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Abstract This paper studies the H∞ state feedback control of continuous-time
Markov jump linear systems (MJLSs) with incomplete transition probabilities (TPs)
which are allowed to be known, uncertain with known lower and upper bounds, and
completely unknown. Combining the TP property and a matrix transformation tech-
nique, a new method for the H∞ controller synthesis is proposed in terms of linear
matrix inequalities (LMIs). The dominant feature of the proposed method is that two
sets of slack variables without coupling relationship are introduced. It is shown that
the proposed method is less conservative than the existing result. The effectiveness
of the proposed method is further illustrated by numerical examples.

Keywords Markov jump linear system · H∞ control · Parameter-dependent
Lyapunov function · Linear matrix inequality

1 Introduction

In recent decades, much attraction has been drawn to control systems that must meet
performance requirements and maintain acceptable behavior even in the presence
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of abrupt changes in their dynamics due to random component failures or repairs,
abrupt environmental disturbances, changes in subsystem interconnections (an in-
terconnected system is a class of systems consisting of similar units which directly
interact with their nearest neighbors [7]), abrupt changes in the operating point of a
nonlinear plant, etc. [23]. If these abrupt changes have only a small influence on sys-
tem performance, classical sensitivity analysis methods may be enough. Otherwise,
a stochastic model that gives a quantitative indication of the relative likelihood of var-
ious possible scenarios would be preferable [5]. Among the different ways to model
the abrupt changes (such as impulse systems [3], Poisson processes [1], multi-modes
[6], and so on), one of increasing interest is that of Markov jump linear systems
(MJLSs). The literature of MJLSs on, e.g., to name just a few, stability and stabi-
lization, H∞ control and H2 control, sampled-data control, and optimal estimation is
extensive; some examples are [2, 4, 8, 10–22, 24–43].

It is worth noting that, among the references mentioned above, the transition prob-
abilities (TPs) are assumed to be known [3–6, 8, 10–18, 20–25, 28–30, 32–36, 39].
Actually, this assumption may be restrictive in practice. The reason is that it is diffi-
cult or costly to measure Markov modes and TPs online exactly [2, 19, 37]. Taking
networked control systems (NCSs) as an example, Markov chains are always utilized
to model random network-induced packet dropout or time delay. During different
running periods of the networks, the variation of the packet dropout or the time delay
would be vague and random, with the result that all or part of the elements in the
desired TP matrix may be inaccurate. With the help of robust control methodologies,
the inaccurate TPs are presented by norm-bounded or polytopic-type uncertainties
[19, 37]. Unlike the uncertainty method, a new approach is proposed in [40–43] in
which the TPs are allowed to be known or unknown. By making full use of the bound-
ary information of unknown TPs, the results proposed in [40, 43] are further improved
by the work in [26, 27].

On the other hand, for results concerning H∞ state feedback control, much atten-
tion has been devoted to discrete MJLSs, and the conditions for controller synthesis,
based on the technique developed in [9], exhibit a kind of decoupling between the
Lyapunov and the system matrices. Unfortunately, there is no parallel result for the
continuous case. Though a new robust H2 controller design method has been pro-
posed in [12] using a parameter-dependent Lyapunov function approach, the method
cannot be directly employed to solve the H∞ state feedback control problem. Addi-
tionally, the TPs in [12] are still completely known.

Motivated by the above observations, we further consider the H∞ state feed-
back control of continuous MJLSs with incomplete TPs for the cases of TPs that
are known, uncertain with known bounds, and completely unknown. Employing the
property of continuous TPs and a matrix transformation technique, a new method
for H∞ controller design is proposed in the framework of linear matrix inequali-
ties (LMIs). The method has the following three new features. (1) Two sets of slack
variables without a coupling relationship are introduced. Due to these variables, the
proposed method can be readily extended to deal with the case of system matrices
with norm-bounded or polytopic uncertainties. (2) A parameter-dependent Lyapunov
function approach is employed to handle, in strict LMI form, TP matrices ranging
from completely unknown to completely known. (3) It is demonstrated theoretically
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that the proposed method is less conservative than the existing results. Numerical
examples are given to illustrate the effectiveness of the proposed design method.

The outline of this paper is as follows. The considered systems and some use-
ful lemmas are stated in Sect. 2. In Sect. 3, the proposed approach is given, and the
main result is established in LMI formulation. To show the effectiveness of the pro-
posed method, two numerical examples are developed in Sect. 4, and the concluding
remarks are presented in Sect. 5.

Notation Throughout this paper, MT represents the transpose of matrix M . The
notation X ≤ Y (X < Y), where X and Y are symmetric matrices, means that X − Y

is negative semidefinite (negative definite). I and 0 represent the identity matrix and
zero matrix, respectively. L2 denotes the space of square integrable vector functions
of a given dimension over [0,∞), with norm ‖x‖2

2 = {∫ ∞
0 E{x(t)T x(t) dt}} < ∞.

∗ denotes the entries of matrices implied by symmetry. Matrices, if not explicitly
stated, are assumed to have appropriate dimensions. Finally, the symbol He(X) is
used to represent (X + XT ).

2 Preliminaries and Problem Statement

Consider continuous-time MJLSs
{

ẋ(t) = A(r(t))x(t) + B1(r(t))u(t) + B2(r(t))w(t),

z(t) = C1(r(t))x(t) + D1(r(t))u(t) + D2(r(t))w(t),
(1)

where x(t) ∈ Rn is the state variable, w(t) ∈ Rnw is the disturbance input, which is
assumed to be an arbitrary signal in L2, z(t) ∈ Rp is the regulated output, and r(t)

is a time-homogeneous Markov process with right continuous trajectories and takes
values on the finite set I = {1,2, . . . ,N} with stationary TPs

Pr
{
r(t + dt) = j | r(t) = i

} =
{

πij dt + o(dt), i �= j,

1 + πiidt + o(dt), i = j,

where dt > 0, limdt→0
o(dt)
dt

= 0. πij is the jump rate from mode i to mode j that
satisfies the following relations:

{
πij ≥ 0, ∀i �= j ∈ I,

∑N
j=1,i �=j πij = −πii, i = (1, . . . ,N).

(2)

Unlike the existing results, the information for TPs of the jumping process
{r(t), t ≥ 0} in this paper are assumed to be incomplete; namely, they are allowed
to be known, uncertain with known lower and upper bounds, and completely un-
known. For instance, for system (1) with four operation modes, the TP matrix may
be expressed as:

⎡

⎢
⎢
⎣

π11 ? π13 ?
? π22 ? π24
α ? π33 ?
? ? β ?

⎤

⎥
⎥
⎦ , (3)
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where “?” represents the inaccessible elements, α and β are uncertain with known
lower and upper bounds (α ≤ α ≤ ᾱ and β ≤ β ≤ β̄), and πij is completely known.

Therefore, the following three sets can be adopted to describe all possible cases to
which the TPs may belong:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ri
K

�= {j : πij is known},
Ri

UK1
�= {j : lower and upper bounds of πij are known},

Ri
UK2

�= {j : there is no information available for πij }.

(4)

Although some elements are uncertain, their boundary information can be utilized.
To make full use of the information of known and uncertain TPs, the above sets are
further classified as follows:

⎧
⎨

⎩

I i
k

�= Rk
K ∪Rk

UK1,

I i
uk

�= Rk
UK2.

(5)

Moreover, we employ Li
k(Li

uk) ∈ N
+ to represent the index set of the mth known

(unknown) element in the ith row of matrix π .

Li
k

�= {
m | m ∈ I i

k and m �= i
}
, Li

uk

�= {
m | m ∈ I i

uk and m �= i
}
.

Our aim is to design a state feedback controller

u(t) = K
(
r(t)

)
x(t) (6)

such that the resulting closed-loop system
{

ẋ(t) = (A(r(t)) + B1(r(t))K(r(t)))x(t) + B2(r(t))w(t),

z(t) = (C1(r(t)) + D1(r(t))K(r(t)))x(t) + D2(r(t))w(t),
(7)

is stochastic stable (SS) and meets the prescribed H∞ performance index.
The set I comprises the operation modes of system (1), and for each possible

value of r(t) = i, the system matrices are abbreviated as

Ai = A
(
r(t) = i

)
, B1i = B1

(
r(t) = i

)
, B2i = B2

(
r(t) = i

)
,

Ci = C1
(
r(t) = i

)
, D1i = D1

(
r(t) = i

)
, D2i = D2

(
r(t) = i

)
,

Ki = K
(
r(t)

)
.

Some useful definitions and lemmas are presented below.

Definition 1 System (1) is said to be SS if the following holds:

E

{∫ ∞

0

∥
∥x(t)

∥
∥2

dt | x0, r0

}

< ∞ (8)

for any initial condition x0 and initial distribution r0.



Circuits Syst Signal Process (2014) 33:1393–1410 1397

Definition 2 Given a positive scalar γ , system (7) is said to be SS and has an H∞
noise attenuation performance index γ if it is SS and, under zero initial state, ‖z‖2 ≤
γ ‖w‖2 holds for all nonzero w(t) ∈ L2[0,∞).

Lemma 1 [42] Given a prescribed scalar γ , the nominal Markovian jump system
(1) with u(t) ≡ 0 is SS and has H∞ performance index γ , if and only if there exist
matrices Pi > 0 such that the following coupled linear matrix inequalities hold:

⎡

⎢
⎣

He(PiAi) + ∑N
j=1 πijPj PiB2i CT

i

BT
2iPi −γ 2I DT

2i

Ci D2i −I

⎤

⎥
⎦ < 0. (9)

Lemma 2 [42] Consider system (1) with partly unknown TPs. There exists a con-
troller (5) such that the resulting closed-loop system (6) is SS and has a prescribed
H∞ performance index γ if there exist matrices Xi > 0, Yi such that

Λi < 0, (10)

Ωi + Xj ≥ 0
(
j = i ∈ I i

uk

)
, (11)

[
Ωi Xi

∗ −Xj

]

≤ 0
(
j �= i, j ∈ I i

uk

)
, (12)

where

Λi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎣

(1 + ∑
j∈Ii

k
πij )Ωi + πiiXi B2i (C1iXi)

T Si
k

∗ −γ 2I DT
2i 0

∗ ∗ −I 0
∗ ∗ ∗ −Xi

k

⎤

⎥
⎥
⎦ (i ∈ I i

k)

⎡

⎢
⎢
⎣

(1 + ∑
j �=i,j∈Ii

k
πij )Ωi B2i (C1iXi)

T Si
k

∗ −γ 2I DT
2i 0

∗ ∗ −I 0
∗ ∗ ∗ −Xi

k

⎤

⎥
⎥
⎦ (i ∈ I i

uk),

(13)

Ωi = He(AiXi + BiYi),

Si
k = [√

πi1Xi · · · √
πi(i−1)Xi

√
πi(i+1)Xi · · · √

πiNXi

]
,

Xi
k = diag

[
X1 · · · Xi−1 Xi+1 · · · XN

]
.

Lemma 3 If the following inequality holds:

Σ =
[−γ 2I DT

D −I

]

< 0, (14)

then one has
[−γ 2I DT

D −I

]−1

=
[

R−1 R−1DT

DR−1 I + DR−1DT

]

, (15)

where R−1 = (γ 2I − DT D)−1.
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Proof From (14), we have the fact that Σ is nonsingular and symmetric. Therefore,
there exists a matrix

M =
[
M11 MT

12
M12 M22

]

satisfying

(−Σ)M = M(−Σ) =
[
I1 0
0 I2

]

, (16)

where I1 and I2 are identity positive definite matrices with appropriate dimensions.
Then, one has

[
M11 × γ 2I1 − M2D

T M11 × (−D)T + M2

MT
12 × γ 2I1 − M3D MT

12 × (−D)T + M2

]

=
[
I1 0
0 I2

]

. (17)

Solving the above equation (17) leads to the equality given in (15). �

Before ending this section, some abbreviations are introduced to facilitate the sub-
sequent discussion.

λi
k = −πii −

∑

j∈Li
k

πij , δi
k = −

∑

j∈Li
k

πij , P i
k =

∑

j∈Li
k

πijPj ,

λ̄i
k = −πii −

∑

j∈Li
k

π ij , δ̄i
k = −

∑

j∈Li
k

π ij , P̄ i
k =

∑

j∈Li
k

π̄ijPj .

3 Main Results

In this section, a new method, based on the parameter-dependent Lyapunov func-
tion approach, is proposed to deal with the H∞ state feedback control problem. The
proposed method can be employed to handle, in strict LMI form, TPs ranging from
completely unknown to completely known. Moreover, it is shown that the method is
less conservative than the existing result.

Theorem 1 Consider the system (1) with incomplete TPs, for a prescribed positive
scalar γ . If there exist Pi > 0, Vi , Ti satisfying the following:

for πii ∈ I i
k

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

He(−Vi) ∗ ∗ ∗ ∗ ∗ ∗
AiVi + Qi π̄iiQi + Ti − 2Qi ∗ ∗ ∗ ∗ ∗

0 B2i
T −γ 2I ∗ ∗ ∗ ∗

CiVi 0 D2i −I ∗ ∗ ∗
Vi 0 0 0 −Ti ∗ ∗
Ci

k 0 0 0 0 −D i
k ∗

√
λ̄i

kVi 0 0 0 0 0 −Ql

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (18)
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for πii ∈ I i
uk

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

He(−Vi) ∗ ∗ ∗ ∗ ∗
AiVi + Qi δ̄iQi + Ti − 2Qi ∗ ∗ ∗ ∗

0 B2i −γ 2I ∗ ∗ ∗
CiVi 0 D2i −I ∗ ∗
Vi 0 0 0 −Ti ∗
Ci

k 0 0 0 0 −D i
k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

Qi ≤ Ql (l ∈ Li
uk),

(19)

where

Ci
k = [

(
√

π̄i1Vi)
T · · · (

√
π̄iKi

Vi)
T

]T
,

D i
k = diag

{
Q1, . . . ,QKi

}
,

where Ki is the maximal number in Li
k , then the considered autonomous system (1)

is SS and has the prescribed H∞ performance index γ .

Proof The incomplete TPs considered in this paper cause the condition in Lemma 1
to be nonconvex. In order to overcome this difficulty, property (2) is employed as
follows. If πii ∈ I i

k , we keep it. Otherwise, it is replaced with πii = −∑
j∈Li

k
πij −

∑
l∈Li

uk
πil . Applying this property to (9), one has

⎡

⎣
He(PiAi) + ∑N

j=1 πijPj PiB2i CT
i

BT
2iPi −γ 2I DT

2i

Ci D2i −I

⎤

⎦

=
⎡

⎣
He(PiAi) +P i

k PiB2i CT
i

BT
2iPi −γ 2I DT

2i

Ci D2i −I

⎤

⎦ +
⎡

⎣
πiiPi ∗ ∗

0 0 ∗
0 0 0

⎤

⎦ +
⎡

⎣
P i

uk ∗ ∗
0 0 ∗
0 0 0

⎤

⎦ < 0.

(20)

Because

∑
l∈Li

uk
πil

λi
k

= 1, for the case πii ∈ I i
k , (20) is transformed as

⎡

⎣
He(PiAi) + ∑N

j=1 πijPj PiB2i CT
i

BT
2iPi −γ 2I DT

2i

Ci D2i −I

⎤

⎦

=
∑

l∈Li
uk

πil

λi
k

⎡

⎣
He(PiAi) +P i

k + πiiPi PiB2i CT
i

BT
2iPi −γ 2I DT

2i

Ci D2i −I

⎤

⎦ +
⎡

⎣
P i

uk ∗ ∗
0 0 ∗
0 0 0

⎤

⎦

=
∑

l∈Li
uk

πil

λi
k

⎡

⎣
He(PiAi) +P i

k + πiiPi + λi
kPl PiB2i CT

i

BT
2iPi −γ 2I DT

2i

Ci D2i −I

⎤

⎦ < 0. (21)
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A sufficient condition to make (21) hold is presented below:

⎡

⎢
⎣

He(PiAi) + P̄ i
k + π̄iiPi + λ̄i

kPl PiB2i CT
i

BT
2iPi −γ 2I DT

2i

Ci D2i −I

⎤

⎥
⎦ < 0

(
l ∈ Li

uk

)
. (22)

On the other hand, if πii ∈ I i
uk , replacing πii with (−∑

i∈Li
k
πij − ∑

l∈Li
uk

πil) in
(20), one has

⎡

⎢
⎣

He(PiAi) +P i
k + δi

kPi PiB2i CT
i

BT
2iPi −γ 2I DT

2i

Ci D2i −I

⎤

⎥
⎦ +

∑

l∈Li
uk

⎡

⎣
(Pl − Pi) 0 0

0 0 0
0 0 0

⎤

⎦ < 0. (23)

If the following inequalities are satisfied, then (23) can be guaranteed.

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎣
He(PiAi) + P̄ i

k + δ̄i
kPi PiB2i CT

i

BT
2iPi −γ 2I DT

2i

Ci D2i −I

⎤

⎦ < 0,

Pl ≤ Pi (l ∈ Li
uk).

(24)

In the following, our main task is to prove that (22) and (24) can be obtained from
(18) and (19), respectively. In fact, there exist equivalence relations among (22) and
(18), and (24) and (19), which are shown in the following discussion.

(18) =⇒ (22). Let Ri = (γ 2I −DT
2iD2i ). According to (18), Ri is positive definite.

By Schur’s complement, one has

[
He(−Vi) + V T

i (T −1
i + ∑

j �=i π̄ijQ
−1
j + λ̄i

kQ
−1
l )Vi (AiVi)

T + Qi

AiVi + Qi π̄iiQi + Ti − 2Qi

]

+
[

0 BT
2i

(CiVi) 0

]T [−γ 2I DT
2i

D2i −I

]−1 [
0 BT

2i

(CiVi) 0

]

< 0. (25)

According to Lemma 3, (25) is equivalently rewritten as (26),
[

Πi11 ∗
Πi21 Πi22

]

< 0, (26)

where

Πi11 = He(−Vi) + V T
i

(

T −1
i +

∑

j �=i

π̄ijQ
−1
j + λ̄i

kQ
−1
l

)

Vi

+ (CiVi)
T
(
I + D2iR

−1
i DT

2i

)
(CiVi),

Πi21 = (
Ai + B2iR

−1
i DT

2iCi

)
Vi + Qi,

Πi22 = π̄iiQi + Ti − 2Qi + B2iR
−1
i BT

2i .
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On the other hand, from (18), we can get the fact that Vi is nonsingular. Let Vi =
W−1

i , Qi = P −1
i and pre- and post-multiply (26) by

[ Wi 0
0 Pi

]
. Then one has

[
Θi11 ∗
Θi21 Θi22

]

< 0, (27)

where

Θi11 = He(−Wi) + T −1
i +

∑

j �=i

π̄ijPj + λ̄i
kPl + CT

i

(
I + D2iR

−1
i DT

2i

)
Ci,

Θi21 = Pi

(
Ai + B2iR

−1
i DT

2iCi

) + Wi,

Θi22 = π̄iiPi + PiTiPi − 2Pi + PiB2iR
−1
i BT

2iPi .

Pre- and post-multiplying (27) by [I I ] and its transpose, one gets

He
(
Pi

(
Ai + B2iR

−1
i DT

2iCi

)) +
∑

π̄ijPj + λ̄i
kPl + PiB2iR

−1
i BT

2iPi

+ CT
i (I + D2iR

−1
i DT

2i )Ci + T −1
i + PiTiPi − 2Pi < 0. (28)

Because T −1
i + PiTiPi − 2Pi = (T −1

i − Pi)Ti(T
−1
i − Pi) ≥ 0, it follows that

He
(
Pi

(
Ai + B2iR

−1
i DT

2iCi

)) +
∑

π̄ijPj + λ̄i
kPl

+ PiB2iR
−1
i BT

2iPi + CT
i

(
I + D2iR

−1
i DT

2i

)
Ci < 0 (29)

which can be also rewritten as

He
(
Pi (Ai)

) +
∑

π̄ijPj + λ̄i
kPl

+ [
PiB2i CT

i

]
[

R−1
i R−1

i DT
i

DiR
−1
i I + D2iR

−1
i DT

2i

][
(PiB2i )

T

Ci

]

< 0. (30)

According to Lemma 3 and Schur’s complement, (30) is converted as (31),
⎡

⎢
⎣

He(PiAi) + ∑
π̄ijPj + λ̄i

kPl PiB2i CT
i

BT
2iPi −γ 2I DT

2i

Ci D2i −I

⎤

⎥
⎦ < 0 (31)

which is just (22).
(22) =⇒ (18). Pre- and post-multiplying (22) by diag{Qi, I, I } (Qi = P −1

i ) and
its transpose, it follows that

⎡

⎢
⎢
⎢
⎣

He(AiQi) + π̄iiQi ∗ ∗ ∗
BT

2i −γ 2I ∗ ∗
CiQi D2i −I ∗
C̄i

k 0 0 D i
k

⎤

⎥
⎥
⎥
⎦

< 0, (32)
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where

C̄i
k = [

(
√

π̄i1Qi)
T · · · (

√
π̄iKi

Qi)
T

]T
,

D i
k = −diag

{
Q1, . . . , QKi

}
.

Since (32) holds, by the continuity of the LMI, there always exists a set of suffi-
ciently small positive scalars εi satisfying

⎡

⎢
⎢
⎢
⎣

He(AiQi) + π̄iiQi ∗ ∗ ∗
BT

2i −γ 2I DT
2i ∗

CiQi D2i −I ∗
E i

kQi 0 0 D i
k

⎤

⎥
⎥
⎥
⎦

+ εi

⎡

⎢
⎢
⎣

Ai

0
Ci

E i
k

⎤

⎥
⎥
⎦Qi

⎡

⎢
⎢
⎣

Ai

0
Ci

E i
k

⎤

⎥
⎥
⎦

T

< 0, (33)

where

E i
k = [√

π̄i1I · · · √
π̄iKi

I
]T

.

After performing direct algebraic manipulations, one has

⎡

⎢
⎢
⎢
⎣

−ε−1
i Qi + π̄iiQi ∗ ∗ ∗

BT
2i −γ 2I ∗ ∗
0 D2i −I ∗
0 0 0 D i

k

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

(εiAi + I )Qi

0
εiCiQi

εE i
kQi

⎤

⎥
⎥
⎦ (εiQi)

−1

⎡

⎢
⎢
⎣

(εiAi + I )Qi

0
εiCiQi

εE i
kQi

⎤

⎥
⎥
⎦

T

< 0. (34)

Via Schur’s complement, (34) is rewritten as (35),

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−εiQi ∗ ∗ ∗ ∗
(εiAi + I )Qi −ε−1

i Qi + π̄iiQi ∗ ∗ ∗
0 BT

2i −γ 2I ∗ ∗
εiCiQi 0 D2i −I ∗
εE i

kQi 0 0 0 D i
k

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0 (35)

which can be also rewritten as (36),

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2εiQi ∗ ∗ ∗ ∗ ∗
εiAiQi + Qi −ε−1

i Qi + π̄iiQi ∗ ∗ ∗ ∗
0 BT

2i −γ 2I ∗ ∗ ∗
εiCiQi 0 D2i −I ∗ ∗
εiQi 0 0 0 −εiQi ∗

εiE
i
kQi 0 0 0 0 D i

k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0. (36)
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Let Vi = εiQi ; then we have

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

He(−Vi) ∗ ∗ ∗ ∗ ∗
AiVi + Qi −ε−1

i Qi + π̄iiQi ∗ ∗ ∗ ∗
0 BT

2i −γ 2I ∗ ∗ ∗
CiVi 0 D2i −I ∗ ∗
Vi 0 0 0 −εiQi ∗
Ci

k 0 0 0 0 D i
k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (37)

where

Ci
k = [

(
√

π̄i1Vi)
T · · · (

√
π̄iKi

Vi)
T

]T
.

On the other hand, by using εi − 2 ≥ −ε−1
i in (37), (37) can be guaranteed from the

following equality:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

He(−Vi) ∗ ∗ ∗ ∗ ∗
AiVi + Qi (εi − 2)Qi + π̄iiQi ∗ ∗ ∗ ∗

0 BT
2i −γ 2I ∗ ∗ ∗

CiVi 0 D2i −I ∗ ∗
Vi 0 0 0 −εiQi ∗
Ci

k 0 0 0 0 D i
k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0. (38)

Let Ti = εiQi . Then (18) is obtained.
Along a similar line to (24), we can get that (19) is equivalent to (24). Therefore,

if the conditions given in (18) and (19) hold, the autonomous system (1) is SS and
has the prescribed H∞ performance index γ . �

Remark 1 In Theorem 1, two sets of slack variables are introduced and the parameter-
dependent Lyapunov function approach is enabled by a matrix transformation tech-
nique.

Remark 2 In the above proof, we make full use of property (2). Namely, if πii ∈
I i

k , we hold it. Otherwise, it is replaced by (−∑
j∈Ii

k
πij − ∑

l∈Ii
uk

πil). Due to this
equivalence transformation, the proposed method in this paper is less conservative
than Lemma 2, which will be shown in Theorem 3.

Remark 3 Without considering the performance factor, the results given in Theo-
rem 1 can be directly reduced to the state feedback control result in [27].

Based on the conditions given in Theorem 1, the following theorem presents an
H∞ state feedback controller design method for continuous MJLSs with incomplete
TPs in the framework of LMIs.
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Theorem 2 For the considered system (1) with incomplete TPs, where γ is a pre-
scribed positive scalar, if there exist Pi > 0, Vi , Ti , and Li satisfying the following:

for πii ∈ I i
k

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

He(−Vi) ∗ ∗ ∗ ∗ ∗ ∗
AiVi + B1iLi + Qi π̄iiQi + Ti − 2Qi ∗ ∗ ∗ ∗ ∗

0 BT
2i −γ 2I ∗ ∗ ∗ ∗

CiVi + D1iLi 0 D2i −I ∗ ∗ ∗
Vi 0 0 0 −Ti ∗ ∗

CK1Vi 0 0 0 0 −DK1 ∗
√

λ̄i
kVi 0 0 0 0 0 −Ql

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

(39)

for πii ∈ I i
uk

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

He(−Vi) ∗ ∗ ∗ ∗ ∗
AiVi + B1iLi + Qi δ̄iQi + Ti − 2Qi ∗ ∗ ∗ ∗

0 BT
2i −γ 2I ∗ ∗ ∗

CiVi + D1iLi 0 D2i −I ∗ ∗
Vi 0 0 0 −Ti ∗

CK1Vi 0 0 0 0 −DK1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

Qi ≤ Ql (l ∈ Li
uk)

(40)

then the considered system is stochastically stabilizable and has the prescribed H∞
performance index γ via the controller (6). Moreover, the controller gain matrices
are given as

Ki = LiV
−1
i . (41)

Proof Let Li = KiVi and take the closed-loop system matrices to Theorem 1. �

Remark 4 The controller design method given in Theorem 2 can be directly extended
to deal with the robust controller design problem for system matrices subject to poly-
topic uncertainties.

Remark 5 In Theorem 2, by setting σ = γ 2 and minimizing σ subject to (39) and
(40), the optimal H∞ performance index σ ∗ as well as the corresponding controller
gains can be obtained.

The following Theorem 3 is given to show that the method proposed in Theorem 2
is less conservative than that of Lemma 2.

Theorem 3 For the TPs to be known or unknown considered in [42], if the conditions
given in Lemma 2 hold, then the conditions given in Theorem 2 hold.
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Proof For i ∈ I i
k , multiplying λi

k by (12) of Lemma 2 after using Schur’s comple-
ment, one has

λi
kΩi + λi

kXiX
−1
l Xi ≥ 0 =⇒ λi

kXiX
−1
l Xi ≥ (−λi

kΩi). (42)

Taking (42) into (13), we have

⎡

⎢
⎢
⎣

Ωi + πiiXi + λi
kXiX

−1
l Xi B2i (C1iXi)

T Si
k∗ −γ 2I DT

2i 0
∗ ∗ −I 0
∗ ∗ ∗ −Xi

k

⎤

⎥
⎥
⎦ ≤ 0. (43)

Using Schur’s complement once again, the above inequality is equivalently converted
to

⎡

⎢
⎢
⎢
⎢
⎢
⎣

He(AiXi) + πiiXi B2i (C1iXi)
T Si

k

√
λi

kXi

∗ −γ 2I DT
2i 0 0

∗ ∗ −I 0 0
∗ ∗ ∗ −Xi

k 0
∗ ∗ ∗ ∗ −Xl

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≤ 0. (44)

The equivalence between (44) and (39) can be obtained by using the same method as
in Theorem 1. For i ∈ I i

uk , by utilizing the same method as above, the second part
can be proved. �

4 Numerical Examples

In the following, two numerical examples are provided to illustrate the effectiveness
of the proposed method. The eigenvalues of each mode matrix in Example 1, which
is borrowed from [42], are in the open left plane. Unlike Example 1, the eigenvalues
of each mode matrix in Example 2 are unstable.

Example 1 Consider continuous MJLSs (1) with four operation modes and the fol-
lowing data:

A1 =
[−0.25 −0.25

0.5 −0.5

]

, A2 =
[−0.05 −0.17

0.5 −0.1

]

,

A3 =
[−0.6 −0.05

0.5 −0.6

]

, A4 =
[−0.3 −0.12

0.5 −0.15

]

,

B11 =
[

5
−1

]

, B12 =
[−2

0

]

, B13 =
[

1
−1

]

,

B14 =
[

3
0

]

, B21 = [
0.2 0.1

]T
, B22 = [

0.1 0.1
]T

,

B23 = [−0.2 −0.1
]T

, B24 = [
0.12 0.9

]T
,
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C11 = [
0.5 1

]
, C12 = [−0.2 0.8

]
, C13 = [

0.1 −1
]
,

C14 = [
0.3 −0.9

]
, C21 = [

0.5 1
]
, C22 = [−0.5 0.5

]
,

C23 = [
0.5 −1

]
, C24 = [−0.5 0

]
,

D11 = −0.5, D12 = −0.4, D13 = −0.2, D14 = −0.2,

D21 = 0.5, D22 = −0.4, D23 = 0.2, D24 = −0.62.

The TP matrix is as follows:
⎡

⎢
⎢
⎣

−1.3 0.2 ? ?
? ? 0.3 0.3

0.6 ? −1.5 ?
0.4 ? ? ?

⎤

⎥
⎥
⎦ , (45)

where ? denotes the completely unknown TPs.

Solving the conditions given in Theorem 1 and Lemma 2, respectively, the corre-
sponding optimal H∞ indices σ ∗ are given in Table 1.

Employing the method proposed in [42] to generate a possible modes evolution
(Fig. 1), for given initial state x0 = [−1.2 0.6 ]T , the state response curves of the
closed-loop systems for different methods are shown in Fig. 2.

From the obtained optimal performance indices and the above state curves, it can
be seen that the method proposed in this paper is more effective than the existing
result [42].

In the following, an open-loop unstable system example further verifies the effec-
tiveness of the proposed method.

Table 1 Comparison of H∞
performance indices for
different methods (Example 1)

Theorem 2 Lemma 2 ([42])

γ 1.3456 1.9923

Fig. 1 A possible modes
evolution
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Fig. 2 State response curves for different methods

Example 2 Consider continuous MJLSs (1) with four operation modes and the fol-
lowing data:

A1 =
[−0.15 −0.05

0.1 0.2

]

, A2 =
[−0.05 −0.17

0.5 0.1

]

,

A3 =
[−0.6 −0.05

0.5 0.6

]

, A4 =
[

0.3 −0.12
0.5 −0.15

]

,

B11 =
[

0
−0.1

]

, B12 =
[−0.2

0.1

]

,

B13 =
[

0.1
−0.1

]

, B14 =
[

0.2
0.1

]

.

The other parts of the system matrices are the same as in Example 1, and the TP
matrix is assumed to be as follows:

⎡

⎢
⎢
⎣

−1.3 0.2 ? ?
? ? 0.3 0.3
α1 ? α2 ?
0.4 ? ? ?

⎤

⎥
⎥
⎦ ,

where α1 and α2 are unknown but satisfy 0.5 ≤ α1 ≤ 0.8 and −1.9 ≤ α1 ≤ −1.2 and
? denotes the completely unknown TPs.

Using the same procedure as in Example 1, the obtained H∞ performance indices
are given in Table 2.

This table further shows the effectiveness of the proposed method. Furthermore,
by solving Theorem 2, the corresponding state feedback controller gains are obtained,
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Table 2 Comparison of H∞
performance indices for
different methods (Example 2)

Theorem 2 Lemma 2 [42]

γ 2.5822 unfeasible

Fig. 3 State response curves

as given below

K1 = [
14.8700 21.8006

]
, K2 = [

18.5128 15.7338
]
,

K3 = [
46.2946 81.3308

]
, K4 = [−57.4605 −74.1942

]
.

Taking the system mode given in Example 1 (Fig. 1), the state response curves of
the closed-loop system (7) are shown in Fig. 3 under the given initial state x0 =
[−2.4 1.5 ]T and energy-bounded noise w(t) = 0.5e−0.2t .

5 Conclusions

The H∞ state feedback controller design problem for continuous MJLSs with in-
complete TPs has been investigated in this paper. Combining the continuous TPs
property and a matrix transformation technique, an LMI-based H∞ controller syn-
thesis method has been proposed. Numerical examples have been given to illustrate
the effectiveness of the proposed method.
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