defined in (21).
By Schur complement, conditions (35) are equivalent to the following inequalities:

Υ̂imkl + β−1M̃iklM̃
T
ikl + βÑiklÑ

T
ikl < 0, (44)

with

ÑT
ikl =

[
N̂T

ikl 0 0 0
]
, M̃T

ikl =
[

M̂T
ik MT

ikQil 0 0

M̂T
il 0 MT

il Qik 0

]

,

Υ̂imkl =

⎡

⎢⎢⎢⎢
⎣

Θ̂imkl Âikl Âilk Êikl

∗ −τ−1
i Qil 0 0

∗ ∗ −τ−1
i Qik 0

∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥
⎦

.

By Lemma 2 we know that when (44) are satisfied the following inequalities hold:

Υ̂imkl + M̃iklFi(t)Ñ
T
ikl + ÑiklFi(t)M̃

T
ikl

=

⎡

⎢⎢⎢⎢⎢
⎣

Θ̂imkl
ˆ̄Aikl

ˆ̄Ailk Êikl

∗ −τ−1
i Qil 0 0

∗ ∗ −τ−1
i Qik 0

∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥
⎦

< 0, (45)

where ˆ̄AT
ikl = [QilĀik QilĀidk QilD̄ik].

Then using Schur complement again, (45) are equivalent to the following condi-
tion with Ωimkl given in (43):

Θ̂imkl +
[ ˆ̄Aikl

ˆ̄Ailk

][τiQ
−1
il 0

∗ τiQ
−1
ik

]⎡

⎣
ˆ̄AT
ikl

ˆ̄AT
ilk

⎤

⎦ + ÊiklÊ
T
ikl = Ωimkl < 0,

k ≤ l,m ∈ Ri, i ∈ S. (46)

Thus from (43) and (46) we conclude that when (35) and (36) hold the inequality
as follows is satisfied:

V̇i (t) + αVi(t) + yT (t)y(t) − γ 2wT (t)w(t) < 0. (47)

Let X(t) = yT (t)y(t) − γ 2wT (t)w(t). Using (13) and (14) at switching time ti ,
we have (26). Let t0 = 0, therefore it follows from (26) and (47) and the relation
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k = Nσ (0, t), for any t ∈ [tk, tk+1) we have

Vσ(ti )(ti ) ≤ e−α(t−tk)Vσ(tk)(tk) −
∫ t

tk

e−α(t−s)X(s) ds

≤ μke−αtVσ(0)(0) −
∫ t

tk

e−α(t−s)X(s) ds

= e−αt+Nσ (0,t) lnμVσ(0)(0) −
∫ t

tk

e−α(t−s)X(s) ds. (48)

Under zero initial condition, (48) gives − ∫ t

tk
e−α(t−s)X(s) ds ≥ 0. Similarly, we have

−
∫ t

0
e−α(t−s)+Nσ (s,t) lnμΥ (s) ds ≥ 0. (49)

Multiplying both sides of (32) by e−Nσ (0,t) lnμ yields

∫ t

0
e−α(t−s)−Nσ (0,s) lnμyT (s)y(s) ds ≤

∫ t

0
e−α(t−s)−Nσ (0,s) lnμγ 2wT (s)w(s) ds.

(50)
Noticing that N(0, s) ≤ N0 + s/Tα,N0 > 0 and Tα > lnμ/α, we have

Nσ (0, s) lnμ ≤ N0 lnμ + αs. (51)

Thus, it follows from (33) and (34) that

∫ t

0
e−αtyT (s)y(s) ds <

∫ t

0
e−α(t−s)γ 2wT (s)w(s) ds.

Then multiplying both sides of (49) by eα(t−s) yields

∫ t

0
yT (s)y(s) ds ≤

∫ t

0
γ 2wT (s)w(s) ds, (52)

integrating both sides of this inequality from t = 0 to ∞ leads to H∞ performance
by Definition 3. Thus this complete the proof. �

Remark 4.1 When we get lower bound μ, the lower bound T ∗
α by (10) can be ob-

tained. Then, the search problem of lower bound μ can be formulated as the following
GEVP problem to obtain

μmin : minimize μ > 0,

s.t.

{
Pi = P T

i > 0, Qik = QT
ik > 0, Rik = RT

ik > 0, Λik ≥ 0,

inequalities: (35),(36),(13), 1 < μ.
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Meanwhile for a given μ > μmin the search problem of lower bound γ can be
formulated as the following optimal problem to obtain

γmin : minimize γ > 0,

s.t.

{
Pi = P T

i > 0, Qik = QT
ik > 0, Rik = RT

ik > 0, Λik ≥ 0,

inequalities: (13), (35), (36).

Corollary 4.1 For ḋ(t) does not exist or is unknown, when (35) with Rik = 0 and
(36) hold, the system (6) with u(t) = 0 is stable and has H∞ performance for any
switching signal with average dwell time satisfying (10).

Proof Its proof is similar to that of Theorem 4.1, it is omitted here. �

Next we consider H∞ controller problems. Recall that the PDC technique was
presented by [18, 19], the control law can be given as follows:

Switching Region i, i ∈ S

Local Plant Rule k, k ∈ Ri

IF zi
1 is Mi

k1 and . . . and zi
e is Mi

ke THEN

u(t) = Fikx(t), t ≥ 0.

Then the closed-loop system (6) is rewritten as follows:

ẋ(t) =
ri∑

k=1

ri∑

l=1

hik(t)hil(t)
[
(Āik + B̄ikFil)x(t) + Āidkx

(
t − τi(t)

) + D̄ikw(t)
]
,

y(t) =
ri∑

k=1

ri∑

l=1

hik(t)hil(t)
[
(Eik + CikFil)x(t) + Eidkx

(
t − τi(t)

)]
,

x(t) = φi(t), t ∈ [−τi,0].

(53)

Theorem 4.2 Consider the closed-loop system (53) with time-varying delays τi(t)

satisfies 0 < τi(t) ≤ τi and τ̇i (t) ≤ κi(τi > 0, i ∈ S). For given positive constants α

and γ , if there exist scalar β > 0 and matrices

P̃i = P̃ T
i > 0, Q̃ik = Q̃T

ik > 0, R̃ik = R̃T
ik > 0,

X̃ik =

⎡

⎢
⎢
⎣

X̃ik11 X̃ik12 X̃ik13

∗ X̃ik22 X̃ik23

∗ ∗ X̃ik33

⎤

⎥
⎥
⎦ ≥ 0,
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and any matrices Ỹik, T̃ik, L̃ik with appropriate dimensions such that

Ξimnkl =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Σinkl K̆ikl K̆ilk Ĕikl M̆ik M̆il N̆ikl

∗ −τ−1
i Q̃im 0 0 Mik 0 0

∗ ∗ −τ−1
i Q̃im 0 0 Mil 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −βI 0 0

∗ ∗ ∗ ∗ ∗ −βI 0

∗ ∗ ∗ ∗ ∗ ∗ −β−1I

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0,

k ≤ l,m,n ∈ Ri, i ∈ S, (54)

⎡

⎢⎢⎢⎢
⎣

X̃ik11 X̃ik12 X̃ik13 Ỹik

∗ X̃ik22 X̃ik23 T̃ik

∗ ∗ X̃ik33 L̃ik

∗ ∗ ∗ e−ατi Q̃ik

⎤

⎥⎥⎥⎥
⎦

≥ 0, k ∈ Ri, i ∈ S, (55)

where

Σinkl =
⎡

⎢
⎣

πikl11 + πilk11 πik12 + πil12 πik13 + πil13

∗ πink22 + πinl22 πik23 + πil23

∗ ∗ πik33 + πil33

⎤

⎥
⎦ ,

K̆ikl =

⎡

⎢⎢
⎣

P̃iA
T
ik + KT

il B
T
ik

P̃iA
T
idk

DT
ik

⎤

⎥⎥
⎦ , Ĕikl =

⎡

⎢⎢
⎣

P̃iE
T
ik + KT

il C
T
ik P̃iE

T
il + KT

ikC
T
il

P̃iE
T
idk P̃iE

T
idl

0 0

⎤

⎥⎥
⎦ ,

N̆ikl =

⎡

⎢
⎢
⎣

P̃iN
T
i1k + KT

il N
T
i3k P̃iN

T
i1l + KT

ikN
T
i3l

P̃iN
T
i2k P̃iN

T
i2l

NT
i4k NT

i4l

⎤

⎥
⎥
⎦ , M̆T

ik = [
MT

ik 0 0
]
,

πikl11 = AikP̃i + P̃AT
ik + BikKil + (BikKil)

T + αP̃i + R̃ik + Ỹ T
ik + Ỹik + τiX̃ik11,

πik12 = AidkP̃i − Ỹ T
ik + T̃ T

ik + τiX̃ik12,

πink22 = −T̃ T
ik − T̃ik + (

κi − e−ατi
)
R̃in + τiX̃ik22,

πik13 = Dik + L̃T
ik + τiX̃ik13, πik23 = −L̃T

ik + τiX̃ik23,

πik33 = −γ 2I + τiX̃ik33.

Then the system (53) is exponentially stable with γ -disturbance attenuation H∞ per-
formance under the control law for any switching signal with average dwell satisfying
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(10), and μ ≥ 1 satisfies

P̃i ≤ μP̃j , Q̃ik ≤ μQ̃jn, R̃ik ≤ μR̃jn, ∀(i, j, k, n) ∈ S × S × Ri × Ri. (56)

Moreover, the feedback gain is given by Fik = KikP̃
−1
i , k ∈ Ri, i ∈ S.

Proof Consider the PFLKFs (14), one has (16), (17), and

V̇i2(t) ≤ −αVi2(t) + τi ẋ(t)Qi(t)ẋ(t) −
∫ t

t−τi (t)

ẋT (s)e−ατi Qi(s)ẋ(s). (57)

Let ϑT (t) = [xT (t), xT (t − τi(t)),w
T (t)], �T

ikl = [Āik + B̄ikFil Āidk D̄ik],
Λ̃T

ikl = [Eik + CidkFil Eidk 0], and by Lemma 1 and from system (51) one has

τi ẋ(t)Qi(t)ẋ(t)

=
ri∑

k=1

ri∑

l=1

ri∑

m=1

ri∑

n=1

hik(t)hil(t)him(t)hin(t)
[
υT (t)�iklτiQi(t)�imn

T υ(t)
]

≤
ri∑

k=1

ri∑

l=1

hik(t)hil(t)
[
υT (t)�iklτiQi(t)�ikl

T υ(t)
]
, (58)

yT (t)y(t) =
ri∑

k=1

ri∑

l=1

ri∑

m=1

ri∑

n=1

hik(t)hil(t)him(t)hin(t)
[
υT (t)Λ̃iklΛ̃

T
imnυ(t)

]

≤
ri∑

k=1

ri∑

l=1

hik(t)hil(t)
[
υT (t)Λ̃iklΛ̃

T
iklυ(t)

]
. (59)

Then the rest of the proof is similar to the proof of H∞ performance analysis in
Theorem 4.1, here it is omitted.

Based on the result in Theorem 4.1, we get (36) and the following inequalities
which correspond to (54) with m,n ∈ Ri, i ∈ S:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

∏
inkl K̆imkl K̆imlk

˘̄Eikl
˘̄Mik

˘̄Mil
˘̄Nikl

∗ −τ−1
i Qim 0 0 QimMik 0 0

∗ ∗ −τ−1
i Qim 0 0 QimMil 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −βI 0 0

∗ ∗ ∗ ∗ ∗ −βI 0

∗ ∗ ∗ ∗ ∗ ∗ −β−1I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

< 0,

k ≤ l ∈ Ri, i ∈ S, (60)
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where

∏

inkl

=

⎡

⎢⎢
⎣

πikl11 + πilk11 πik12 + πil12 πik13 + πil13

∗ πink22 + πinl22 πik23 + πil23

∗ ∗ πik33 + πil33

⎤

⎥⎥
⎦ ,

K̆imkl =

⎡

⎢⎢
⎣

(Aik + BikFil)
T Qim

AT
idkQim

DT
ikQim

⎤

⎥⎥
⎦ ,

˘̄Eikl =

⎡

⎢⎢
⎣

(Eik + CikFil)
T (Eil + CilFik)

T

ET
idk ET

idl

0 0

⎤

⎥⎥
⎦ ,

˘̄Nikl =

⎡

⎢⎢
⎣

(Ni1k + Ni3kFil)
T (Ni1l + Ni3lFik)

T

NT
i2k NT

i2l

NT
i2k NT

i2l

⎤

⎥⎥
⎦ , ˘̄MT

ik =
[
MT

ikPi 0 0
]
,

πikl11 =Pi(Aik + BikFil) + (Aik + BikFil)
T Pi + αPi + Rik + YT

ik + Yik + τiXik11,

πik12 = PiA
T
idk − YT

ik + LT
ik + τiXik12,

πink22 = −T T
ik − Tik + (

κi − e−ατi
)
Rin + τiXik22,

πik13 = PiDik + LT
ik + τiXik13, πik23 = −LT

ik + τiXik23,

πik33 = −γ 2I + τiXik33.

Then pre- and post-multiplying (60) by diag{P −1
i , P −1

i , I,Q−1
im ,Q−1

im , I, I, I, I,

I, I } and its transposed matrix, (36) by diag{P −1
i , P −1

i , I,Q−1
ik }, respectively, and ap-

plying the change of variable such that P̃i = P −1
i , Q̃ik = Q−1

ik , R̃ik = P̃iRikP̃i , Ỹik =
P̃iYikP̃i , T̃ik = P̃iTikP̃i , L̃ik = LikP̃i ,Kiv = FivP̃i , X̃ik11 = P̃iXik11P̃i , X̃ik12 =
P̃iXik12P̃i , X̃ik13 = P̃iXik13, X̃ik22 = P̃iXik22P̃i , X̃ik23 = P̃iXik23, X̃ik33 = Xik33,
we get inequalities (13), (54), and (55); this completes the proof. �

5 Simulation examples

In this section, two simulation examples are given to illustrate the effectiveness of the
proposed approach.
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Example 1 (H∞ performance analysis) Let xT (t) = [xT
1 (t), xT

2 (t)], consider the fol-
lowing two uncertain switching fuzzy time-varying delays system (5) with u(t) ≡ 0.

Switching Region 1:

A11 =
[−0.1 0.1

0 −0.16

]

, A12 =
[−0.1 0

0 −0.2

]

,

A1d1 = A1d,2 =
[−0.1 0

0 0.1

]

, D11 = D12 =
[

0.1 0

0 0.2

]

,

N111 = N112 = N121 = N122 = 0, N141 = N142 =
[

0.1 0

0 0.1

]

,

E11 = E12 =
[

0 0

0.2 0.1

]

, E1d1 = E1d2 = 0.

Switching Region 2:

A21 =
[−0.5 0.1

0.01 −a

]

, A22 =
[−0.1 0

0.1 −b

]

,

A2d1 = A2d2 =
[−0.1 0

0 0.1

]

, D21 = D22 =
[

0.1 0

0 0.2

]

,

N211 = N212 = N221 = N222 = 0, N241 = N242 =
[

0.1 0

0 0.1

]

,

E21 = E22 =
[

0 0

0.2 1

]

, E2d1 = E2d2 = 0.

Membership functions: hi1(t) = sin2(t), hi2 = 1 − sin2(t), i = 1,2.
First of all we will compare the feasible regions of the system w(t) ≡ 0 for the

results in Theorem 4.1 (PFLKFs) and the results in Corollary 4.1 (PLKFs) for given
τi = 0.29, κi = 3, β = 0.8, α = 0.63,μ = 1.60 and γ = 1.7321 by changing a and b,
by changing a and b, where a takes value between −0.2 and 0.2 by step of 0.05 and
b takes value between 0.3 and 0.8 by step of 0.05. The simulation in Fig. 1 show the
result by Theorem 4.1 covers bigger regions than the one by Corollary 4.1, which
means conditions in Theorem 4.1 is more relaxed.

Next, using PLKFs and PFLKFs, respectively, the achievable minimum H∞ at-
tenuation level γmin for the robust H∞ stability analysis can be obtained and is sum-
marized in Table 1 for different τi, κi,μ and α. From it we can see that the result we
obtain by PFLKFs is smaller than PLKFs.
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Fig. 1 Feasible area for PLKFs
and PFLKFs

Table 1 γmin obtained by
different approach τi 0.29 0.29 0.29 0.1 0.07

κi 3 3 3 1.0374 0.7241

μ 1.5 1.5 1.8 1.5 1.5

α 0.05 0.65 0.65 0.65 0.65

γmin by PLKFs 0.9820 1.6946 1.6940 1.3068 1.2969

γmin by PFLKFs 0.9814 1.6486 1.6464 1.3028 1.2946

From Fig. 1 and Table 1, it can be seen that the PFLKFs based approach produces
less conservative results than the PLKFs (widely used in [14]) based approach.

Example 2 (R/C Hovercraft [17]) The controlled object of hovercraft type vehicle
(HTV) dynamics is represented as

ÿc(t) = sin θ(t)

M
f1(t), (61)

θ̈ (t) = l sinφ(t)

I
f2(t), (62)

where f1(t) = fR(t)+fL(t), f2(t) = fR(t)−fL(t); θ is the angle of the vehicle; l is
the distance between the gravity position and fans; φ is the angle between the gravity
position and fans; fR is the force generate by right side fan; fL is the force generated
by left side fan; M is the mass of the hovercraft; I is the inertia of the hovercraft.
In this simulation, φ = π/4,M = 0.1. The control purpose is limt→∞ yc(t) = 0 and
limt→∞ θ(t) = 0 by manipulating f1(t) and f2(t). Due to modeling error or external
disturbance, the practical system are always subject to various kinds of uncertainties
and time-varying delays are universal by various of factors. To make a switching
fuzzy model for (61) and (62), assume that θ(t) ∈ [−179.427◦ 179.427◦]. Thus we
can construct the following uncertain switching fuzzy model of system (61) and (62)
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with time-varying delays. The parameter matrices are given as follows:

Aik =

⎡

⎢⎢⎢⎢
⎣

0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

⎤

⎥⎥⎥⎥
⎦

, Blk =

⎡

⎢⎢⎢⎢
⎣

1
M

aki 0

0 0

0 l sinφ
I

0 0

⎤

⎥⎥⎥⎥
⎦

,

B2k =

⎡

⎢⎢⎢⎢
⎣

0 0 0 C
M

a2i

0 0 0 0
l sinφ

I
0 0 0

0 0 0 0

⎤

⎥⎥⎥⎥
⎦

, Aidk =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥⎥⎥⎥
⎦

,

Eik =

⎡

⎢⎢⎢
⎢
⎣

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

⎤

⎥⎥⎥
⎥
⎦

, Dik =

⎡

⎢⎢⎢
⎢
⎣

0 0

0.8 0

0 0

0 0.8

⎤

⎥⎥⎥
⎥
⎦

, Ni4 =

⎡

⎢⎢⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥
⎥
⎦

,

Ni1 = Ni2 = Ni3 = 0, Mik =

⎡

⎢⎢⎢⎢
⎣

0.8 0 0 0

0 0 0 0

0 0 0.8 0

0 0 0 0.8

⎤

⎥⎥⎥⎥
⎦

,

Cik = Eidk = 0, i = 1,2,3, k = 1,2, l = 1,3.

Here,

xT (t) =
[
ẏT
c (t) yc

T (t) θ̇T (t) θT (t)
]
, uT (t) =

[
f T

1 (t) f T
2 (t)

]

and wT (t) = [e−0.8t , e−0.1t ] is external disturbance with Fi(t) = sin(t).
Its the membership functions are given as:

h11
(
θ(t)

) = sin θ(t) − a12

a11 − a12
, h12(θ(t)) = a11 − sin θ(t)

a11 − a12
,

h21
(
θ(t)

) =
sin θ(t)
θ(t)

− a22

a21 − a22
, h22

(
θ(t)

) = a21 − sin θ(t)
θ(t)

a21 − a22
,

h31
(
θ(t)

) = sin θ(t) − a32

a31 − a32
, h32

(
θ(t)

) = a31 − sin θ(t)

a31 − a32
,

with a11 = 1, a12 = sin(179.427o)  0.01, a21 = 1, a22 = sin(d)/d, a31 = −1 and
a32 = sin(−179.427o)  −0.01.

For γ = 2, α = 0.1, β = 0.8, τi = 2, κi = 0.001,μ = 4 and d = π/50,C = 0.5.
Thus T ∗

α = lnμ/α = 13.863, the switching law in Fig. 2 (here, ‘1’, ‘2’ and ‘3’ rep-
resent the first, second, and third switching region, respectively) shows that average
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Fig. 2 Switching signal

dwell time Tα = 17.5 > T ∗
α doses satisfy (10). Under the switching law, using Theo-

rem 4.2 we can get the feedback gains as

F11 =

⎡

⎢⎢
⎣

−9.4105 −0.2980 0.0060 0
−0.1298 0.1646 −699.0 −81.5619
0.0017 −5.2260 0 0

0 −0.1131 0 0

⎤

⎥⎥
⎦ ,

F12 =

⎡

⎢⎢
⎣

−9.4107 −0.2980 0.0060 0
−0.1298 0.1646 −699.5861 −81.5619
0.0017 −5.2260 0 0

0 −0.1131 0 0

⎤

⎥⎥
⎦ ,

F21 =

⎡

⎢⎢
⎣

0 0.0003 −383.9211 −0.1444
0 0 0 −0.0007

5.4981 0 0 0
−7.1658 −0.0457 0 0

⎤

⎥⎥
⎦ ,

F22 =

⎡

⎢⎢
⎣

0 0.0003 −383.9211 −0.1444
0 0 0 −0.0007

5.4980 0 0 0
−7.1656 −0.0459 0 0

⎤

⎥⎥
⎦ ,

F31 =

⎡

⎢⎢⎢
⎢
⎣

3.2300 0.1108 0.0032 0

0.0505 −0.0613 −239.9262 −28.4264

0.0013 −1.7246 0 0

0 −0.0412 0 0

⎤

⎥⎥⎥
⎥
⎦

,
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Fig. 3 Output y(t)

F32 =

⎡

⎢⎢⎢⎢
⎣

3.1844 0.0627 0.0003 0

0.0236 −0.0301 −240.9449 −28.4572

−0.0002 −1.7230 0 0

0 −0.0411 0 0

⎤

⎥⎥⎥⎥
⎦

.

Figure 3 shows the output y1(t) = yc(t), y2(t) = θ(t) responses of the closed-loop
system in the presence of disturbances. It can be observed that the controller proposed
in this paper based on PFLKs not only stabilizes the system, but also effectively
attenuates the disturbances.

6 Conclusions

In this paper, a H∞ controller design method is developed for uncertain switching
fuzzy systems with time-varying delays based on PFLKFs. It is shown that the sta-
bility and control synthesis results based on the PFLKFs are less conservative than
those based on the PLKFs. A numerical example and a real plant are presented to
demonstrate the advantages of the proposed approach. As for switched systems, if
there exist some unstable subsystems the systems may be still be stable. However,
the controllers designed in this paper and others all require the controlled subsystems
are stable, not allow to have unstable ones. Thus, the controlled systems which is al-
lowed to have unstable systems will be our future interesting work. An asynchronous
controller may be a solution.
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