Circuits Syst Signal Process (2014) 33:1411-1437
DOI 10.1007/s00034-013-9702-4

Robust H,, Control of a Class of Switching Nonlinear
Systems with Time-Varying Delay Via T-S Fuzzy Model

Ou Ou - Yanbing Mao - Hongbin Zhang -
Liangliang Zhang

Received: 23 August 2012 / Published online: 28 November 2013
© Springer Science+Business Media New York 2013

Abstract This paper considers H, control of a class of switching nonlinear systems
with time-varying delays via T-S fuzzy model based on piecewise fuzzy weighting-
dependent Lyapunov—Krasovskii functionals (PFLKFs). The systems are switching
among several nonlinear systems. The Takagi and Sugeno (T-S) fuzzy model is em-
ployed to approximate the sub-nonlinear dynamic systems. Thus, with two level
functions, namely, crisp switching functions and local fuzzy weighting functions,
we introduce a continuous-time switched fuzzy systems, which inherently contain
the features of the switched hybrid systems and T-S fuzzy systems. Average dwell-
time approach and PFLKFs methods are utilized for the stability analysis and con-
troller design, and with free fuzzy weighting matrix scheme. Switching and control
laws are obtained such that the H, performance is satisfied. The conditions of sta-
bility and the control laws are given in the form of LMIs which can be obtained
by solving a set of linear matrix inequalities (LMIs) that are numerically feasible.
A numerical example and the control of an uncertain radio-controlled (R/C) hover-
craft with time-varying delay are given to demonstrate the efficiency of the proposed
method.
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1 Introduction

Switching systems are an important class of hybrid systems. Such systems can be
described by a family of continuous-time subsystems (or discrete-time subsystems)
and a rule that orchestrates the switching between them; for example, a given process
exhibits a switching behavior caused by abrupt changes of the environment. This
class of systems has numerous applications in the control of mechanical systems, the
automotive industry, aircraft and air traffic control, switching power converters and
many other fields. Although this class of systems can be seen as a particular case
of linear parameter varying (LPV) systems, it has specific characteristics: the first is
that the switch occurs between a finite number of subsystems; the second is that the
switching sequence has to be taken into account in practical situations. For instance,
one can only act using a certain sequence to stabilize the switched system. This class
system has received great interest from researchers during the last decade [1, 10, 14].

The stability problem, caused by various switching, is a main concern in the field
of switching systems [10]. So far, two stability issues have been addressed in liter-
ature, i.e., the stability under arbitrary switching and the stability under constrained
switching. The former case is mainly investigated based on constructing a common
Lyapunov function for all subsystems [10]. On the other hand, for switching systems
under constrained switching, it is well known that the multiple Lyapunov-like func-
tion approach is more efficient in offering greater freedom for demonstrating stability
of the system [14]. As a class of typical constrained switching signals, the average
dwell-time switching means that the number of switches in a finite interval is bounded
and the average time between consecutive switching is not less than a constant [10]
and [14]. The average dwell-time switching can cover the dwell-time switching and
its extreme case is actually the arbitrary switching. Therefore, it is of practical and
theoretical significance to probe the stability of switching systems with average dwell
time [14].

In recent years, switching linear systems have received a great deal of attention
in continuous-time domain [1, 14]. However, there is less research in the field of
continuous-time switching nonlinear systems [17, 24]. Since the introduction of T-S
fuzzy models by Takagi and Sugeno [15] in 1985, fuzzy model control has been
extensively studied because T-S fuzzy models provide an effective representation of
complex nonlinear systems [3, 4, 8, 9, 16, 18]. The objective of this paper is to study
switching nonlinear systems [11] with time-varying delay. Each subsystem is written
as an equivalent T-S fuzzy model. Recently, there has been several literature in the
field of switching fuzzy system [2, 17, 24]. However, they do not consider the average
dwell time in stability analysis which is important for switching systems.

Generally speaking, real systems with time delays are common in biology, me-
chanics, society, and economics. Moreover, time-varying delay is more important
and universal in real engineering processes and has more complex impacts on system
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dynamics than constant delay. Since time delay is a main factor of instability of time-
delay systems, the problem of stability analysis of time-delay systems has been one
of the main concerns of researchers wishing to inspect the properties of such systems.
Recently, the authors in [1] and [7, 20, 21, 25] considered switching linear systems
with delays. As for switched nonlinear systems with delays we hope we can as get
desirable result as switching linear systems such as exponential stability. Recently,
there exist some advanced methods to deal with time delay in the T-S fuzzy systems
[6, 13, 22, 23, 26], such as slack matrix, input-output method and delay partition-
ing method and fuzzy weighting-dependent Lyapunov—Krasovskii functionals to deal
with asymptotically stability. Based on these results, we can construct PFLKFs for the
exponential stability of switched fuzzy systems with delays. On the other hand, due to
modeling error or external disturbance, many practical systems are always subject to
various kinds of uncertainties. One of the most important requirements for a control
system is the so-called robustness. Since the pioneering work on the so-called Hy
optimal control theory, there has been a considerable progress in H, control theory
[4, 18] and [24]. In fact, the switching fuzzy systems the best of our knowledge, the
problems of stability analysis and robust Hs, control of continuous-time switching
fuzzy systems with both parametric uncertainties and time-varying delays has not
been addressed, which is very challenging and remains open.

The main contribution of the paper is that we investigate the exponential stability
of delayed switched nonlinear systems via T-S fuzzy model and get relaxed condi-
tions. In addition, we present new Ho, control design for uncertain continuous-time
switched fuzzy systems with time-varying delay based on PFLKFs. Compared with
the results based on PLKFs introduced in [14], the result based on PFLKFs is more
relaxed. Moreover, the stability checking results, the switching laws and control laws
can be obtained by solving a set of LMIs that are numerically tractable with commer-
cially available software.

The rest of this paper is organized as follows. System descriptions and preliminar-
ies are presented in Sect. 2. Stability analysis of uncertain continuous-time switching
fuzzy systems with time-varying delays is presented in Sect. 3. H, stability analysis
and controller design for such systems is considered in Sect. 4. In Sect. 5, a numeri-
cal example and the application to the H,, control of uncertain radio-controlled (R/C)
hovercraft with time-varying delays are provided to demonstrate effectiveness of our
results. Finally, conclusions are given in Sect. 6.

Notations The notations used are fairly standard. We use P > 0 (>, <, <0) to
denote a positive definite (semi-definite, negative definite, semi-negative definite)
matrix P. R" denotes the n-dimensional Euclidean space and L;[0, 00) is the
space of square integrable functions on [0, co0). For 7 > 0, let Ry = [0, +00] and
C, = C'([—7,0],R") be the Banach space of continuously differentiable mapping
from ([—7, 0], R") to R" with topology of uniform convergence. || - || denotes the
usual 2-norm and [|x (¢ 4+ 6)|l¢ = sup_, golllx( + O, X + O)]I}. Amax(P) and
Amin(P) denote the maximum and minimum eigenvalues of P. I and O represent the
identity and zero matrices in the block matrix. The superscript ‘7"’ stands for matrix
transpose; and the symmetric terms in a matrix are denoted by *. Matrices, if not
explicitly stated, are assumed to have compatible dimensions.
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2 System Descriptions and Preliminaries

In this paper, we consider systems described by
() = foiy (X)) + ho ) (x(t = To) (1)) + do oy (WD) + oy (u(D)),
y() =lo@y)(x(®) + moy (X (1 — oy (D)) + 1oy (u(1)),  1€[0,00), (1)
x(1) =do(), 1€[-T50),01

where x(¢) € R” is the state, u(¢f) € R™, is the control, w(¢) € R? is the exogenous
disturbance which belong to L,[0, co) and y(¢) € RY is the output. ¢ (¢) is the con-
tinuous vector-value function specifying the initial state of the system and 7, ) (¢)
is the continuous time-varying delay satisfying 0 < 751\ (t) < To (1), To (1) (t) < Ko (1)-
Joy()s ha)(), do)(4)s 8oty ()s lo@y()s Moy (+), No(r)(-) are the Lipschitz func-
tions.

The right continuous function o (¢): [0,00) — S = {1,2,...,s} is the switch-
ing signal, s is the number of switching regions. Corresponding to the switching
signal o (), we have the switching sequence {x; (io, %), ..., (k, %), ..., | ix € S,
k =0,1,...}, which means that the i;xth nonlinear subsystem is activated when
t € [, tk+1). In addition, we exclude Zeno behavior for all types of switching signals
as commonly assumed in literature. We assume that the state of the switched system
(1) does not jump at the switching instants, i.e., the trajectory x(¢) is everywhere
continuous.

Takagi and Sugeno [15] have proposed a fuzzy model to represent nonlinear sys-
tems. It is proved that the Takagi—Sugeno fuzzy model is a universal approximator.
Then each nonlinear subsystem of (1) i € S could be represented by a T-S fuzzy
model described by r; rules of the following uncertain form with time-varying de-
lay:

Local Plant rule k, k € R, £(1,2,...,7;}
IF z\ is M}, and ... and Z} is M|, THEN
X(1) = (Aix + AAi)x (@) + (Ajar + AAjg)x (1 — 7 (1)) + (Bix + ABi)u(r)

+ (Dix + ADjp)w(t),

2
y(1) = Ejxx(t) + Ejqrx (1 — 7 (1)) + Cigu(1),
x(t)=¢l(t)7 tE[—‘L’i,O],
M,il are fuzzy sets and zf (I=1,2,...,e) are the premise variables. (A, Ajqk, Bik,

Dix, Eix, Eiax, Cix) is the kth local model in the ith switching region of the system,
and (AAix, AAjgr, ABir, ADjy) is the uncertainty terms of the kth local model in the
ith switching region of the system. In this paper, the uncertainty terms are assumed
to be of the form

[AAjk, AAjgk, ABik, ADji] = M Fi (t)[Niik» Ni2k, Nizk, Niak], 3)
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where M;j, Niik, Niok, Ni3r and N;4; are known real constant matrices and F;(t) is
an unknown time-varying matrix function satisfying

Fr(F @) <I, t>0. 4)

From [3, 15], through the use of “fuzzy blending” the final switching fuzzy system
(2) is inferred as follows:

20 =1 @ [(Ai + AARDx () + (Aiak + AAig)x (1 — 7 (1))
k=1

+ (Bik + ABip)u(t) + (Dix + ADig)w(1)] }/Z vik (1)
k=1

= hikO[(Aik + AA)X (@) + (Ajgr + AAigi)x (1 — 7 (1))
k=1
)
+ (Bik + ABip)u(t) + (Dix + ADjp)w ()],

> iy ik OLEixx (1) + Ejgrx (t — 7; (1)) + Cigu(r)]
Z]Zizl vik(t)

y(@) =

=Y i Enx () + Ejarx (t — 7:(0)) + Caeu(®)],
k=1

x(t)=¢i(1), te[-7,0],

with vir (1) = ]_[:;":l M,l{p(z’p(t)), hix(t) = #ﬁm and M}{p(z’p(t)) is the grade of
the membership function of z;, in M,i . It is assumed that v;(¢) > 0 for all ¢ > 0,
i € S,k € R;. Therefore the normalized membership function #7;(f) satisfies
hix() = 0,3 hix(t) = 1,1 >0.

For convenient notation, we introduce A;; = Ajx + AAjr, Aigr = Aigr +
AA;gk, Bit = Bix + ABjx, Dix = Dix + ADji. Then, using this notation, the sys-
tem model (5) can be expressed as

20 =Y hiO[Aix (@) + Aarx (1 — 1:(1)) + Bigu(t) + Digw (1)),
k=1

d (6)
y(O) =D hixO[Eikx (0) + Eiarx (t — 1:() + Ciru(1)],
k=1
x()=¢i(®), tel[-7,0]
To end this section we state the following definitions and lemmas which will be

used throughout the paper.
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Definition 1 The equilibrium x* = 0 of system (5) is said to be robust expo-
nentially stable under control law u(#) and switching signal o (¢) if the solution
x(t) of system (1) with w(¢) = 0 through (79, ¢ (1)) € R x C, satisfies [|x(1)]| <
K ||x ()|l ge 1) Wt > 1, for constant K > 0 and A > 0.

Definition 2 [1] For any 75 > T1 > 0, let N, (T, T>) denote the number of switching
of o (t) over (T1, T»). If Ny (T1, T2) < Ny + (T» — T1)/ Ty, holds for T,, > 0, Ng > 0,
then Ty, is called average dwell time.

Definition 3 For y > 0, system (5) is said to have Hy, performance y, if it is ex-
ponentially stable and under zero initial condition ¢; (9) =0,0 € [—-1;,0],i € §;, we
have [° yT (9)y(s)ds < y? [ wT (s)w(s)ds.

Lemma 1 [5] For any real matrices X;, X;j fori,j=1,2,...,r, and Q > 0 with
appropriate dimensions, we have

r

Y3 ;X! 0X; <Y (X[ 0Xi,

i=1 j=1 i=1

r r r r

DY hihj O ()X 0Xu < erihia)h JOX]0Xij,

=1 j=1k=11=1 i1 j=1
where hi(t) >0, _ hi(t)=1(<i<r).

Lemma 2 [12] Given matrices Q = QT , H, E and R = RT > 0 of appropriate di-
mensions, Q + HFE + ETFTHT <0 holds for all F satisfying FT F <R, if and
only if there exists scalar B > 0 such that Q + BHT RH + B~'ETRE <.

3 Robust Stability

In this section, we consider the stability analysis of the systems (6) described in the
last section. The stability condition for the system without control input and external
disturbance can be summarized in the following theorem.

Theorem 3.1 The system (5), or equivalently (6) with u(t) = w(t) = 0, suppose
that the time-varying delay t;(t) satisfies 0 < 7;(t) < 13,7 (¢t) < «ki(7r; > 0,i € §).
For given positive constants o and B, if there exist matrices PiT =P >0, QiTk =
Qix >0, Rl.Tk =Rix>0, X;x = [X’:” ;i:;] > 0, and any matrices Yj; and T with
appropriate dimensions such that

Oimki <0, k<l,meR;;iesS (7
Pix =20, keR;ies ®)
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where
Xik1r  Xik12 Y;
Py=| * Xux Tik ,
* * e YT Qg
(Wi Wi ALQu  AlQi PiMiy PMj NI.TL,{ N T
* Wimm AL Ou AL Qi 0 0 Ny N
* R 0 QM 0 0 0
o | * * —t7 "0 0 OuMy O 0
ikl =1 * * * —BI 0 0 0 ’
* * * * * —BI 0 0
* * * * * * —pI 0
* * * * * * * —ﬂ_ll
with

i1 = gik11 + i, Wiz = gik12 + @i,

Yim22 = Qikm22 + Qilm22,
gik11 = P A + AL P+ a P+ Rig + Yir + Y 4+t X1, 9)
@ik12 = Pi Aigr — Yig + T + 1 X1,

Gikm2 = —Tx — Tik + 7 Xiko + (ki — € %) Rip.

Then, system is exponentially stable for any switching signal with average dwell
time satisfying

Inpu

Ty >TF= (10)

o

Moreover, an estimate of state decay is given by

b N2 (-t
[x] < Z w20 x0)] 11
where
a = min Amin (F;),
ieS

(12)

2

T:
b=maxAmax(P;) + max —Amax(Qix)+ max TjAmax(Rix)
ies ieS,keR;, 2 ieS,keR;

and A =1/2(a¢ —Inp/Ty), u > 1 satisfies

Pi<uPj, Qix <iQjn, Rix <uRjn, V@, jk,n)eSxSxR; xR;. (13)
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Proof Consider the following PFLKFs for the system (6) with u(z) = w(z) =0:
Vi() = Vi1 (1) + Via (1) + Viz(1), i €S, (14)

where V1(1) = xT () Pix (1), Via(t) = [2, [ 5 &7 ()™= 0;(5)i (s) ds df with
Qi(s) =Y 4 hik(s) Qik, Vis()) = [[_ , xT (£)e 1 Ri(s)x(s) ds with R;(s) =
> hik(9)Rix.

Then, one has

Vil(t) =2xT (1) Pk (1)

=Y haO[x" OQP A @) +xT OQPAa)x(t —t®)],  (15)
k=1

t
Viz(t)S—OéViz(t)+fich(t)Qi(t)i(t)—/ X(s)e” " Q;(s)k(s)ds,  (16)

1= (1)

Vi3(t) < —aViz(t) + xT ()R (1)x (1)
+x"(t =) [(ki — e ™) Ri(t — 7 () ]x (t — T (D). (17)

Let n7 (1) = [x7 (1), xT (t — 7 (1)1, Xix = [Ai. Aiqr] and by Lemma 1 we have

ux" (1) Qi (X)) =Y > h@ha)[n" ()X Qi (1) Xun ()]

k=11=1

<Y ha@{n" OX]m Qi) Xun ()}
k=1

% A'TTiQi(t)Aik ATTiQi(l‘)Aidk
=Y hu @) | Cik . NS
1; « {77 © [ * Al Ti Qi) Ajak 1)

(18)

From Leibniz—Newton, we obtain

t

2[xT @ Yi(t) +x" (1 - r,»(t))T,»(t)][x(t) —x(t—n@®) —/
t

=7 (1)

x(s) ds:| =0 (19)

with ¥; (1) = Y hi () Yie and T3 (1) = Yy hie(®) T
It holds that

t

eon® () X (1) — / 0T () Xin(s) ds = 0. 20)

t—7; (1)
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Combining (14)—(20), Vl (t) + aV;(¢) can be presented totally as follows:

Vi) +a Vi) < D hi (@) [ DN hik@ha " (@) Zimuan ()

m=1 k=1 [=1

t

T
= > () n" (1, $)Pixn(t, s) ds
k=1

1—7; (1)

m=1 k=1

rl-—l ri

+ Y3 hihir (0" () (EZimur + Eimm}

k=1 I>k
ri t
= hik(®) 0" (t,)Pixn(t, s)ds,
k=1 1= (1)
where
~ bir11 + AL QuAi b2+ AL QirAiax
O kl = — -
" * Gikm22 + T AL QirAiar
' (t,5)=[n" @), 1" ()],
dix11 = P AL + Aig P + Rig + Py + Y 4 Yie + w X ka1
bix1a = P, AL — Yie + Tif + 7 Xk,
bikma2 = —Tix — Tij, + (i — ™) Rim + 7 Xix22.
Next, let
pe MiPi 0 MjiQu 0 cr [ Nik Nix
MEIMiP 0 00 Miou | W N Nig

=> h,-ma){ > B O O[(Eimak + Eimar) /2]0 ()

21

0 0
0 of

then by Schur complement, conditions (7) is equivalent to the following inequalities:

T T
Yik1l T Qi1 @ikl2 + @i A5 Qi A Qik
* Gikm22 + Qim2 Al Qu AL, Qi
* * —Tl-_l Qi 0
* * * —tfl Qik
=V)

+ 87! MiklM,?/;l + ,BNiklN,'il <0.

(22)
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From Lemma 2 and (4) we know that when (22) is satisfied, the following inequal-
ities hold:

V+ M FF (0)NE, + Niw F; ()M},

ikt + i1 Gik12 + iz Al i Al Qix

* Gikm>2 + Gum AL, Qi AL, Qix o (23
- * * —Tfl Qi 0 <0. @3
* * * —ri_l Qi

Then using Schur complement again, inequalities in (23) are equivalent to the
following condition:

|:¢ikll+¢illl ¢ik12+¢i112:| |:A,-T/<Qil AiTlQik:| |:TiQi_11 0 }

* Gikm22 + Pilm22 Al Qi AL, 0i * 705

Eimki + Eimik <0, k<l meR;;ieS.  (24)

- - T
Al Oy Al Ou _
Adek il A,?;” Ok |

Thus from (24) and (21) we conclude that (7) and (8) imply Vi(t) +aVi(t) <0,
then integrating V; () + o V;(¢) < 0 from #; to ¢ gives

Vouy(t) < e UV, (t), 1€ [tk ter1),i €S. (25)
There exists matrix Qg such that uQ j; > Qo > Qjx, then we have
T T Ti Ti
D o hjp(ouQi =Y hjpQo=Qo, Qo= hix(®)Qo> Y hix(t)Qix.
=1 =1 k=1 k=1

Obviously, from (14) we have V> (¢) < uV;2(¢). Similarly, V;3(t) < 4 V;3(¢). Finally,
using (13) and (14) at switching time #;, we have

Vou)(ti) < uVou,_)(ti-), i1€S (26)

Therefore, it follows from (10), (25) and (26) and the relation k = Ny () < No +
(t — t9)/ Ty, with Ny > O that

Vot (1) = e WV, ) (i) < oo s e 0!

Vo (1) (10)
< pMNoem @M=y (1), 27)
According (12) and (14) we have
a|xO)* < Vo @), Vi (t0) < b||xt0) |- (28)
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Let A =1/2(0 —Inu/Ty), combining (27) and (28) gives rise to

x| < 2va<f>(r> < guNoe_(“_l““/T‘”)(’_’O) x| (29)

Therefore ||x(¢)|| < \/EMNO/ze’M”’U) l|x (t0) ||, thus the proof is completed. O

Corollary 3.1 For d(1) does not exist or is unknown, when (7) with Ry = 0 and
(8) hold, the system (5), or equivalently (6) with u(t) = w(t) = 0 is exponentially
stable for any switching signal with average dwell time satisfying (10). Moreover, an
estimate of state decay is given by (11), where . = 1/2(a¢ —Inu/Ty), a and b are
given in (12) with R =0, and |1 > 1 satisfies (13) with Rjx = R, = 0.

Proof The proof is similar to that of Theorem 3.1. g

Remark 3.1 PLKFs used in [3] to study switching linear system with delays can
also be extended to switching fuzzy system with Q;x = Q;, Rix = Ri, Xix11 =
Xi11, Xir12 = Xi12, Xioo = Xi2, Yir = Y; and T;r = T;. But the results summa-
rized as follows are conservative compared with the result in Theorem 3.1 based
on PFLKFs.

Corollary 3.2 The system (5), or equivalently (6) with u(t) = w(t) =0, suppose that
the time-varying delay t;(t) satisfies 0 < t;(t) < 1; and 1;(t) <«k;(r; > 0,i € S). For
given positive constants « and B, if there exist matrices PI.T =P >0, Ql.T =0; >0,
RI' =R >0, X; = [ka” ;{:;] > 0, and any matrices Y; and T; with appropriate
dimensions such that

Xin X2 Y;

*  Xim T; >0, ies, (30)
* * e YtiQ;

[ w1 oz Al o;  PMy NI, |
x  wn AL Qi 0 N5
* * -1 'Q; QiMi 0 <0, keR;ieS (3l
* * * —BI 0
* * * * —ﬁ_ll

with
wiki1 = PiAi + AL P +aPi + R + Vi + Y] + 0 X1,
wiki2 = PiAigk — Yi + T + 1 Xi12, (32)
v =-T" =T+t Xin+ (ki —e “")R;.
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Then, system is exponentially stable for any switching signal with average dwell
time satisfying (10). Moreover, an estimate of state decay is given by (11) where

2
. T:
a = min Amin(P;), b = max Ayax (P;) + max —Amax(Qi) + max T; Amax (R;),
ieS ieS ieS 2 ieS
(33)
A=1/2(a —Inpu/T,), and p > 1 satisfies

P <uPj, Qi <pnQj, Ri<uRj, V(G jeSxS. (34)
Proof The proof is similar to that of Theorem 3.1, here it is omitted. 0

4 H, Analysis and Controller Design

In this section, we first analyze the H, disturbance attenuation performance for the
open loop continuous-time system. Consider the continuous-time system with time-
varying delay as in (6) without control input, then we are ready to present the follow-
ing Hy, performance analysis result.

Theorem 4.1 Consider continuous-time system as in (6) with u(t) = 0, suppose that
the time-varying delay t; (t) satisfies 0 < 1;(¢t) < 71; and 7; <«ki(t; > 0,i € S). Given
positive constants «, B, y and there exist matrices

p=Pl >0, Qu=0! >0, Rix =R >0,
Xiki1 Xikiz  Xiki3
App=| * Xz Xikaz | >0,
* * Xik33

and any matrices Yii, Tix, Lix, k € R;,i € S, with appropriate dimensions such that

[ Oimu Aiu A Eiu Mix Mi Niit ]

-1 'Qy 0 0  QuMi 0 0

* x -7 'Qux O 0 QuMy O

* * * —1I 0 0 0 <0,

* * * * —pI 0 0

* * * * * —BI 0

* % * % * * -8

k<l.m,eR,ies, (35)

Xirn1 Xikz  Xiki13 Y;

*  Xikoa Xik2s Tik 0 KeR.ics 36)
>0, ER;,1E)Y,

* * X33 Li - ==

* * * e "M Qjx
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where
Dik11 + @il @ik12 + Til2 Wik13 + i3
Oimkl = * Wikm22 + Dilm22  Wik23 + Dil3
* * Wik33 + @ii33
r T T T
Aiinl Eik Eil PiMik
n T . el T T A
A= | Ajar Qi |, Ew=|Eu Eqg]|, M, = 0
T
| D} Qi 0 0 0
37
- n T T
Nie  Niy
Vo — | NI, NT — -
Nite =1 Niog - Nig | Tik1l = Piklls Wik12 = Pikl12,
T T
| Nigw  Niy

Wikm22 = Pikm?22,

T
wik13 = Pi D + L} + i Xik13,

2
wik33 =T X33 — Y1,

T
@ik23 = — L, + 1 Xik23,

and ix11, Qik12, Pikm22 are defined in (9).
Then the system is exponentially stable and has Hoo v performance as in Defi-
nition 3 for any switching signal with average dwell time satisfying (10) and p > 1

satisfies (13).

Proof 1t is easy to see that the LMIs (35) and (36) imply LMIs (7) and (8), respec-
tively; therefore, it follows from Theorem 3.1 that the system as in (6) with u(¢) =0
is exponentially stable. Now, we show that the system have H, performance by Def-

inition 3.

Under zero initial condition, for system (6) considering PFKLFs (14) and by
Lemma 1 we have (16), (17) and the following results:

Yy —y*w (Ow@)

ET

T
E idk

i T -Egc Eﬁc ! 2 T
<Y hix(n" (@) () —y*w’ Ow)

k=1 | Tidk

k=1 0 0

. ELEix  ELEiux
=Y hu@ET 0|+ EgE

idk

0
0

—J/21

(1),

Vit0) =Y ha@)[xT (OQP Ai)x (1) + xT () 2P, Ajgr)x (1 — 7 (1))

k=1

+xT()@P; Dinyw(®)],

(38)

(39)
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i (1) Qi (D (1)
Al Qi) A A,krIQ,-(rMidk Al Qi (1) Dik
Szhik(t) ST(I‘) * zdle Ql(t)Aldk Aldkfz Qi(t)Dik Et)¢,
k=1 * * D} Qi(t)Djx

(40)

where n (1) = [xT (1), xT (¢ = ;)] T @) = [xT (1), xT (¢t — 7 (1)), wT (©)].
From Leibniz—Newton, we obtain

ZST(I)[Y,-T(I‘) T (1) L?(t)]r[x(t)—x(t—n(t))—fl ())'c(s)ds:|=0,
t—7(t
(41)

with Y; (1) = Yy ki () Yike, Ti(6) = D3 hie () Tig and Li (¢) = >} hig (1) Lig.

For Ajx > 0 given in Theorem 4.1, we have
t
TET (D Ank(t) — f ( )sT(sm,-ks(s)ds > 0. (42)
t—1;(t
Define ¢’ (t,s) = [ET (¢), %7 (s)], then combine (14), (16)—(17) and (38)—(42)
yields
Vi) +aVi(t) + y" )y — y*uw’ (Hw()

Ti rio T

<Y DY himOhik @i (DET () Qi (1)

m=1k=1I[=1

— thk(f) Tt ) Aiks (1, 9)ds

t—1; (1)

- 4 Qim Qim
=> h,-m(t)|: > B2, ()T (1) 2k T Sk g

2
m=1 k=Il=1

1 ri
+ Y ) hik@hia(OET (1) (Rimur + sz,-mlk)s(r)}

k=1 I>k
T
- Zh,ko) T, 9)Airs(t,5)ds, (43)
t—7; (1)

where

Qimki
pikn + G AL QuAi + ELEie  pivi + wAL QuAiak + EL Eiar pixiz + AL Qi Dy
= * Wimk22 + T AL, Qi Aiak + EL Ejax ptikas + w AL, Qi Dix

* * Hik33
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T

Hikll = Pikll, Hik12 = Pik12, Wimk22 = Pimk22, mik23 =T Xik23 — Ljy,
2 = T

Mik33 =T Xik33 — 1, Wik13 =T Xik13 + PiDjx + Lj;,

with @ix11, ik12, Pimk22 are defined in (21).
By Schur complement, conditions (35) are equivalent to the following inequalities:

Vimit + B Myt My + BNia Njjy <0, (44)
with
V V y Ml M} 0u 0 0
N’g‘l - [N’?];l 00 O] ) Mﬁz = Al;( b T )
M 0 M;; Qik 0
(':)imkl AAikl AAilk Eikl
7 * -7 ' Qu 0 0
R * —77'Qu 0
*k k % _I

By Lemma 2 we know that when (44) are satisfied the following inequalities hold:

Yimk + M F; (ONL; + N Fi (1) M},

Oimul A Ak Eikl
-1
* —T, ; 0 0
- i Qi 1 <0, 45)
* * -7 Qik O
* * * -1

where AL, =[QiAix QirAiax QirDix].
Then using Schur complement again, (45) are equivalent to the following condi-
tion with £2;;,4; given in (43):

-1 AT
A 2 2 T 0y 0 Ajk 5 AT
Oimki + [Aikl Ailk:l . not || A +EinE;y = Qi <0,
L =ik ilk
k<l,meR;i€S. (46)

Thus from (43) and (46) we conclude that when (35) and (36) hold the inequality
as follows is satisfied:

Vi(t) +aVi(0) + yT 1)y (@) — y*wT (Hw(r) <O0. (47)

Let X (1) =y (1)y(t) — y?wT (t)w(r). Using (13) and (14) at switching time #;,
we have (26). Let #yp = 0, therefore it follows from (26) and (47) and the relation
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k= Ns(0,1), for any ¢ € [#, t,+1) We have

t
Vo t) < e U0V, (1) —/ e =X (5)ds

173

t

< ke V5 0)(0) — f e =) X (s)ds

73

t
Ze—az+Na(0,t)lnMVU(O)(o) _/ e =) X (5) ds. (48)

T

Under zero initial condition, (48) gives — fti e =) X (5)ds > 0. Similarly, we have

t
_/ et +No DI () 6 > ), (49)
0

Multiplying both sides of (32) by e~ No DIk yields

t t
/ e—l){([—s)—Ng(O,S)ln/.LyT(S)y(s) dS 5/ e—tx(t—s)—NU(O,s)lnp,waT(s)w(S) dS.
0

0
(50)
Noticing that N(0,s) < No+ s/ Ty, No > 0 and Ty, > In u/a, we have
Ny (0,8)Inp < Noln o + as. (28
Thus, it follows from (33) and (34) that
t t
f ey ($)y(s)ds </ e =9 20T (s)w(s) ds.
0 0
Then multiplying both sides of (49) by ¢**—) yields
t t
T 2T
f y (®)y(s)ds < / Y w' (s)w(s)ds, (52)
0 0

integrating both sides of this inequality from ¢t = 0 to co leads to Hy, performance
by Definition 3. Thus this complete the proof. O

Remark 4.1 When we get lower bound u, the lower bound 7, by (10) can be ob-
tained. Then, the search problem of lower bound w can be formulated as the following
GEVP problem to obtain

Mmin : Minimize pu > 0,

L JP=PT >0, Qi=0j >0, Rix=Rj, >0, A =0,
s.t.
inequalities: (35),(36),(13), 1< pu.
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Meanwhile for a given @ > wnin the search problem of lower bound y can be
formulated as the following optimal problem to obtain

Ymin . Minimize y > 0,

Pi=P" >0, Q=0 >0, Rg=RL >0, Ajx >0,
inequalities: (13), (35), (36).

S.t.

Corollary 4.1 For d(1) does not exist or is unknown, when (35) with Rjx = 0 and
(36) hold, the system (6) with u(t) = 0 is stable and has Ho, performance for any
switching signal with average dwell time satisfying (10).

Proof 1Tts proof is similar to that of Theorem 4.1, it is omitted here. O

Next we consider H, controller problems. Recall that the PDC technique was
presented by [18, 19], the control law can be given as follows:

Switching Regioni,i € S
Local Plant Rule k, k € R;
IF z} is M}, and ... and 7/ is M}, THEN
u(t) = Fyx(),t > 0.

Then the closed-loop system (6) is rewritten as follows:

26 =Y ha@haO[(Aix + Bix Fi)x(t) + Aigrx (t = 1:()) + Dw (0],
k=1 1=1

ri ri (53)
YO =Y hi®hiaO[(Eik + Cix Fi)x(t) + Eiaxx (t — 7 (1))],

k=1 1=1

x(t)=¢i(1), re[-7,0]

Theorem 4.2 Consider the closed-loop system (53) with time-varying delays t;(t)
satisfies 0 < t;(t) < 1; and t;(t) < kj(t; > 0,i € S). For given positive constants o
and vy, if there exist scalar B > 0 and matrices

P =P >0, Oix = 0}, >0, Rix =R} >0,
X Xz Xixis

Xik = * Xiko X3z | >0,

* * Xik33
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and any matrices Yit, Tix, Lix with appropriate dimensions such that

[ Sinki Kik Kiik Eix My M Niki
* —T;léim 0 0 M; 0 0
* * — ' Qim0 0 M 0
Eimnkl = * * * —1 0 0 0 < (),
* * * * —=pI 0 0
* * * * * —pI 0
* * * * * * B
k<l,mneR;i€s§, 54
Xt Xz Xikis Yik
*  Xio Xikos Tix 0. KeR.ics 55)
il =4 2 ’ e_'9l 6_9
* * X33 Lix !
* * * e_aT’Qik
where
Wikl + TWilk1l  Tik12 + Wiz Tik13 + T3
Yinkl = * Tink22 + Wini22  Tik23 + i3 |,
* * k33 + iI33
ﬁiA?;<+Ki€Bz€ f’,’EZ];—f-Ki?Cl?]; ﬁiEz?£+Ki71;Cz§
Kiy = PAL, , Ein = PE[, PE[, .
T
| D} 0 0
5 T T arT D T T a7 T
PiNjj + K N3 PiNjy + Ky N,
N 5T 5 AT - T
Nix = PiNpy PiNg, ; M =[M]} 0 0],
T T
i Nigp Niy

Tkt = A Py + PAL + BiKis + (BixKi)” + o Py + Rig + Yk + Yix + t Xik1,
w2 = Ak P — Y+ TE 4+ o X2,
. —_7T 7. . —at\ p. LY.
Tink22 = —1ji _Ttk+(’(1 —e€ )Rln+TlX1k22v
w1z = Dix + LT 4t Xix13, Tk = —LE 4+t X3,
ikzs = =21+ 1 Xikss.

Then the system (53) is exponentially stable with y -disturbance attenuation Hy per-
formance under the control law for any switching signal with average dwell satisfying
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(10), and p > 1 satisfies
Pi<uPj, Qix<pnQjn, Rk <uRju, VG, jkn)eSxSxR, xR, (56)

Moreover, the feedback gain is given by Fj; = K,-kf’l._l keR;;iesS

Proof Consider the PFLKFs (14), one has (16), (17), and

t

Via(t) < —aVia (1) + 1 (1) Qi (1) (1) —/ i (9)e™ % Qi(9)k(s).  (57)

t—7; (1)

CLet 97(0) = T @), x"( = w@), w' O), Al = [Au+ BiFu Aiax Dirl,
Al.Tkl =[Eix + Ciax Fii Eigr 0], and by Lemma 1 and from system (51) one has

T (1) Qi (D%(1)
= Y 3 ki hia@hin Ohin [0 () AiaTi Qi (1) Aimn v (1)]
k=11=1 m=1n=1
<Y hiha ) [v" (O AT Qi () A" v ()], (58)

k=1 1=1

ri ri ri ri

YOy =Y hikhitOhin Ohin(O[v" (1) A A],,,,v(1)]

k=1 I1=1 m=1n=1

ri ri

< haha@)[v" ) Ay Ao @) (59)

k=11=1

Then the rest of the proof is similar to the proof of Hy, performance analysis in
Theorem 4.1, here it is omitted.

Based on the result in Theorem 4.1, we get (36) and the following inequalities
which correspond to (54) withm,n e R;,i € S:

— o o

[l Kimk Kk E Ma My Niu

* =7 ' Qin 0 0 QimMi 0 0

* * —7 ' Qim0 0 QmMy O

* * * -1 0 0 0 <0,

* * * * —BI 0 0

* * * * * —BI1 0

* * * * * * —,3_11
k<leR;i€s, (60)
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where
Wikl + TWilkll  Tik12 + T2 Tik13 + T3
= * Tink22 + Wini22  Tik23 + Ti23 | |
inkl * * k33 + i3
(Aik + Bic Fi)" Qim
g T
Kimi = Ak Qim ,
D,?/; Qim
[ (Eix + Cix Fi)" (Ei + CyFip)"
< T T
Ein = Ejqi Eiy ,
0 0
[ (Nitk + Nisk E) T (Niwg + Nist Fi) T
2 T T T
ikl = Ny Niy , Mlk—[M L 0]
T T
i Nip Ny

ik = Pi(Aix + Bik Fit) + (Aik + Bix Fi)' Pi + P + Rig + Yk + Yik + m Xix11,
Tik12 = PiA,-Tdk - Y,i + L,-Tk + 1 Xik12,
_ T —aT;
Tink22 = =Ty — Tic + (i — €™ ) Rip + 7i Xik22,
7wik13 = PiDjx + L,-Tk + i Xix13, k23 = —L,»Tk + 7 Xik23,
T3 = — v + 1 Xik33.

Then pre- and post-multiplying (60) by diag{P,', P"', 1,0, , 0 1,1, 1,1,
I, 1} and its transposed matrix, (36) by dlag{P_1 P~ U, sz 1, respectlvely, andap-
plylng the change of variable such that P; = P ! sz = sz ,Rix = PRyt P, Yiy =
PYkPI’Tk = PTkPuL k = LkPqu = FlUPlaXlkll Pszllpz»szU =
PiXik12 P, Xin13 = PiXin3, Xik2 = PiXiko Pro Xikos = PiXinos, Xikss = Xik3ss
we get inequalities (13), (54), and (55); this completes the proof. Il

5 Simulation examples

In this section, two simulation examples are given to illustrate the effectiveness of the
proposed approach.
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Example 1 (Hs performance analysis) Let xI @)= [xlT (1), xZT (1)], consider the fol-
lowing two uncertain switching fuzzy time-varying delays system (5) with u(t) = 0.

Switching Region I:
—-0.1 0.1 —0.1 0
An=1 o _o16|" Ae=| o _ga2|
—-0.1 O 0.1 0
Alg1=Ap = o o1l D1 =Dy = 002

0.1 0
Ni11 = Ni12 = Ni21 = N2 =0, N141=N142=[ 0 01]

0 0

En=En=|05 o1l Ejg1 =E152=0.
Switching Region 2:
—-0.5 0.1 -0.1 O
A= 001 —a| An=| o1 |
-0.1 O 0.1 O
Apg1 = Aggp = 0o o1l Dy =Dy = 0 02l
0.1 O

Na11 = Na12 = Nypp = Nopp =0, Nog1 = Nogp = o 01l

0 O
Eryy=E»p= 02 11 Erq1 = E2q2 =0.

Membership functions: ;1 (f) = sin?(¢), hip =1 —sin?(t), i = 1, 2.

First of all we will compare the feasible regions of the system w(¢) = 0 for the
results in Theorem 4.1 (PFLKFs) and the results in Corollary 4.1 (PLKFs) for given
7, =0.29,k; =3,8=0.8,0 =0.63, x = 1.60 and y = 1.7321 by changing a and b,
by changing a and b, where a takes value between —0.2 and 0.2 by step of 0.05 and
b takes value between 0.3 and 0.8 by step of 0.05. The simulation in Fig. 1 show the
result by Theorem 4.1 covers bigger regions than the one by Corollary 4.1, which
means conditions in Theorem 4.1 is more relaxed.

Next, using PLKFs and PFLKFs, respectively, the achievable minimum Hy, at-
tenuation level y,,;, for the robust Hy, stability analysis can be obtained and is sum-
marized in Table 1 for different 7;, k;, i and «. From it we can see that the result we
obtain by PFLKFs is smaller than PLKFs.
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Fig. 1 Feasible area for PLKFs 1 ; ;
and PFLKFs - Corollary 4.2
0.9F O  Theorem 4.1
0.8f 1
0.7r © 0 -0 -0 0 -0 © 0 0 ,
© 0 06 0 ® 0 06 0 O
0.6f 0000000 O B
© O 00O 0 O 0 0 O
Q 0.5 O © O 0 0 0 0 0 0 ,
® @ ® ® ® @ ® O 6
0.4F (O C RO B C BN O SR CEENO S OB O 1
® © © ® ®© @ © O O
0.3F 0 O 00 0 0 0 © 1
0.2 1
0.1f 1
0 i i i i i i i
-04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4
a
Table 1y, obtained by
different approach Ti 0.29 0.29 0.29 0.1 0.07
Ki 3 3 3 1.0374  0.7241
I 1.5 1.5 1.8 1.5 1.5
o 0.05 0.65 0.65 0.65 0.65

Ymin by PLKFs 09820 1.6946  1.6940 13068 1.2969
Ymin by PELKFs 09814  1.6486 1.6464 13028 1.2946

From Fig. 1 and Table 1, it can be seen that the PFLKFs based approach produces
less conservative results than the PLKFs (widely used in [14]) based approach.

Example 2 (R/C Hovercraft [17]) The controlled object of hovercraft type vehicle
(HTV) dynamics is represented as

. _sin@(t) 61
Yet) = — = h(®), (61)
6(t) = wja(r), (62)

where f1(t) = fr(t)+ fL(t), f2(t) = fr(t) — fL(2); 0 is the angle of the vehicle; [ is
the distance between the gravity position and fans; ¢ is the angle between the gravity
position and fans; fr is the force generate by right side fan; f7 is the force generated
by left side fan; M is the mass of the hovercraft; I is the inertia of the hovercraft.
In this simulation, ¢ = 7 /4, M = 0.1. The control purpose is lim;_,  y.(¢) = 0 and
lim;_, o0 0(¢) = 0 by manipulating f1(¢) and f,(z). Due to modeling error or external
disturbance, the practical system are always subject to various kinds of uncertainties
and time-varying delays are universal by various of factors. To make a switching
fuzzy model for (61) and (62), assume that 6(¢) € [—179.427° 179.427°]. Thus we
can construct the following uncertain switching fuzzy model of system (61) and (62)
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with time-varying delays. The parameter matrices are given as follows:

[0 0 0 0 a0
1 000 0 0
Ak=10 0 0 of Pw=| o psine |
001 0 0 0
[0 0 0 fay 1 000
0 00 O 00 0 0
By = lsi]nd) oo o | Aick=14 09 0 ol
0 00 O 00 0 0
[0 0 0 0 0 0 1 000
0100 08 0 010 0
Ex=lo 00 o0f° Px=|o ol MNM=|loo0 1 0l
00 0 1 0 0.8 00 0 1
08 0 0 0
0 0 0 0
Ni1 =Nj3 = N;3=0, M, = 0 0 08 0 |’
0 0 0 038

Cik=Eiqx=0, i=1,2,3,k=12,1=1,3.

Here,
xT(n:[y'Z(t) vl (1) 67 () 9%)], uT(t)z[flr(f) f{(r)]

and w? (1) = [e7 9%, ¢=011] is external disturbance with F;(r) = sin(¢).
Its the membership functions are given as:

sinf(t) —an ayp — sinf(r)
hi(0() = ———=, hpp@@) = ———
ap; —an ap —an
sinf (1) sin6 (1)
o 922 @1 — 73
ha(0(0) =22 —Z " hyp(6() = ©_
a1 —axn a1 —an
sinf(t) —a az] — sin6 (¢
ha1 (0(1)) = ﬁ h3a(6()) = %@2()

with aj; = 1, ajp = sin(179.427°) ~ 0.01, ap; = 1, a2 = sin(d)/d, a3; = —1 and
azpy =sin(—179.427°) ~ —0.01.

Fory =2, =0.1,=0.8,7, =2,k; =0.001, x =4 and d = 7 /50, C = 0.5.
Thus T = Inp /o = 13.863, the switching law in Fig. 2 (here, ‘1°, ‘2* and ‘3’ rep-
resent the first, second, and third switching region, respectively) shows that average
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Fig. 2 Switching signal switching law
35 \ \
3l J
25} 1
2 .
1.5F 7
1k J
0.5F J
O L L L L L L
0 10 20 30 40 50 60 70
time/sec

dwell time T, = 17.5 > T, doses satisfy (10). Under the switching law, using Theo-
rem 4.2 we can get the feedback gains as

[—9.4105 —0.2980 0.0060 0
Fo_ | 01298 0.1646 —699.0 —81.5619
=1 0.0017 —5.2260 0 0 ’
o0 —0.1131 0 0
[—9.4107 —0.2980  0.0060 0
Fo_ | 01298 01646  —699.5861 —81.5619
271 00017 —5.2260 0 0 ’
0 —0.1131 0 0
r 0 0.0003 —383.9211 —0.1444]
i 0 0 0 —0.0007
2171 54981 0 0 0 ’
| —7.1658  —0.0457 0 0 |
r 0 0.0003 —383.9211 —0.1444]
Fo 0 0 0 —0.0007
271 5.4980 0 0 0 ’
| —7.1656  —0.0459 0 0 |
[3.2300 0.1108 0.0032 0
0.0505 —0.0613 —239.9262 —28.4264
Br=100013 —1.7246 0 0 ’
0  —0.0412 0 0
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1.2 35
1t 1 3t 1
08} {1 25t 1

0.6 2 1
0.4 15} 1
0.2 1 ]
0 0.5 1
-0.2 L L L 0 L L L
20 40 60 80 0 20 40 60 80
time/sec time/sec
Fig.3 Output y(¢)
3.1844 0.0627 0.0003 0
0.0236 —0.0301 —240.9449 —28.4572
F2=1 _00002 —1.7230 0 0
0 —0.0411 0 0

Figure 3 shows the output y; (1) = y.(t), y2(t) = 0(¢) responses of the closed-loop
system in the presence of disturbances. It can be observed that the controller proposed
in this paper based on PFLKs not only stabilizes the system, but also effectively
attenuates the disturbances.

6 Conclusions

In this paper, a Hy, controller design method is developed for uncertain switching
fuzzy systems with time-varying delays based on PFLKFs. It is shown that the sta-
bility and control synthesis results based on the PFLKFs are less conservative than
those based on the PLKFs. A numerical example and a real plant are presented to
demonstrate the advantages of the proposed approach. As for switched systems, if
there exist some unstable subsystems the systems may be still be stable. However,
the controllers designed in this paper and others all require the controlled subsystems
are stable, not allow to have unstable ones. Thus, the controlled systems which is al-
lowed to have unstable systems will be our future interesting work. An asynchronous
controller may be a solution.
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