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Abstract This paper deals with designing Hy filters of reduced order for two dimen-
sional (2-D) continuous systems described by Roesser models, with uncertain state
space matrices. These filters are characterized in terms of linear matrix inequalities
(LMI), to minimize a bound on the Hy, noise attenuation, by using homogeneous
polynomially parameter-dependent matrices of arbitrary degree. The methodology
is also particularized for full order and zero order (static) filters, where more sim-
ple LMI conditions are derived. Numerical examples are presented to illustrate the
proposed methodology.

Keywords 2-D Continuous systems - Uncertain systems - Hy, filtering -
Linear matrix inequality (LMI)

1 Introduction

H filtering, first presented in [13], has the main aim to minimize the Hy, norm
of the error of a filtering system, in order to ensure that the L,-induced gain from
the noise signals to the estimation error will be less than a prescribed level. In con-
trast with Kalman filtering, H, filtering does not require the exact knowledge of the
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noise signals, which renders this approach appropriate in some practical applications.
A great number of results on the H, filtering have been proposed in the literature,
in both the deterministic and stochastic contexts: see, for example, [27, 29, 33], and
references therein. When uncertainties appear in a system model, the robust Hy, fil-
tering has been also investigated: see, for example, [6, 23, 36].

Currently, there is an increased interest in the design of reduced-order Hy, filters,
as presented in [4, 16, 30, 35], since reduced-order filters are easier to implement than
full-order ones: this is an important issue when fast data processing is needed.

Note that the results discussed so far were obtained for one-dimensional (1-D) sys-
tems. However, many practical systems are better modeled as two-dimensional (2-D)
systems, such as those in image data processing and transmission, thermal processes,
gas absorption, water stream heating, etc. [26]. The study of 2-D systems is of both
practical and theoretical importance [20, 25, 38]. Therefore, in recent years, much
attention has been devoted to the analysis and synthesis problems for 2-D systems:
controlability [21, 22]; stability [17, 18]; the stability and stabilization in the presence
of delays [2, 15, 19, 28]; 2-D dynamic output feedback control [37], model approxi-
mation [8], etc. For the specific problem of 2-D Hy, filtering, several results have al-
ready been obtained: for example, for Roesser models [7]; for Fornasini-Marchesini
second model [31, 34]; for 2-D systems with delays [7, 10-12, 34], etc.

Interested in the design of reduced-order Hy filters and in order to obtain less con-
servative results, we present a new approach, the structured polynomially parameter-
dependent method, for designing robust Hy, filters for uncertain 2-D continuous sys-
tems described by the Roesser model. Given a stable system with parameter uncer-
tainties residing in polytope vertices, the focus is on designing a robust filter such
that the filtering error system is robustly asymptotically stable and minimizing the
H, norm of the filtering error system for the entire uncertainty domain. It should be
pointed out that not only the full-order filters are established, but also the reduced-
order filters are designed. Furthermore, when the reduced-order model is restricted
to be of zeroth-order, the dimension constraint is removed and a simpler condition
expressed by LMIs is obtained.

In this paper, the reduced-order H, filtering problem for uncertain 2-D continu-
ous systems with new structure of the key slack variable matrix is treated. The class
of 2-D systems under consideration corresponds to continuous 2-D systems described
by a Roesser state space model subject to polytopic uncertainties in both the state and
output matrices. A sufficient condition for the solvability of the robust Hy, filtering
problem is derived in terms of a set of LMlIs, based on homogeneous polynomial
dependence on the uncertain parameters of arbitrary degree. The more the degree in-
creases, the less conservative filter designs can be obtained. It is shown that the Hy
filter result includes the quadratic framework, and the linearly parameter-dependent
framework as special cases for zeroth degree and first degree, respectively. Two ex-
amples will illustrate the feasibility of the proposed methodology.

Notation Throughout this paper, for real symmetric matrices X and Y, the notation
X > Y (respectively, X > Y) means that the matrix X — Y is positive semi-definite
(respectively, positive definite). I is the identity matrix of appropriate dimension. The
superscript T represents the transpose of a matrix; diag{. . .}, denotes a block-diagonal

Birkhauser



Circuits Syst Signal Process (2014) 33:1189-1214 1191

matrix; the Euclidean vector norm is denoted by || - ||. and the symmetric term in a
symmetric matrix is denoted by x, e.g., [f g] = [;(T ;] Finally, the ¢» norm of

a 2-D signal w(ty, 1) is given by |w(t, 1) || = \/fo‘” IS wti, )T w(ty, ) dty diy,
where w(#1, t2) is said to be in the space £>{[0, oo], [0, co]} or £5 if ||w(t, £2)| < oo.
2 Problem Formulation

Consider an uncertain 2-D continuous system described by the following Roesser
state-space model:

ax" (11,10) h
3ty _ x' (11, 12)
axlLn) |- ¢ |:xv(t1,t2) + Baw (1, 1), M
312
h
_ x"(n, 1)
y(t1, ) =Cy, [x”(tl,tz)] + Dy, 0(11, 1), ()
h
_ x"(11, )
Z(IIJZ)—Ca |:Xv(tl,t2)} +D0tw(tlst2)v (3)

where x"(11, 1) € W™ and xV(1, 1) € W™ are the horizontal and vertical states,
respectively; y(t1, ) € NP is the measured output; z(t1, ) € N is the signal to
be estimated, and w(t1, r2) € N is the exogenous input with bounded energy (i.e.,
w(ty, i) € £3). The system matrices are assumed to belong to a known polyhedral
domain I" described by N vertices, that is,

Paé[AIZ’BD[aCI‘va]a?COHDOl]GF? (4)
where
N N
r2{P@ | P@ =) anPn:) am=10,>0¢,
m=1 i=1

with P, £ {Am, Bm, Ci1,,. D1,,, Cm, Dy} denoting the mth vertex of the polyhedral
domain I". It is assumed that the parameter « is unknown (not measured online) and
does not depend explicitly on the time variable (t1, t>).

The boundary conditions are defined by

XM0,0)=g(t),  x°(t1,0)= f(t1) V(t1,12) > 0.

Inspired by [5], we make the following assumption:

Assumption 1 The boundary conditions satisfy

[, )] <0e,  lim ["(0,)] =0,
th—> 00

[x¥(t1,0)| < o0, lim [x"(#,0)| =0.
11—>00
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Similar to [5], we give the following definition:

Definition 1 The 2-D continuous system (1)—(3) with Assumption 1 is said to be
asymptotically stable if

lim  |x"(t1,0)]|=0; lim  [xV(t1, )] =0
(t1+1)—>00 (t1+1)—>00

Now, we want to find a 2-D continuous linear time-invariant filter, with input y(1, #2)
and output z ¢ (#1, #2), which is an estimation of z(#1, #2). Here, we consider the fol-
lowing state space description for this filter:

axt(t1,1)
f h
a1 =Af |:xf(t1,t2)

0xy(11,12) x}i (11, 1)
datr

j| +ny(t1,t2), 5)

x?(ll, )

0, t2)] + Dyry(t1, 1),

Zf(tl,t2)=Cf|: ©

0,2)=0,  x}(11,00=0, Vi, 0,

where x? (11, 12) € W' is the vector of the reduced-order filter horizontal states with
1< Np, <Ny, and x}i (11, 1) € W'/ is the vector of vertical states, with 1 < Ny, <ng
(for full-order filter, we have Nh, =ng and Ny, = ny); Ay, By, and C are constant
matrices to be determined, partitioned as follows:

All A12 Bl
Apa| Tl T Al T cé{0 @] 7
' [A;; s A 1 L A A S

Denote
) =T AT
P n) =[x"n.n)" x;}c(ll,lz)T]T, ®)
(1, n) =z(t1, ) — 27 (11, ).

Augmenting system (1)—(3) to include the states of filter (5)—(6), we obtain the fol-
lowing filtering error system:

%" (11,10) ~h
i | _ i [ X', n) =
|:3)?U(;;,[2):| —_— AD{ [iv(tl, t2) + BaUJ(tl, tz)s (9)
daty
Hr ) = Co [ 2D LB i 1) (10)
1,102 o iv(tl,tz) o 1,12),
where
Aa:TAAaTT’ éa:Téa, éa:éaTT9 Dazbav
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i ["h Onthh
T = Onhf N Onhf X1y 7
0, xny, I,
_Onvf X1, Onv‘/ X1y
i On;,xn/,f 0Oy, Xny
1, 0
1= g M Xy ¢ ’ T — [Tl Tz] ’
Onvxnhf Onvxnvf
_Onvfxnhf Invf
c [ A 0 ~ [ Ba
Aa__BfC]Q{ Af]’ Ba_|:BfD1ai|’

A

Co=[Co—DsCi, —Cy],  Dy=Dy—DyDy,.
The matrix transfer function of the error system (9)—(10) is then given by

~ ~ ~ —1~ ~
G(s1,52) = Ca[I(s1,52) — Aa]” By + D, (11
and the Hy, norm of the system is, by definition,

IGlloo = sup omax[G(jwi, jwn)], (12)

wi,w2€R
where o (-) denotes the maximum singular value.

Remark I By using the 2-D Parseval’s theorem [25], it is not difficult to show that,
under zero boundary conditions and with asymptotic stability of (9)-(10), the condi-
tion ||G|ls < y is equivalent to
z(t1, ¢
sup IzCr1, )1 _

<vy. (13)
0£w(ry.n)ety lWEL, 2)]]

Our aim in is to design reduced-order H, filters of the form (5)—(6) such that:

1. The filter error system (9)—(10) is asymptotically stable when w(#1, £2) = 0.

2. The filter error system (9)—(10) fulfills a prescribed level y of the Hy, norm; i.e.,
under the zero boundary condition, [|Z(z1, )| < y |lw(¢1, t2)]| is satisfied for any
w(ty, ) € 4.

Remark 2 In the reduced-order case, we consider three particular scenarios: First,
(nhf #0, Ny, = 0); then, (nhf =0, Nys # 0), and finally the zeroth-order filter:
(nhf =0, Ny, = 0).

Case 1: Nh #0, Ny, =0.

In this case, the reduced-order H filter in (5)—(6) is given by
ax'} (11, 12)

ot
2r (1, 12) = Cyxlh(t,12) + Dy, 12). (15)

= A XL, 0) + Byy(, 1), (14)
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Augmenting system (1)—(3) to include the states of the filter (14)—(15) and using (8),
we obtain the following filtering error system:

ax"(t).1) h
3 _ i | X' n) =
[W(gm] = |:iv(t1,t2) + Baw(tn, ). (16)
daty
2(t1,10) =C X1, 12) + Dow(t1, 12) (17)
1,102 o iv(tl,tz) o 1,12),

Aa:TA(xTTv Ba:Téaa éa:éaTTs Da:i)ou

i Inh Onh Xnp Onhxnhf

T = O"hf xnp Onhfxnv ) T, = In/,f , T = [T] Tz] ,
L Oﬂv Xnp Inu Onvxnhf

. [ Ay O R By

Aov = pi 11] , By = [ 1 } ,
LBrCl Ay ByDi,

CA‘ot:_cot_chlat _C}-:I, ﬁQZDa—DfDla.

Case 2: np, = 0, My, #0.

The reduced-order Hy, filter in (5)—(6) is now

dxp (11, 12)

= APx} (11, 0) + By (11, 1), (18)
oty

z2p(t, 1) = Cixl(t1, 1) + Dy (h, 12). (19)

Augmenting system (1)—(3) to include the states of the filter (18)—(19) and using (8),
we obtain the following filtering error system:

ax" (11,12) -h
an _ x| XM ) ~
v, | Ac [xv(t1 ,b) + Baw(n, 12), (20)
daty
. -~ [, 0) ~
where
Ay =T AT By =71 By, Co=Co1T, Dy = Dy,
nh Onh Xnp 0”/1 XNy ¢
Onvxnh Inv ) Tz = Onv Xnvf ) T = [Tl TZ] 5
Onv/ Xnp OHUin’lv Invf
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o = 2 22 |» o = 2 s
chla Af BfDla
Co= [Ca —DsCy, —Cf,] . Dy=Dy—DsDy,.

Case 3: np, = 0, Ny, = 0.
The reduced-order Hy, filter in (5)—(6) is now the following static filter:

z2f(t1, 1) = Dyry(t1, 12). (22)

Connecting this filter (22) to system (1)—(3), we obtain the following filtering error
system:

ax"(11,1) h
T2 _ x"(t1, 1)
xv(tn) | Aa [x”(tl, 1) + Bow(ti, ), (23)
daty
h
- R A G)) ~
(1, ) = Cy |:x”(t1,t2)] + Dyw(t1, 12), 24)

with

Co=Coy—DysCy,, Dy =Dy — DyDy,.

3 Preliminaries

This section is devoted to some preliminary results used later.
Consider now the following 2-D continuous system:

axh (t),0)
xaziz 4 xM(ty, 1) _| A, An xM(ty, 1) 25)
axvzg—?’tz) I ENGH?) Ayl Ax || x¥(t, 1) |

2

To test the asymptotic stability of (25), the following condition, based on properties
of the characteristic polynomial, could be used:

C(s1,52) #0,  V(s1,52), Re(s1) >0, Re(s2) > 0, (26)
where
_ s1ly, — An —Ap
C(sy,s2) = det|: — Ay Szlnv Ay |

However, this condition is difficult to use to design filters, so an alternative is used
here, based on testing stability using Lyapunov matrices. This methodology makes
possible to derive a condition in terms of Linear Matrices Inequalities (LMIs).
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Theorem 1 [14] The 2-D system (25) is asymptotically stable if there exists a matrix

P= [lg’ }(,)v] > 0 (block diagonal positive definite) such that

ATP+PA<O. (27)

In this case, a Lyapunov function of system (25) is defined as
V(1. 1) £ Vi1, ) + Val(ty, 1), (28)
where
Vit 1) 2 x" (11, 1) Pux" (11, 1),
Va(t, ) £ 5T (11, 12) Pux® (11, 12).
Definition 2 [19] The unidirectional derivative of V (¢1, t2) in (28) is defined to be

Vi, 1) n oVa(ty, 1)

Vu(ti, ) & o on

(29)

Note that this unidirectional derivative can be seen as a particular case of the
derivative of the function V(#1, t2) in one direction, independently of the other di-
rection.

Lemma 1 [19] The 2-D system (25) is asymptotically stable if its unidirectional
derivative (29) is negative definite.

Proof We now give an alternative proof based on Definition 2. From (29) and Lemma
1 we have that

Vi, )  OVa(nr, 1)
+ <

Oa
o oty

which implies
Vit + A, ) < Vi(t1, 1)  with ||xh(t1,t2)|| >0 or
Va(ti, ta + A) < Va(t1, 1) with |[xV(#1, 2)|| > 0. (30)

Let 11 — oo with 1, finite: substituting them into (30), we get V| (00, 12) < Vi (00, f2)
if [|x" (00, 12)|| > O or, equivalently,

Va(00, 1 + Afp) < Va(00, 1) < Va(00, 0). (31

Since both Vi (o0, ) < Vi(0co, tr) and Vo(00, 1r) < O are false if ||xh(oo,t2)|| >0,
it follows that (31) is false. Thus, ||x"(c0, )| = 0. Similarly, we can get that
lx?(t1, 00)|| > 0, which completes the proof. U

By using a parameter-dependent Lyapunov function P («) we can obtain the fol-
lowing result.
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Lemma 2 [38] Given y > 0, the estimation error system (9)~(10) is asymptotically
stable with |G|l < Y if there exists a block diagonal positive-definite matrix P, =
diag( Py, , Py,) > O satisfying

Al P] + PyAy  x *
BI'P, —viI o« | <O. (32)
Cq Dy —1

Lemma3 Let& e R, Q e X", and B € W"*" with rank B < n and BL such that
BB* =0. Then, the following conditions are equivalent:

CETQE <OVE#0:BE =0.

. BtToBt <o.
ApeR:Q0—uBTB<O0.

CAx e+ xB+BT T <.

B WD~

4 Main Results

In this section, an LMI approach will be developed to solve the robust Hy, filtering
problem formulated in the previous section. First, we propose the following results
derived from those in [32] and [38].

Theorem 2 Given y > 0, the filter error system (9)~(10) is asymptotically stable with
IGlloo < ¥ if there exist P = diag(Py, Py) > O with P, € R™" and P, € R™*"s
and matrices E, € ROTn)>xtng) g e gpxtng) g, e ROFn)X0En) - gnd
Qg € R0 satisfying

K/Ia + ANDTtKT * * *
Py +EyAy —KI  —E,—ET *
BTKT i AT T 7 BT AT 2 <0. (33)
o a~+Q~DtA0£ BaEa_Qa QaBa+~BaQO£_VI
FyAq + Cy —Fy FyBy + Dy -1
Proof The equivalence is obtained by considering
Ky Al
Ea T _In+n 3
= ) B = 5 f 9
X Oq BT
FO! 0px(n+nf)
Ot pyx (ntn s) * * *
o= Pu Oitnpyxuany) — *
Orx(ri—i-nf) Orx(n—i-nf) _VN I, * ’
c Opx(ntn ) D =
under condition (4) of Lemma 3, with
K In+n_f 40? 02n Xr O(n+nf)><p
B~ = 0r><(n+nf) B, I, Orxp ’
Opx(n+nf) 0p><(n+nf) Opxr Ip
which, using condition (2) of Lemma 3, gives (32). O
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The additional variable matrices Fy, and Q, provide additional degrees of freedom
for the solution of the robust Hy, filtering problems presented below. Note that when
Fy =0and Q, =0, the LMI (33) reduces to LMI (34). From Theorem 2 we have the
following corollary.

Corollary 1 Given y > 0, the filter error system (9)—(10) is asympiotically stable
with ||Gllee < v if there exist P = diag(Py, Py) > 0 with P, € "1 and P, €
R"™™r and matrices Eq € ROTOX04n0) qnd K, € ROTnA*0Hn1) sarisfying

K /{a + AZ KT * * *
i _wT _p _pT
PutEaa =Ky —EBa=Eq  x x| g (34)
B, K, B, E, -yl
Cqy 0 D, -1
Proof The proof can be easily extended from that for 1-D systems in [9]. O

Remark 3 E, Fy, Ky, and Q4 act as slack variables to provide extra degrees of
freedom in the solution space of the robust Hy, filtering problem. Thanks to these
matrices, we obtain an LMI in which the Lyapunov matrix P, is not involved in any
product with the system matrices. This enables us to derive a robust Hy, filtering
condition that is less conservative than previous results due to the extra degrees of
freedom (see the numerical example at the end of the paper).

In the sequel, based on Theorem 2, we will first design full-order parameter-
independent Hy filters of the form (5)—(6). The results are then extended to reduced-
order filters, providing the main results of the paper.

4.1 Full-Order Hy, filter design

The following result provides sufficient conditions for the existence of a full-order
H filter (nhf =hy, Ny, = ny) for system (9)—(10) satisfying (13).

Theorem 3 Consider system (1)—(3) and let y > 0 be a given constant. Then
the estimation error system (9)—(10) is asymptotically stable with 1Gloo < y if
there exist Py 2 diag{f’ha, f_’w} > 0 and matrices Ny £ diag{Nny, Nya}, T, £
diag{Tha, Tva)s Ete = diag{E1,,, E1,,}, Kie = diag{K1,,, K1,.}, F1,, G1, 01,

X4 diag{ Xy, Xy}, Sa, Sp, S¢, and Sy such that

My, + MlTla * * *
T
Mo, Mo, + My, *  * 1 o 35
M3, M3;, Ms3,
(Fi,Aq + Co — SaC1)Y = S.F =R, Y My, —I

where

My, = T1(K1,Aq + SpC1 )T + (V1 +12)S. 7S + Ta(NyAg + SpC1) Y,
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Moy, = Py + Y1 (E1,Aa + 11S5C1, — KL)T + 11 (A1Sa — N TS
+ 15(ToAa + 1 85Cr, — XY + T2 (1S — XT) T,

My, =-TE, T —nTr! —wmnxr) —unxr!,

Mz, = (BLK{ + D] S| + 01,4.)1 + (BIN] + D s))1,

Mz, = (BIET +1D] SI — 01,)7 + (BIT] + 32D sD)1

Ms3, = Q1,By + B. 0] —y°I. M43, = F1,Bo + Dy — SaD1,,.

In this case, the desired 2-D continuous filter in the form of (5)—(6) can be selected
with the following parameters:

A Be| _[x7' 01[Sa S»
& w0 OS]

Proof Let Py, Ey, Fy, Ky, and Q, have the following structures:

[ Pip, P Py, P
P, = diag e 2hai|’|: e P2y

, = 0 0f,

i PzTha P3/1a sz;)a P3Ua ] } QO[ [ th le ]
et [Ein, *iKan Ery, AKgy .

E, = diag | Ean, A2K3h:| ; |:E2vo, oK | [ Fy=[Fn, 0 F, 0],
T [ Kin, Kan Kiv, Ka

Ka = diag | Kon, K3hi|’|:K2va Kzu“'

Without loss of generality, we suppose that K35, K4, K3y, and K4, are nonsin-
gular. Introducing the transformation matrix

@ = diag{ly, Kin K3, . I, Ko K3}
and pre- and post-multiplying (33) by diag{®, @, I, I}, we get

O(KAy+ ATKT)oT *
qj(Pg‘f‘EaAa—Kg)@T —(p(Ea_l’_EO?;)(pT . .
ByKg®' +0uAu®”  BIE;®" — Qu®"  QuBu+Bj 0y — 7l

* *

*
FyAg@T + Cy@T —F,oT FyBy + D, —1I
<0. 37
Defining
= . Plh ﬁZh Plv PZU
Py=0P,®" =dia Y N YL
¢ “ g{[PzTha Plha] [sz;a Py,

X =diag{K4hK3_h1K4h, K4UK3_U1K4U},

Ny = diag{Kun K3, Kon,, KavK3, Koy, },
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T, = diag{Kan K3, Eop,» K4vK 3, En, },
Ko =diag{Kip,, K1y, }, K4q = diag{Kyp,,, K4y, },

-1 -1
S, = [Salh Salv:| — |:K4hAf1hK3h Kﬂ KanA g, Ky, Kﬂ}

Sy Saay KayApy, Ks_hl K4Th K4vAfsz3_vl Kﬂ
| Se, | _| Kan O} By, _
Sb_[sbv}_[o K4vMBfU =Dy
K3, Kap 0
Sc=|S S. |=[C C 3h ,
c [ ch Cy ] [ S fo ] |:O K;v] K4vi|
S, Sy Ky 00 Apy Ap, By, K3_;,1K4Th ? 0
|:S Sdi| = O K4v O Ath Aqu va 0 K3_U K};} 0
‘ 0 0 1 Cp Cy Dy 0 I
(38)

(see the proof of (38)), we know that the transfer function of the filter in (5)—(6)
from y(t1, 1) to z¢(t1, 12) is szy(sl, 52) = Crldiag{s1Inp, s21nv} — Af]_le +Dy.
Substituting (38) into this transfer function and considering X;, = K4, K3_h1 K 4Th and
X, = Ku, K3, K], we get

T.;y(s1,52) = Scldiag{si Lo, s2Lnv} — X1 Sa 17 X718, + 84

Therefore, the filter can be given by (36), and the proof is completed. 0

Remark 4 Observe that, for given A; and A, (35) is convex and can be solved us-
ing standard LMI tools. Finding optimal values of A; and Ajcan be completed, for
example, by using the Matlab command Fminsearch.

Similar to Theorem 3, by Corollary 1 we have the following:

Corollary 2 Consider system (1)—(3) and let y > 0 be a given constant. Then the es-
timation error system (9)—(10) is asymptotically stable with || Glloo < y if there exist
P, 2 diag{lsha, Pyo) > 0 and matrices Ny = diag{Nny, Nya}s Ty e diag{Thy, Tya},
Eiq £ diag{Ey,,, E1,,}» Kia £ diag{K1,,, K1,,}» G1,, X £ diag{Xn, Xu}, Sa» Sps
Se¢, and Sg such that

M, + MlTla * * *
T
M>, My, + My, *2 <0, (39)
M3y, M3, -yl
(Co — SaCi)Y! =8.v]  —F, 7Y  Dy—SaDi, -1

where

Mii, = Ti(Ki,Ag + S,C1) Y + (N + 12)S. 75 + a(NoAg + SC1,) T
My, = Py + T1(E1,Ag + 11S5Cr, — KD )Y + 71(1Sa = N, )T
+ 12 (ToAg + 21 85C1, — X1 + V2 (M1Sa — XT) 7,

Birkhauser



Circuits Syst Signal Process (2014) 33:1189-1214 1201

My, =-TE, T — DTl —mnxr) —unxr!,

M3, = (BIkT + Dl sh)r{ + (BINI + DI s])r],

M3, = (BJE{ +nD] SO + (BI T +1D{ S))7) .
4.2 Reduced-Order Hy filter design

In this subsection, we provide a solution of the Hy, reduced-order filtering problem
in terms of LMIs.

First, it must be pointed out that for the reduced-order 1 < N, <np, I <ny <
ny, the LMI (35) is no longer applicable because the matrices K45, and K4, are rectan-
gular, of dimensions ny x ny and nyy X n,, respectively. We get rid of this difficulty
by proposing a special structure for the matrices:

Vh _ Inhf xnhf V. — Inufxnvf
0 ’ v 0 '
nh—nhfxnhf l’lv—l’lvf ><n,,f

Then, replacing matrices Kaj, Kay by VK4, and V, Ky, respectively, makes
possible to derive the corresponding result, as it is now presented:

In1.><n . Inu-xnu-
Theorem 4 Define Vo =[, ' = [ Vo=[, 1 ] and V £ diag{Vy, Vy}.

Oy - xr1y Oy 1y
Consider system (1)—(3), and let y > 0 be a giverfz cofnstant. Then, there exists
a reduced-order Hy, filter in the form of (5)—(6) such that the estimation er-
ror system (9)-(10) is asymptotlcally stable with |G|l eo < y if there exist P,
dlag{Pha, m} > 0 and matrices Ny = diag{Npy, Nya}, Ty = dlag{Tha, Tva}s E1a
diagl{Ey,,, E1,,}, Kio = diag{Ky,,, K1,,}» F1,, G1,, Q1,, X £ diag{X, Xy}, Sa,
Sy, S¢, and Sy such that

(1> ||l>

My, + MlTla * * *
T
Mo, Moy + My, > % o (40
M3y, M3, M33,
(Fi,Aq + Co — SaC1)YT =S, —F, YT My, —I

where
M1, = T1(K1,Ae + VS,CL)Y] + MV + 128, Y + 1a(NeAa + S5C1,) T
My, = Py + T1(E1,Ag + 11S5C1, — KL )Y + 11(M VS, — N1
+ 12 (TyAg + 21 85C1, — X"V + 1o (1S — XT) 7S,
My, =-MEY] —DT,7 — VXY —unXxr!,
= (BiK{ + D] S{V" + 01,A.)Y{ + (BL NI + D{ )1y,
= (BLE] +MD] S{vT —01,)7 + (BJ T, +2.D{ S})7),

M33, = Q1,Ba + B Qf —y*I.  Mu3, = Fi,By + Dy — SaDy,,.
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In this case, the 2-D filter in the form of (5)—(6) is given by
Ay Bl _[x71 01[Sa S» @1
Cy Dy 10 IS Sal

Proof The proof is parallel to that of Theorem 3. We obtain (40) when the matrices
Py, Ey, Fy, Ky, and Q4 have the following structures:

. Pip,  Pop, Py, Pay,

P“:dlag{[PZT;,a P3ha:|7 |:P2Tva PSU(, > Qaz[th 0 O O],
o King,  VnKan K1y, VoKay

Ko = diag { [tha K3y } ' |:K2va K3y

I Eipy M ViKap En, M VyKay
Ea_d1ag{|:E2ha A2 K3 :|7|:E2va MKz | [

Remark 5 In the filter model (5)—(6), when Rpp =Ny and Ny, =Ny, then V = Iy,,
so it is a full-order filter; therefore, Theorems 3 and 4 are equivalent for this specific
case. The reduced-order filter is then studied when (1 <nj, <np, 1 <ny, <ny), as
when (nhf =0orn, = 0), we directly get the following corollaries from Theorem 4.

i“s Fa:[Flh 0 Fry 0],

Case I:nhf ;ﬁO,nUf =0.

l"hf Xn’lf

Corollary 3 Define V), = [ ] Consider system (1)—(3) and let y > 0 be a

Onh*nh th
given constant. Then, there existsfa re];luced—order Hy filter in the form of (18)—(19)
such that the estimation error system (20)—(21) is asymptotically stable with || G loo <
y if there exist P, 2 diag{ﬁha, 1500,} > 0 and matrices Ny £ diag{Npy, Nya}, Tt £
diag{Tha, Tva ), Ele = diag{E1,,» E1,,}s Kias Fi,5 G1,s Q1,5 X = diag{Xp, X}, Sa,
Sy, S¢, and Sy such that

My, + MlTla * * *
T
M», My, + M22a * * <0, (42)
M3y, M3, M33,
(Fi,Aq + Co — SaC1)Y = S.v)F =R, Y My, —I

where
My, = T1(K1,Ag + ViSeCI) T + (N1 Vi + 12)Sa Yy + T2(NaAg + SpC1,)TY
My, = Py + Yi(E1, Ay + MS,C1, — KD )Y + 11 (M ViSa — NJ) T
+ 15(TuAa + M S5Cr, — XT V)T + 1o (0180 — XT)YS
My, = -TE, Y] — L1 —anVi X1l —aunxr],
Mz, = (BI K] + D[ S[V[ + 01,4.)1{ + (BIN] + D[ s[)r).
M3, = (By E{ +xD] S{ V) —01,)7 + (B, T] +1D{ S))7) .
M3, = Q1,Bu+ B, Q1 —v’I, M, =Fi,By+ Dy — SaDi,.

—

a
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Proof Let matrices Py, E,, Fy, Ky, and Py take the following structures:

P, Py, O Kin, Kop, 0
P, = PZTha Py, 0 |, Ky = KzTha Ky, 0 |,
0 0 P, 0 0  Kiy,
Eip, MKy O
Eq=|E], MKy 0 |,  Fy=[Fu 0 Fp],
0 0  Ei,

Qaz[th 0 le]-

Without loss of generality, K3, and K4j, are nonsingular. Introduce now the trans-
formation matrix

@ = diag|{ Iy, K4hK3h )

and define
. Pip, Py, O
Py=®P@®" =|PJ, Py, 0 |, X = K}, K3, Kan,
0 0 P
N(@) =KL Ky 'Ku(@),  T@) =KLKy' Em(@,  Ki(@) =Ko,
Sa=KHAY K Ky, Sy=K§By.  S.=CyKy'Ka.  Si=Dy,

Sa Sy _[Ka O A} B |[K3'KIL 0
Se Sa] [ O [I]|C; Dy 0 1]

Following proof of Theorem 3, it is possible to obtain the LMI of (42), and

ALCBEL XY 0][S. S 43)
Cy Dy L O T][S S
which completes the proof. g

Similarly to Corollary 3, we can get the following result to design the reduced-
order common filter in the form of (14)—(15).

Case 2: iy #0, Ny, = 0.

l'ly F XNy 4
Corollary 4 Define V,, = [ £ ] Consider system (1)-(3) and let y > 0 be a

On —Ny g XN .

v Lf l)/
given constant. Then, there exists a reduced-order Ho filter in the form of (14)—(15)
such that the estimation error system (16)— (17) is asymptotically stable with || G ||oo <
y if there exist positive definite matrices P, 2 dlag{Pha, va} > 0 and matrices Ny =
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dlag{NhD(a NUO(}’ TO( é dlag{ThOU TUD(}7 ElO( é diag{ElhO(’ Elva}9 K]O(7 F]ot’ G]a? Qlon
X4 diag{ Xy, Xy}, Sa, Sp, S¢, and Sy such that

My, + MlTla * * *
T
Mo, Mo, + My, * * <0, @4
M3y, M3y, Ms3,
(Fi,Aa + Co — SaC1)Y = S.F =R, Y] My, —I

where

My, = T1(K1,Ag + VuSpC1) Y\ + (11 + 1) Ve Su T + Ta(Ny Ag + SpC1) T,

My, = Py + T1(E1,Ag + M8C1, — KD)Y + 11 (M VoS — N )T

+ 15 (TyAg + 2185C1, — XTVI)Y! + 12 (M S, — XT) 7S,
My, = —T1E1QTIT — TzTaTlT — M7 VUXTZT — )\.2T2XT1T,

My, = (B K[ + D ;v + 01, 4) 1] + (BI NI + DI, )7,

a

M3, = (ByE{ +xD] S{v] —01,)7 + (B, T] +1D{ S))7y .

Ms3, = Q1,Ba + BL O] —v?I.  Mus, = Fi,By+ Dy — S4D1,.

Proof Let matrices Py, E,, Fy, Ky, and Q, have the following structures:

Phy, 0 Kin, 0 0
Po( = 0 [_lea [_)21)0, s Ka = 0 Klva K4v s
L 0 PZY;)O, P3Ua 0 KZvU, K3,

Ey. 0 0
Ey = 0 Elva AMKay |, Faz[Flh Fiy O]’
0 E2Ua )L2K3v

Ou=[Qm Qw 0].

Without loss of generality, we again assume that K3, and K4, are nonsingular. We
define the transformation matrix

@ = diag{Iy, I,, KsK3,'}

and
P, 0 0
Py=0P@®"=| 0 P, Pu, |, X=KjK;y K,
0 PZTM Py,
N(a) = KL K3 Kow(@),  T(@) =KL K3 Ex(@),  Ki(@)=Kiy(@),
Sa=K§L,APK'KL,  Sy=KL,B},  Sc=C}K;'Ku.  Sa=Dy,
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Sa S| _[Kw 0|47 B} |[K3'kL, 0]
Se Sa 0 I1]|c; Dy 0 I

Similarly to the proof of Theorem 3, the LMI (44) is obtained with

AZ B [x' 0[S S 43)
C; Dp| L O I][S S

completing the proof. g

Case 3: Nhy =0, Nys =0.

Corollary 5 Given y > 0, There exists a zero-order Hy, filter in the form of (22) such
that the estimation error system (23)—(24) is asymptotically stable with || Glloo < y if
there exist a positive-definite matrix P = diag(Py,, P,) > O with P, € R" and P, €
R™ and matrices Eq € R"*", F, € RP*", K, € R"*", and Q4 € R"™™" satisfying

KA, —i—AOTlKT * * *
Py + EqAq — KT —E,—EI * * 0
BIK! + QuAy  BIEL —Quy QuBa+BLQL 21 « |~
FyAy +Co — DyCryq —F, FyBy +Dy —DfDyy -1
(46)

4.3 Homogeneous Polynomial Solutions

Before presenting the formulation of Theorem 4 using homogeneous polynomially
parameter-dependent matrices, some definitions and preliminaries are needed to rep-
resent and handle products and sums of homogeneous polynomials. First, we define
the homogeneous polynomially parameter-dependent matrices of degree g by

J(9)
Po(g) = Z(xl' a5 ..oy Py kika...ky = 8;(g). (47)

Similarly, matrices Ny, Ty, E1os K1as Flas G1a, and Q14 take the same form.

The notations above are as follows: 0/1”0112(2 .. .othN, aef,kieNi=1...,N
are monomials; ;(g) is the jth N-tuples of R(g), lexically ordered, j =1, ..., J(g),
and RK(g) is the set of N-tuples obtained as all possible combinations of k1k>...ky
that fulfill k; + k> + - - - + ky = g. Since the number of vertices in the polytope P is
N, the number of elements in £(g) is then given by J(g) = (N +g— D)!/(g! (N —1)}).

For eachi =1,..., N, we define the N-tuples ﬁ; (g) that are equal to £;(g) but
with k; > O replaced by k; — 1. Note that the N-tuples ﬁ; (g) are defined only in
the cases where the corresponding k; are positive. Note also that, when applied to
the elements of K(g + 1), the N-tuples ﬁ’] (g + 1) define subscripts kjky...ky of
matrices Piky..ky> Tkiky.kn > Niiko.ky Elklkz,..kN > Flklkz,,.kN > lelkzmkN’ Klklkz.“kN >
and Q1 Kok associated to homogeneous polynomial parameter-dependent matrices
of degree g.
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Finally, we define the scalar constant coefficients ,Bj- G+ 1D =g!/(kilka!...ky),
with k1ky ... ky € ﬁ’j(g +1).

To facilitate the presentation of our main results, denote ,3} (j + 1) by b; using this
notation, we now present the main result in this section.

Inh/ thf

Theorem 5 Define V, = [ ], Vi = [Inopxnny Om=mpxmy |, and V £

Onh—nh ><I‘lh

Sy
diag{V},, Vi,}. Suppose that there exist symmetric parameter-dependent positive def-
inite matrices Pﬁj(g) > 0 and matrices Tﬁj(g), Nﬁj(g), El"i@’ Flﬁj(g), Glﬁj@,
Klﬁ_(g), and Ql,ﬁj(g)’ Ri(g) € A(g), j =1,...,3(9), such that the following LMIs
hold for all f(g+1) € K@+, 1=1,...,3@@+1):

M+ M| * * *
M» M>; * *
Vo= ), M3, M3 My o« | <0 @8)
i€l (g+1) My —F r{ My bl

lﬁ'{(gﬂ) 1

where

M =T (Klﬁi(gH)Ai + hVSbCli)TlT + T]hVSaTzT
[
+ 12Ny anyAi +DSCOT] + 1208,75

D T T
Mo = Pgigiry + T (EIRWDA,» +MbSCr, — K] )M

Ri(g+1)

+ 121080 = HXT) Yy + 1a(Tyy g0y Ai +1158,Cr, —bX V)T

T T
+ 71 (AbV S, — Nﬁi(gﬂ))r2 :
T T T T
M22=_T1Elﬁi[(g+l)rl —T2T i[(g-‘rl)Tl _)‘*ITIbVXTZ _KZTZEJXTI 5
(BT xT T oTyT AT
M1 = (B K]R-E(B_H) +hDy, S, V' + QIR;[(GH)AZ)TI

T AT T (T\-T
+ (B Nﬁi[(gﬂ) +hDy(.S,)75

Mp=(BTE]  +mbDIS[vT -0,

i
Ri(g+1)

TrT T T T
+ (B Tgitgr +ahDi.Sy) 75

B+ B! 0T — by?I,

flg+)

Myz = Flﬁi[(gﬂ)Bi +bD; —bSyDy;,

TT
i ) 1
ﬁl(g-f—l)

M3z = Q4

ﬁi[(g+1)

My = (Fi,  Ai+0Ci —hSaCi)T{" —hSeT; .
[
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Then the homogeneous polynomially parameter-dependent matrices given by (47)
ensure (40) for all o« € §2; moreover, if the LMI (48) is fulfilled for a given degree g,
then the LMIs corresponding to any degree g > § are also satisfied.

Proof Note that (40) for (A(«), B(x), C1(a), Di(@), C(), D(«)) € P and Py, Ty,
Ny, Kios E1as Flas Gila, Q1q given by (48) are homogeneous polynomial matrix
equations of degree g + 1 that can be written as

J(g+1)
Y ey e (W} <0, kika...ky =SRi(g+ D). (49)

Condition (48) imposed for all / = 1,...,J(g + 1) ensures condition in (40) for
all « € §2, and thus the first part is proved.

Suppose that the LMIs of (48) are fulfilled for a certain degree §, that is, there
exist J(g) matrices Pﬁj((é), Tﬁj((é), Nﬁj(é), Klﬁj(g), Elﬁj(@’ Flﬁ_,(gw and Qlﬁ_,(@’
Jj=1,...,3(8), such that f_’Aa, Ty, Ng.» Kiy,» Eng,» Fig, s and Qlaa’ are homo-
geneous polynomially parameter-dependent matrices ensuring condition (40). Then,
the terms of the polynomial matrices Pa(@+l) =(a+---+ OlN)ﬁa(g), Tog+1) =
(1 + -+ an)Tyg)> Nagrr = (@1 + -+ an)Nyg)> Eragey = (@1 + -+
an)Era(g)s Kia@gry = @1+ +an)Kigi) Fla@ry = @1+ +an) Figg)s
and Qla(@ﬂ) =(a1+---+an) Qla(g) satisfy the LMIs of Theorem 4 corresponding
to the degree § + 1, which can be obtained in this case by a linear combination of the
LMIs of Theorem 4 for g. O

It must be pointed out that when ny, P = 0 or ny = 0, by Theorem 5, we have the
following corollary.

Case 1: Nhy ;éO,nvf =0.

I"h/ X”h[

Corollary 6 Define Vy, = [ ] Suppose that there exist symmetric parame-

Ol‘lh—l‘lh f thf
ter-dependent positive definite matrices Pﬁj(g) > 0 and matrices Tg;(g), Ng(g)s

Eig 0 Flaj> Claye: Kig e and Qg g £i(@) € 8(), j = 1,...,3(q), such
that the following LMIs holdfor al R(g+1)e R+ D, I=1,...,3@+D:

M11+M1T1 * * *
M»r My * *
Ya= ). My, My My s | <0 G0
i€l (g+10) _ T _
My Flﬁi[(gﬂ) Yy Mg —bl

where
Min="1(Ki, A+ ViSsCi)Y + 110ViS. Ty
[

+ 12 (N iy Ai +DSCOT] +1208,75
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= T T
Mo = Paio iy + N1(E1y  Ai+ 1080, — K] )T

(g+1) Ri(g+1)

+ 1o (MbSa — bX)YS + Vo (Tgi gy Ai + 11085C1 — bXT VT

((g+1)
XV S = Ny 00,77
My = —T]Elﬁi(gﬂ)Tl — 1T ‘(gH)T — MMV XTE — b x 1l

T Ty, T AT

M = (B} Klmg+ +hDi.S, V, +Q1§i[(g+l>Al)T1
T T ¢T T
+ (B} Neigr) +bDy.S,)Ty

Mz = (BIET ambhDISIvT — 0, i

3= Lt g +MbDy S,V Qlﬁi(gﬂ)) 1

T T T T
+(B Tﬁl(g+l)+)»2bD1iSb)T2,

M33=Q1@i( B+ B! o — by,
'[

+1) k‘( +1)

Mys = Flﬁ}(g+1)Bi +bD; —hSy Dy,

My =(Fi, A +HCi—hSiCi1)T —pS. T

Ri‘(g-ﬂ)

Then the homogeneous polynomially parameter-dependent matrices given by (47)
ensure (42) for all o € 2. Moreover, if the LMI of (50) is fulfilled for a given degree
g, then the LMIs corresponding to any degree g > § are also satisfied.

Similar to Corollary 6 (np, =0, n,, # 0), we have the following corollary.

Case 2: Ny, = 0, Ny, #0.

n Xny ¢
Corollary 7 Define V, = [0 A ] Suppose that there exist symmetric parameter-
ny

—nbfxnvf

dependent positive definite matrices Pg. i(g) > 0 and matrices Tﬁ](g), Nﬁ](g), Eq, (@)
Flﬁ( Y Glﬁ( , th( , and Qlﬁ @ ﬁj(g) e R(g), j=1,...,3(9), such that 'the
followmg LMIs holdfor all R(g ¥ DeR@+h,Il=1,....,3(@@+D:

My + MlTl * * *
My, M»>> * *
Vo = Z M3y Mz, My o« | <0 G
i€l (g+1) _ T _
My Fy al(g+1) T M bl

where
Mit="1(Ki, A+ 0VeSiCi)Y + T10V,S Ty
[

+ 12 (N iy Ai +DSCOT] +1208,75
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L Ai +11bS,Ch, — kl !

(g+ fig+1)

My = Pﬁa((gﬂ) +1 (Elﬁ}

+ 1a(A1hSa = HX )T + Ta(TgigayAi +210S5C1, — hXTV) T

(g+1)
T

T
+ T] ()‘-thSa - Nﬁ%(g+l))’r2 ’

My = —T]Elﬁ}(gﬂ)TlT — 1T -;(gﬂ)TlT — MMV XYl — b X,
My = (BITKT prsryT AT
31 ( i lﬁi[(g+1)+h l,'Sb Vv +Q1§'[(g+1> l) 1
T AT T T T
(BTN gy + 0TSO
Mz, = (BTET ambDISTvT — 0, ed
32 ( f lﬁi(ﬂ“)-’_ 1hDy. S, Qlﬁi(f‘“)) 1

T T T oT\y-T
+(B; Taigen T220D1S, )15

B + Bl of — by,

R}(g+1)

Maz = .
33 = 0 i@

Mys = Flﬁ}(g+1)Bi +bD; —hSy Dy,

My =(Fi, A +HCi—hSiCi1)T —pS. T

Ri‘(g-ﬂ)

Then the homogeneous polynomially parameter-dependent matrices given by (47)
ensure (44) for all o € §2. Moreover, if the LMI of (51) is fulfilled for a given degree
g, then the LMIs corresponding to any degree g > § are also satisfied.

Case 3: np, = 0, Ny, = 0.
Corollary 8 Suppose that there exist symmetric parameter-dependent matrices

Pgig) > 0, Eg(g), Fri(g)» Kaj(g)> and Qg;(g) Rj(9) € R(9), j =1,...,3(9), such
that the following LMIs hold for all Ri((g+1) € R(g+),l=1,...,3(@+:

. . T T
Kai@rnAi T4 Kgigra) * oo
; . _ T
PR}(g+1) + Eﬁ}(g_,_l)A, Kﬁ}(g+1) M, * * “o. &
T T _ _ i
B; Kﬁ}(ngl) + Qﬁ‘[(g+1)Al M3, M33 *
Fﬁ}(g+1)Ai +b(cﬁi(g+1) _chll) _Fﬁ}(g+l) Mys _b]
where
— _ T o . T o )
M =—Egi(g4) Eﬁ;(gﬂ)’ M33 = Qgi(gi)Bi + B; Qﬁ;(gﬂ) hy2l,
_ pTgT o o _ N |
M3 =B; Egign) = Crierry  Ma3=Fgigen)Bi +5(Di = DyDui).

Then the homogeneous polynomially parameter-dependent matrices given by (47)
ensure (46) for all o € 2. Moreover, if (52) is fulfilled for a given degree g, then the
LMIs corresponding to any degree g > § are also satisfied.
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Remark 6 Theorem 5 presents a sufficient condition for the solvability of the
reduced-order H, filtering problem. A reduced-order H, filter can be selected by
solving the following convex optimization problem:

mind  subject to (48) with § = 2. (53)

5 Numerical Examples

Example 1 The system under consideration corresponds to the uncertain 2-D contin-
uous system (1)—(3) with matrices given by

A= —0.468  0.845 Ay — —-0.825 0.427
=1 020 —0423| 271 0299  —0.346 |

An —0.744 0 A — —-133 -—1.14
7] 052 —0.545] $= 10322 -0.309 |
—0.4545
B:[ 0454 } c=[0 100]. ¢ =[0 100].
D) =1, D=0.
By solving the convex optimization problem in (53), when the parameters A =

0.8851 and Ay = 1.0568 are searched, according to Theorem 5, Corollaries 6, 7,
and 8, the following filter matrices were obtained:

Case l:np=1,n, = 1,nhf = l,nvf =1,y =0.8272.

A 3 —1.8256 —45.5051 | —0.4819
[c D.]z 0.0565 —65.2281 | —0.6504
f ! —0.0040 —49.9005 | 0.5001

Case2:np=1,ny=1,np, =0,ny, =1,y =0.9984.

Ar | Byl [ —1764641 | —1.7499
Cr | Dy| | —6.4619¢—005 | 0.9983

Case3:np=1,n, = l,nhf = l,nvf =0, y =1.0030.

A; | B;]_[—18816 | —0.0328
Cr | Dy|~ [ —00051 | 09987 |

Cased:np=1,n, = l,nhf :O,nvf =0, y =1.0041.
Dy =0.9987.

For comparison, Theorem 3 with A; = —0.0031 and A; = 0.0057 provides a guar-
anted Hy, cost 0.8272, while [38] yields 0.8936.
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Example 2 Consider an uncertain 2-D continuous system (1)—(3) with the following

system matrices [3]:

Ay =

Az =

B =

C—11 —06 | 01 09

02 —02 | 05 —02

—04 02 | —12 04

04 09 | 02 -02

[-07 -04 | —04 08

—05 —15 | 08 07

—08 —04 | —09 00

|07 —06 | 06 01

(210 —09 | —01 04

~06 08 | —07 —08

07 05 | —10 05

05 02 | 03 -08

02

05 0.1 0.8
~08 | Dl:[os] Cl:[o.s
03

c=[06 01 —-08 05], D

=0.5.

—-09 0.2
-03 0

—0.1
05 |’

H, upper bounds for the error dynamics have been computed by means of the
conditions of Theorem 5 for § =0, ...,3: A1 = 0.2972, A, = 0.2940 are searched,
with the results and the numbers K of scalar variables and L of LMI rows shown in

Table 1.

In the full-order case, with g = 1 (linearly parameter-dependent approach) and
A1 = 0.2972, Ay = 0.2940, Theorem 5 provides a guaranteed Hy, cost of 0.6157,
while the method provided by Corollary 1 in [38] is infeasible, and Corollary 1 yields
0.6202. It is clear that the conditions from Theorem 5 provide the best results. The
Hyo performance value achieved with parameter searching and the corresponding
filter for different orders are the following:

Case l:np=2,n, =2, np, = 2, Ny, = 2,y =0.6157.

A B

[Cf Df}
—14.0853  15.1244 —2.2679  0.3804 —15.1165 —3.4041
8.7768  —15.5475 1.6635 —2.6867 159193  —4.1822

—| —3.3899 46270 —1.4256 13822 ~52773 18189
07912 —1.7643 02711 —3.6742 4.6220  —6.4909
0.1471 05206  0.0042 —0.0821 | —1.1207 1.6979
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Table 1 Guaranteed Hqo filtering performance for different orders

g Full order Reduced order Zero order
nhf=2,nuf»:2 nhf=1,nl,f:l nhf:O,nUf:O
y K L y K L y K L
0 _ _ _ _ _ _ — _ _
1 0.6157 217 73 0.6653 150 73 0.8866 93 73
2 0.5811 397 125 0.6376 285 125 0.7348 183 125
3 0.5785 637 191 0.6341 465 191 0.7345 303 191

K is the number of scalar variables, and L is the number of LMI rows in the optimization

Case2:np=2,n, =2, np, = 2, Ny, = 1, y =0.6353.

—6.5807  5.1808 —1.5236 | —5.3909 —2.8771
A Byl | 72218 —103792 19444 9.5894  0.5859
[cf Df] —1.0667 11847  —0.8232 | —0.8678 —0.2120
02938 03485 —0.0359 | —1.0238 1.8624

Case3:np=2,n, =2, np, = l,nvf =2,y =0.6604.

—2.8058 0.2969 —0.9032 0.1439  —3.8048

Ay By | | =3.1560 —7.4976 1.0784 —1.6726 —0.0991
Cy Dy —2.4413 —1.2240 —3.4190 22719 —6.0941
0.3555 0.0396 —0.1203 | —0.6365 1.6357

Case 4d:njp=2,n, =2, np, = l,nvf =1,y =0.6653.

A, B, —2.7151  —0.0000 —0.5525 —2.3005
[C D i|= —5.5532 —18.6370 —0.0732 —6.4629
! 0.4161 —0.0000 | —0.7106  1.8585

Case 5:njp=2,n, =2, Npy :O,nvf =0, y =0.8866.
Dy=[-1.0378 1.7119].

From the comparison it can be seen that the proposed result is less conservative
than those given in Corollary 1 and [38].

6 Conclusion

A solution to the reduced-order Hy filtering problem has been provided for uncer-
tain 2D systems to solve the H, filter problem of the 2D continuous systems in the
Roesser state space model, with uncertain matrices belonging to a given polytope.
The proposed methodology, based on using polynomially parameter-dependent ma-
trices and slack variables, provides less conservative results than those in the literature
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by using extra degrees of freedom in the solution space. Some numerical examples
have been provided to demonstrate the feasibility and effectiveness of the proposed
methodology.

It must be pointed out that the proposed approach could be extended to other
related problems, such as Marchesini—Fornasini models, or even multidimensional
systems of more than two dimensions (see [1] and [24]).

Acknowledgements This work is funded by AECI A/030426/10, AP/034911/11 and MiCInn DPI2010-
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