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Abstract This paper investigates the dynamic output feedback H∞ stabilization
problem for a class of discrete-time 2D (two-dimensional) switched systems repre-
sented by a model of FM LSS (Fornasini–Marchesini local state space) model. First,
sufficient conditions for the exponential stability and weighted H∞ disturbance atten-
uation performance of the underlying system are derived via the average dwell time
approach. Then, based on the obtained results, dynamic output feedback controller
is proposed to guarantee that the resulting closed-loop system is exponentially sta-
ble and has a prescribed disturbance attenuation level γ . Finally, two examples are
provided to verify the effectiveness of the proposed method.

Keywords 2D switched systems · Output feedback · Exponential stability ·
H∞ performance · Dwell time

1 Introduction

In many modeling problems of physical processes, a 2D representation is needed such
as energy exchanging process and electricity transmission [15]. 2D systems have at-
tracted considerable research attention in control theory and practice over the past
few decades due to their wide applications such as multi-dimensional digital filter-
ing, linear image processing, signal processing, and process control [9, 15, 22]. 2D
systems can be represented by different models such as the Roesser model, Fornasini–
Marchesini model and Attasi model. Some important problems such as realization,
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reachability, stability, stabilization and minimum energy control have been exten-
sively investigated [8, 16].

On the other hand, a considerable interest has been devoted to the research of
switched systems during the recent decades. A switched system comprises a family of
subsystems described by continuous or discrete-time dynamics, and a switching law
that specifies the active subsystem at each instant of time. Apart from the switching
strategy to improve control performance [7, 26], switched systems also arise in many
engineering applications, for example, in motor engine control, constrained robotics
and networked control systems [1, 4, 36]. Many techniques are effective tools deal-
ing with switched systems, such as common quadratic Lyapunov function method,
multiple Lyapunov function method, and average dwell time approach [6, 20, 21, 24,
30].

It is well known that the switching phenomenon may also occur in practical 2D
systems, for example, the thermal processes in chemical reactors, heat exchangers
and pipe furnaces with multiple modes, can be expressed by a 2D switched system.
So 2D switched systems have also attracted considerable research attention. There
are a few reports on 2D discrete switched systems, Benzaouia et al. firstly consid-
ered 2D switched systems with arbitrary switching sequences [2], where the process
of switching was considered as a Markovian jumping one. Furthermore, they investi-
gated the stabilizability problem of discrete 2D switched systems in [3]. Recently, the
exponential stability and stabilization of the discrete 2D switched system in Roesser
model was firstly investigated via the average dwell time approach in [29]. H2 control
problem for 2D switched systems in Roesser model was addressed in [11].

However, perturbations and uncertainties widely exist in the practical systems. In
some cases, the perturbations can be merged into the disturbance, which can be sup-
posed to be bounded in the appropriate norms. A main advantage of H∞ control is
that its performance specification takes into account the worst case performance of
the system in terms of energy gain. This is more appropriate for system robustness
analysis and robust control under modeling uncertainties and disturbances than other
performance specifications. Recently, the problems of robust H∞ control and filtering
for 2D systems have been studied by many researchers [13, 14, 17, 19, 27, 32–34].
The same problems of switched systems have also been studied in [18, 25, 28, 35].
H∞ control problem for 2D switched systems in Roesser model have been investi-
gated in [10]. However, to the best of our knowledge, the dynamic output feedback
H∞ control problem of 2D switched systems in FM LSS model has not yet been fully
investigated, which motivates this present study.

In this paper, we are interested in H∞ control problem of discrete 2D switched
systems described by the FM LSS model. The main theoretical contributions are
twofold: (1) Sufficient conditions are proposed to guarantee the exponential stabil-
ity with a prescribed weighted H∞ disturbance attenuation level for the 2D switched
system by using the average dwell time approach. (2) The corresponding output feed-
back controller is designed to achieve the prescribed weighted H∞ disturbance atten-
uation level γ . It should be noted that these conditions are presented in the form of a
set of LMIs (linear matrix inequalities).

This paper is organized as follows. In Sect. 2, the problem formulation and some
necessary lemmas are given. In Sect. 3, the weighted H∞ performance analysis and
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control problems are addressed by the average dwell time approach. Two examples
are provided to illustrate the effectiveness of the proposed approach in Sect. 4. Con-
cluding remarks are given in Sect. 5.

Notations Throughout this paper, the superscript “T ” denotes the transpose, and
the notation X ≥ Y (X > Y) means that matrix X − Y is positive semi-definite
(positive definite, respectively). ‖ · ‖ denotes the Euclidean norm. I represents the
identity matrix. diag{ai} denotes a diagonal matrix with the diagonal elements ai ,
i = 1,2, . . . , n. X−1 denotes the inverse of X. The asterisk ∗ in a matrix is used to
denote the term that is induced by symmetry. Rn denotes the n dimensional vector.
For a matrix P , λmin(P ) means the smallest eigenvalue of P and λmax(P ) means the
largest eigenvalue of P . The set of all nonnegative integers is represented by Z+. The
l2 norm of a 2D signal w(i, j) is given by

‖w‖2 =
√
√
√
√

∞
∑

i=0

∞
∑

j=0

∥
∥w(i, j)

∥
∥

2

where w(i, j) belongs to l2{[0,∞), [0,∞)}.

2 Problem Formulation and Preliminaries

Consider the following FM LSS model for a 2D switched system:

x(i + 1, j + 1) = A
σ(i+j+1)

1 x(i, j + 1) + A
σ(i+j+1)

2 x(i + 1, j)

+ B
σ(i+j+1)

1 w(i, j + 1) + B
σ(i+j+1)

2 w(i + 1, j), (1)

z(i, j) = Hσ(i+j)x(i, j) + Lσ(i+j)w(i, j),

where x(i, j) ∈ Rn is the state vector, w(i, j) ∈ Rnw is the noise input which belongs
to l2{[0,∞), [0,∞)}, z(i, j) ∈ Rd is the controlled output. i and j are integers in Z+.
σ(i + j) : Z+ → N = {1,2, . . . ,N} is the switching signal. N is the number of sub-
systems. σ(i + j) = k, k ∈ N , means that the kth subsystem is active at the instant
i + j . Ak

1, Ak
2, Bk

1 , Bk
2 , Hk , Lk are constant matrices with appropriate dimensions.

In the paper, the switch can be assumed to occur only at each sampling points of i

or j . The switching sequence can be described as

(

m0, σ (m0)
)

,
(

m1, σ (m1)
)

, . . . ,
(

mπ,σ(mπ)
)

, . . . (2)

with mπ = iπ + jπ , π = 0,1,2, . . . ,mπ denotes the π th switching instant.

Remark 1 As stated in literature [3, 29], the 2D system causality imposes an incre-
ment depending only on i + j , thus the value of the switching signal can be assumed
to be only dependent upon i + j and the switching sequence can be expressed as (2).
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Remark 2 System (1) is of significance because it can be used to describe the relation
between voltage and current in a long transmission line with multiple modes, some
multi-mode processes of gas absorption, water stream heating, air drying, and some
thermal processes with multiple subsystems, for example in chemical reactors, heat
exchangers and pipe furnaces.

Remark 3 If there is only one subsystem in system (1), it will degenerate to the
following 2D system in FM LSS model [31]:

x(i + 1, j + 1) = A1x(i, j + 1) + A2x(i + 1, j)

+ B1w(i, j + 1) + B2w(i + 1, j),

z(i, j) = Hx(i, j) + Lw(i, j).

Therefore, the addressed system (1) can be viewed as an extension of 2D FM LSS
systems to switched systems. In other words, system (1) not only represents the well-
known 2D FM LSS model [31], but also describes the 2D FM LSS system with
certain switching property, which demonstrates that system (1) is rational.

For 2D discrete switched system (1), we consider a finite set of initial conditions,
that is, there exist positive integers z1 and z2 such that

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

x(0, j) = vj , ∀0 ≤ j ≤ z2,

x(i,0) = wi, ∀0 ≤ i ≤ z1,

v0 = w0, i = j = 0,

x(0, j) = 0, ∀j > z2,

x(i,0) = 0, ∀i > z1

(3)

where z1 < ∞ and z2 < ∞ are positive integers, vj and wi are given vectors.

Denote ‖x(i, j)‖r = sup{‖x(i, j)‖ : i + j = r, i ≤ z1, j ≤ z2}. We give the follow-
ing definitions.

Definition 1 System (1) is said to be exponentially stable under σ(i + j) if for a
given z ≥ 0, there exist positive constants c and ξ , such that

∑

i+j=D

∥
∥x(i, j)

∥
∥

2 ≤ ξe−c(D−z)
∑

i+j=z

∥
∥x(i, j)

∥
∥

2
r

(4)

holds for all D ≥ z.

Remark 4 From Definition 1, it is easy to see that when z is given,
∑

i+j=z ‖x(i, j)‖2
r

will be bounded, and
∑

i+j=D ‖x(i, j)‖2 will tend to be zero exponentially as D goes
to infinity, which also means that ‖x(i, j)‖ will tend to be zero exponentially.

Definition 2 For a given scalar γ > 0, system (1) is said to have a weighted distur-
bance attenuation level γ under switching signal σ(i + j) if it satisfies the following
conditions:
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(1) when w(i, j) = 0, system (1) is asymptotically stable or exponentially stable;
(2) under the zero-boundary condition, we have

∞
∑

i=0

∞
∑

j=0

(

λi+j‖z‖2
2

)

< γ 2
∞
∑

i=0

∞
∑

j=0

‖w‖2
2, ∀0 
= w ∈ l2

{[0,∞), [0,∞)
}

(5)

where 0 < γ < 1 and the l2-norm of 2D discrete signal z(i, j) and w(i, j) are
defined as

‖z‖2
2 =∥

∥z(i + 1, j)
∥
∥

2
2 + ∥

∥z(i, j + 1)
∥
∥

2
2,

‖w‖2
2 =∥

∥w(i + 1, j)
∥
∥

2
2 + ∥

∥w(i, j + 1)
∥
∥

2
2.

(6)

Definition 3 [29] For any i +j = D ≥ z = iz +jz, let Nσ (z,D) denote the switching
number of σ(·) on an interval [z,D). If

Nσ (z,D) ≤ N0 + D − z

τa

(7)

holds for given N0 ≥ 0 and τa ≥ 0, then the constant τa is called the average dwell
time and N0 is the chatter bound.

Lemma 1 [5] For a given matrix S = [ S11 S12

ST
12 S22

]

, where S11 and S22 are square matri-

ces, the following conditions are equivalent.

(i) S < 0;
(ii) S11 < 0, S22 − ST

12S
−1
11 S12 < 0;

(iii) S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

Lemma 2 Consider 2D discrete switched system (1) with w(i, j) = 0, for a given
positive constant λ < 1, if there exist a set of positive-definite symmetric matrices
Gk ∈ Rn×n, k ∈ N , such that

Wk = λ

[

αGk 0
0 (1 − α)Gk

]

− AkT GkAk > 0, (8)

where

Ak = [

Ak
1 Ak

2

]

, 0 < α < 1,

then, the system is exponentially stable for any switching signal with the average
dwell time satisfying

τa > τ ∗
a = lnμ

−lnλ
, (9)

where μ ≥ 1 satisfies

Gk ≤ μGl, ∀k, l ∈ N. (10)
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Proof Without loss of generality, we assume that the kth subsystem is active. For the
kth subsystem, we consider the following Lyapunov function candidate:

V k(i, j) = xT (i, j)Gkx(i, j) (11)

where Gk is an n × n positive-definite matrix for any k ∈ N , and thus

V k(i, j) > 0 for x(i, j) 
= 0

and

V k(i, j) = 0 only when x(i, j) = 0.

Then we have

V k(i + 1, j + 1) − λ
[

αV k(i, j + 1) + (1 − α)V k(i + 1, j)
]

= − [

xT (i, j + 1) xT (i + 1, j)
]

×
{

λ

[

αGk 0
0 (1 − α)Gk

]

− AkT GkAk

}[

x(i, j + 1)

x(i + 1, j)

]

= − [

xT (i, j + 1) xT (i + 1, j)
]

Wk

[

x(i, j + 1)

x(i + 1, j)

]

(12)

where Ak = [Ak
1 Ak

2], 0 < λ < 1, and 0 < α < 1.
From (8), we get

V k(i + 1, j + 1) ≤ λ
[

αV k(i, j + 1) + (1 − α)V k(i + 1, j)
]

. (13)

The equality holds only if

V k(i + 1, j + 1) = V k(i + 1, j) = V k(i, j + 1) = 0.

It follows from (13) that

∑

i+j=M+1

V k(i, j) ≤ λ
∑

i+j=M

V k(i, j). (14)

Now let υ = Nσ (z,D) denote the switching number of σ(·) on an interval [z,D),
and let mκ−υ+1 < mκ−υ+2 < · · · < mκ−1 < mκ denote the switching points of σ(·)
over the interval [z,D), thus, for D ∈ [mκ,mκ+1), we have from (14)

∑

i+j=D

V σ(mκ)(i, j) < λD−mκ
∑

i+j=mκ

V σ(mκ)(i, j). (15)

Using (10) and (11), at switching instant mκ = i + j , we have

∑

i+j=mκ

V σ(mκ)(i, j) ≤ μ
∑

i+j=mκ

V σ(mκ−1)(i, j). (16)
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In addition, according to Definition 3, it follows that

υ = Nσ (z,D) ≤ N0 + D − z

τa

. (17)

Therefore, the following inequality can be obtained easily:

∑

i+j=D

V σ(mκ)(i, j) < λD−mκ
∑

i+j=mκ

V σ(mκ)(i, j) ≤ μλD−mκ
∑

i+j=m−
κ

V σ(mκ−1)(i, j)

< μλD−mκ
∑

i+j=mκ−1

V σ(mκ−1)(i, j)λmκ−mκ−1

≤ · · ·
< μν−1λD−mκ−v+1

∑

i+j=mκ−v+1

V σ(mκ−v+1)(i, j)

< μνλD−mκ−v+1
∑

i+j=z

V σ(z)(i, j)λmκ−v+1−z

≤ μνλD−z
∑

i+j=z

V σ(z)(i, j). (18)

Inequality (18) can be rewritten as follows:

∑

i+j=D

V σ(mκ)(i, j) ≤ e
−(

− lnμ
τa

−lnλ)(D−z)
∑

i+j=z

V σ(z)(i, j). (19)

In the view of (11), there exist two positive constants a and b (a ≤ b) such that

∑

i+j=D

V σ(mκ)(i, j) ≥ a
∑

i+j=D

∥
∥x(i, j)

∥
∥

2
,

∑

i+j=z

V σ(z)(i, j) ≤ b
∑

i+j=z

∥
∥x(i, j)

∥
∥

2

(20)
where a = mink∈N λmin(G

k), b = maxk∈N λmax(G
k).

Combining (19) and (20), it is easy to get

∑

i+j=D

∥
∥x(i, j)

∥
∥

2 ≤ b

a
e
−(

− lnμ
τa

−lnλ)(D−z)
∑

i+j=z

∥
∥x(i, j)

∥
∥

2
. (21)

By Definition 1, we know that if − lnμ
τa

− lnλ > 0, that is τa > τ ∗
a = lnμ

− lnλ
, the 2D

discrete switched system is exponentially stable.
The proof is completed. �

Remark 5 Note that when μ = 1 in (9), (10) turns out to be Gk = Gl , ∀k, l ∈ N .
In the case, we have τa > τ ∗

a = 0, which means that the switching signal can be
arbitrary.
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3 Main Results

3.1 H∞ Performance Analysis

In this section, we focus on the H∞ performance analysis of the 2D switched systems.
The following theorem presents sufficient conditions which can guarantee that system
(1) is exponentially stable and has a prescribed weighted H∞ disturbance attenuation
level γ .

Theorem 1 For given positive scalars γ and 0 < α < 1, if there exist symmetric and
positive-definite matrices Gp > 0, p ∈ N , such that

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Gp GpA
p

1 GpA
p

2 GpB
p

1 GpB
p

2 0 0

∗ −λαGp 0 0 0 HpT 0

∗ ∗ −λ(1− α)Gp 0 0 0 HpT

∗ ∗ ∗ −γ 2I 0 LpT 0

∗ ∗ ∗ ∗ −γ 2I 0 LpT

∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

<0,

∀p ∈N (22)

then, 2D switched system (1) is exponentially stable and has a prescribed weighted
H∞ disturbance attenuation level γ for any switching signals with average dwell
time satisfying (9), where μ ≥ 1 satisfies (10).

Proof It is an obvious fact that (22) implies that inequality (8) holds. By Lemma 2,
we can find that system (1) is exponentially stable when w(i, j) = 0. Now we are in
a position to prove that system (1) has a prescribed weighted H∞ performance γ for
any nonzero w(i, j) ∈ l2{[0,∞), [0,∞)}.

To establish the weighted H∞ performance, we choose the same Lyapunov func-
tional candidate as in (11) for system (1). Following the proof line of Lemma 2,
we can get

V p(i + 1, j + 1) ≤ λ
[

αV p(i, j + 1) + (1 − α)V p(i + 1, j)
] + γ 2wT w − zT z,

with

z = [

zT (i, j + 1) zT (i + 1, j)
]T

, w = [

wT (i, j + 1) wT (i + 1, j)
]T

,

if

Ψ < 0 (23)
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where

Ψ =

⎡

⎢
⎢
⎢
⎢
⎣

A
pT

1

A
pT

2

B
pT

1

B
pT

2

⎤

⎥
⎥
⎥
⎥
⎦

Gp
[

A
p

1 A
p

2 B
p

1 B
p

2

]

+

⎡

⎢
⎢
⎢
⎣

HpTHp− αλGp 0 HpTLp 0

∗ HpTHp− (1− α)λGp 0 HpTLp

∗ ∗ −γ 2I + LpTLp 0

∗ ∗ ∗ −γ 2I + LpTLp

⎤

⎥
⎥
⎥
⎦
,

∀p ∈N.

Using Lemma 1 to (23), we can get the equivalent inequality as follows:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−(Gp)−1 A
p
1 A

p
2 B

p
1 B

p
2

A
pT
1 HpT Hp − λαGp 0 HpT Lp 0

A
pT
2 0 HpT Hp − λ(1 − α)Gp 0 HpT Lp

B
pT
1 LpT Hp 0 −γ 2I + LpT Lp 0

B
pT
2 0 LpT Hp 0 −γ 2I + LpT Lp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0. (24)

Pre- and post-multiplying (24) by diag(Gp, I, I, I, I ), we obtain

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Gp GpA
p
1 GpA

p
2 GpB

p
1 GpB

p
2

A
pT
1 Gp HpT Hp − λαGp 0 HpT Lp 0

A
pT
2 Gp 0 HpT Hp − λ(1 − α)Gp 0 HpT Lp

B
pT
1 Gp LpT Hp 0 −γ 2I + LpT Lp 0

B
pT
2 Gp 0 LpT Hp 0 −γ 2I + LpT Lp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0. (25)

Then using Lemma 1, we find that (22) is equivalent to (25).
Thus it can be obtained from (22) that

V p(i + 1, j + 1) − λ
[

αV p(i, j + 1) + (1 − α)V p(i + 1, j)
]

− γ 2wT w + zT z < 0. (26)

Then we have

V p(i + 1, j + 1) < λ
[

αV p(i, j + 1) + (1 − α)V p(i + 1, j)
]

+ γ 2wT w − zT z. (27)



1104 Circuits Syst Signal Process (2014) 33:1095–1117

Let

Γ (i + j + 1) = ‖z‖2
2 − γ 2‖w‖2

2 =
∥
∥
∥
∥

z(i + 1, j)

z(i, j + 1)

∥
∥
∥
∥

2

2

− γ 2
∥
∥
∥
∥

w(i + 1, j)

w(i, j + 1)

∥
∥
∥
∥

2

2

. (28)

Summing up both sides of (27) from (D − 2) to 0 with respect to j and 0 to
(D − 2) with respect to i, respectively, and applying the zero-boundary condition,
one gets

∑

i+j=D

V σ(mκ)(i, j)

< λ
∑

i+j=D−1

V σ(mκ)(i, j) −
∑

i+j=D−2

Γ (i, j)

< λD−mκ
∑

i+j=mκ

V σ(mκ)(i, j) −
D−2
∑

m=mκ−1

∑

i+j=m

λD−2−i−jΓ (i, j)

≤ μλD−mκ
∑

i+j=(mκ)−
V σ(mκ−1)(i, j) −

D−2
∑

m=mκ−1

∑

i+j=m

λD−2−i−jΓ (i, j)

<
∑

i+j=mκ−1

μλD−(mκ−1)V σ(mκ−1)(i, j) − μλD−mκ
∑

i+j=mκ−2

Γ (i, j)

−
D−2
∑

m=mκ−1

∑

i+j=m

λD−2−i−jΓ (i, j)

=
∑

i+j=mκ−1

μNσ (i+j,D)λD−(mκ−1)V σ(mκ−1)(i, j)

−
D−2
∑

m=mκ−2

∑

i+j=m

μNσ (i+j+1,D)λD−2−i−jΓ (i, j)

<
∑

i+j=mκ−1

μNσ (i+j,D)λD−mκ−1V σ(mκ−1)(i, j)

−
D−2
∑

m=mκ−1−1

∑

i+j=m

μNσ (i+j+1,D)λD−2−i−jΓ (i, j)

≤
∑

i+j=(mκ−1)
−
μNσ (i+j−1,D)λD−mκ−1V σ(mκ−2)(i, j)

−
D−2
∑

m=mκ−1−1

∑

i+j=m

μNσ (i+j+1,D)λD−2−i−jΓ (i, j)

< · · ·
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<
∑

i+j=1

μNσ (i+j,D)λD−1V σ(1)(i, j)

−
D−2
∑

m=0

∑

i+j=m

μNσ (i+j+1,D)λD−2−i−jΓ (i, j). (29)

Under the zero-initial condition, we have

∑

i+j=1

μNσ (i+j,D)λD−1V σ(1)(i, j) = 0. (30)

Thus, we have

D−2
∑

m=0

∑

i+j=m

μNσ (i+j+1,D)λD−2−i−jΓ (i, j) < −
∑

i+j=D

V σ(mκ)(i, j) < 0. (31)

Multiplying the both sides of (31) by μ−Nσ (1,D), we can get the following inequality:

D−2
∑

m=0

∑

i+j=m

μ−Nσ (1,i+j+1)λD−2−i−j‖z‖2
2 <

D−2
∑

m=0

∑

i+j=m

μ−Nσ (1,i+j+1)λD−2−i−j‖w‖2
2.

(32)
Noting Nσ (1, i + j + 1) ≤ (i + j)/τa , and using (9), we have

μ−Nσ (1,i+j+1) = e−Nσ (1,i+j+1) lnμ ≥ e(i+j) lnλ. (33)

Thus

D−2
∑

m=0

∑

i+j=m

e(i+j) lnλλD−2−i−j‖z‖2
2 <

D−2
∑

m=0

∑

i+j=m

μ−Nσ (1,i+j+1)λD−2−i−j‖w‖2
2

(34)

⇒
D−2
∑

m=0

∑

i+j=m

λD−2‖z‖2
2 < γ 2

D−2
∑

m=0

∑

i+j=m

λD−2−i−j‖w‖2
2

⇒
∞
∑

D=2

D−2
∑

m=0

∑

i+j=m

λD−2‖z‖2
2 < γ 2

∞
∑

D=2

D−2
∑

m=0

∑

i+j=m

λD−2−i−j‖w‖2
2

⇒
∞
∑

m=0

∑

i+j=m

λi+j‖z‖2
2

∞
∑

D=2+m

λD−2−m < γ 2
∞
∑

m=0

∑

i+j=m

‖w‖2
2

∞
∑

D=2+m

λD−2−m

⇒ 1

1 − λ

∞
∑

m=0

∑

i+j=m

λi+j‖z‖2
2 < γ 2 1

1 − λ

∞
∑

m=0

∑

i+j=m

‖w‖2
2
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⇒
∞
∑

m=0

∑

i+j=m

λi+j‖z‖2
2 < γ 2

∞
∑

m=0

∑

i+j=m

‖w‖2
2

⇒
∞
∑

i=0

∞
∑

j=0

λi+j‖z‖2
2 < γ 2

∞
∑

i=0

∞
∑

j=0

‖w‖2
2. (35)

According to Definition 3, we can see that system (1) is exponentially stable and has
a prescribed weighted H∞ disturbance attenuation level γ .

The proof is completed. �

3.2 H∞ Control Problem

In this subsection, we shall deal with the H∞ control problem of 2D switched systems
via dynamic output feedback. Our purpose is to design a dynamic output feedback
controller such that the closed-loop system is exponentially stable and has a specified
weighted H∞ disturbance attenuation level γ .

Consider the following discrete 2D switched plant in the FM LSS model:

x(i + 1, j + 1) = A
σ(i+j+1)

1 x(i, j + 1) + A
σ(i+j+1)

2 x(i + 1, j)

+ B
σ(i+j+1)

11 w(i, j + 1) + B
σ(i+j+1)

12 w(i + 1, j)

+ B
σ(i+j+1)

21 u(i, j + 1) + B
σ(i+j+1)

22 u(i + 1, j), (36)

z(i, j) = C
σ(i+j)

1 x(i, j) + D
σ(i+j)

11 w(i, j) + D
σ(i+j)

12 u(i, j),

y(i, j) = C
σ(i+j)

2 x(i, j) + D
σ(i+j)

21 w(i, j) + D
σ(i+j)

22 u(i, j)

where x(i, j) ∈ Rn, w(i, j) ∈ Rnw , u(i, j) ∈ Rm, z(i, j) ∈ Rd and y(i, j) ∈ Rny are,
respectively, the state, the disturbance input, the control input, the controlled output,
and the measurement output of the plant, i and j are integers in Z+. Ak

1, Ak
2, Bk

11,
Bk

12, Bk
21, Bk

22, Ck
1 , Ck

2 , Dk
11, Dk

12, Dk
21, Dk

22 with k ∈N are constant matrices with
appropriate dimensions. We make no assumption on the statistics of the disturbance
input signal w(i, j) other than that it is energy bounded, i.e., ‖w‖2 < ∞. Without
loss of generality, we assume Dk

22 = 0 for ∀k ∈N .
Introduce the following output feedback controller of order nc:

xc(i + 1, j + 1) = A
σ(i+j+1)

c1 xc(i, j + 1) + A
σ(i+j+1)

c2 xc(i + 1, j)

+ B
σ(i+j+1)

c1 y(i, j + 1) + B
σ(i+j+1)

c2 y(i + 1, j), (37)

u(i, j) = C
σ(i+j)
c xc(i, j) + D

σ(i+j)
c y(i, j)

where xc ∈ Rnc .
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The closed-loop system consisting of the plant (36) and the controller (37) is of
the form

x(i + 1, j + 1) = A
σ(i+j+1)

1 x(i, j + 1) + A
σ(i+j+1)

2 x(i + 1, j)

+ B
σ(i+j+1)

1 w(i, j + 1) + B
σ(i+j+1)

2 w(i + 1, j), (38)

z(i, j) = C
σ(i+j)

x(i, j) + D
σ(i+j)

w(i, j)

where x(i, j) = [xT (i, j) xT
c (i, j)]T and

A
σ(i+j+1)

1 =
[

A
σ(i+j+1)

1 + B
σ(i+j+1)

21 D
σ(i+j+1)
c B

σ(i+j+1)

21 C
σ(i+j+1)
c

B
σ(i+j+1)

c1 C
σ(i+j+1)

2 A
σ(i+j+1)

c1

]

,

A
σ(i+j+1)

2 =
[

A
σ(i+j+1)

2 + B
σ(i+j+1)

22 D
σ(i+j+1)
c B

σ(i+j+1)

21 C
σ(i+j+1)
c

B
σ(i+j+1)

c2 C
σ(i+j+1)

2 A
σ(i+j+1)

c2

]

,

B
σ(i+j+1)

1 =
[

B
σ(i+j+1)

11 + B
σ(i+j+1)

21 D
σ(i+j+1)
c D

σ(i+j+1)

21

B
σ(i+j+1)

c1 D
σ(i+j+1)

21

]

,

B
σ(i+j+1)

2 =
[

B
σ(i+j+1)

12 + B
σ(i+j+1)

22 D
σ(i+j+1)
c D

σ(i+j+1)

21

B
σ(i+j+1)

c2 D
σ(i+j+1)

21

]

,

C
σ(i+j) = [

C
σ(i+j)

1 + D
σ(i+j)

12 D
σ(i+j)
c C

σ(i+j)

2 D
σ(i+j)

12 C
σ(i+j)
c

]

,

D
σ(i+j) = D

σ(i+j)

11 + D
σ(i+j)

12 D
σ(i+j)
c D

σ(i+j)

21 .

For the closed-loop system (38), we state the 2D H∞ control problem as: find
a 2D dynamic output feedback controller of the form in (37) for the 2D plant (36) such
that the closed-loop system (38) has a specified weighted H∞ disturbance attenuation
level γ . The controller design procedure is provided in the following theorem.

Theorem 2 For given positive scalars γ and 0 < α < 1, if there exist symmetric and
positive-definite matrices Rp > 0, Sp > 0 and matrices Ψ

p

1 , Ψ
p

2 , Φ
p

1 , Φ
p

2 , D
p
c , Zp ,

p ∈N , such that

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Y
p
F Y

p
A1

Y
p
A2

Y
pT
B1

Y
pT
B2

0 0

∗ −λαY
p
F 0 0 0 Y

pT
c 0

∗ ∗ −λ(1 − α)Y
p
F 0 0 0 Y

pT
c

∗ ∗ ∗ −γ 2I 0 D
pT

0

∗ ∗ ∗ ∗ −γ 2I 0 D
pT

∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

<0, ∀p ∈N

(39)
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with

Y
p
F =

[

Rp I

I Sp

]

, D
p = D

p

11 + D
p

12D
p
c D

p

21,

Y
p
A1

=
[

A
p

1 Rp + B
p

21Z
p A

p

1 + B
p

21D
p
c C

p

2

Φ
p

1 SpA
p

1 + Ψ
p

1 C
p

2

]

,

Y
p
A2

=
[

A
p

2 Rp + B
p

22Z
p A

p

2 + B
p

22D
p
c C

p

2

Φ
p

2 SpA
p

2 + Ψ
p

2 C
p

2

]

,

Y
p
B1

= [

B
pT

11 + D
pT

21 D
pT
c B

pT

21 B
pT

11 Sp + D
pT

21 Ψ
pT

1

]

,

Y
p
B2

= [

B
pT

12 + D
pT

21 D
pT
c B

pT

22 B
pT

12 Sp + D
pT

21 Ψ
pT

2

]

,

Y
p
c = [

C
p

1 Rp + D
p

12Z
p C

p

1 + D
p

12D
p
c C

p

2

]

,

then 2D switched closed-loop system (38) is exponentially stable and has a prescribed
weighted H∞ disturbance attenuation level γ for any switching signals with the av-
erage dwell time satisfying

τa > τ ∗
a = lnμ

− lnλ
(40)

where ΣpΛpT = I −RpSp , RpΛp +ΣpUp = 0, ΣpT Sp +V pΛpT = 0, and μ ≥ 1
satisfies

[

Rq Σq

ΣqT V q

]

< μ

[

Rp Σp

ΣpT V p

]

, ∀p,q ∈ N. (41)

And the controller parameters can be obtained as follows:

C
p
c = (

Zp − D
p
c C

p

2 Rp
)(

Σp
)−T

,

B
p

c1 = (

Λp
)−1(

Ψ
p

1 − SP B
p

21D
p
c

)

, B
p

c2 = (

Λp
)−1(

Ψ
p

2 − SpB
p

22D
p
c

)

,

A
p

c1 = (

Λp
)−1(

Φ
p

1 − Sp
(

A
p

1 + B
p

21D
p
c C

p

2

)

R
p − SpB

p

21C
p
c ΣpT

− ΛpB
p

c1C
p

2 Rp
)(

Σp
)−T

,

A
p

c2 = (

Λp
)−1(

Φ
p

2 − Sp
(

A
p

1 + B
p

22D
p
c C

p

2

)

R
p + SpB

p

22C
p
c ΣpT

+ ΛpB
p

c2C
p

2 Rp
)(

Σp
)−T

.

(42)
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Proof By applying Theorem 1 to the closed-loop system (38), the controller solves
the 2D switched H∞ control problem if the following matrix inequalities hold

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Xp XpA
p

1 XpA
p

2 XpB
p

1 XpB
p

2 0 0

∗ −λαXp 0 0 0 C
pT

0

∗ ∗ −λ(1 − α)Xp 0 0 0 C
pT

∗ ∗ ∗ −γ 2I 0 D
pT

0

∗ ∗ ∗ ∗ −γ 2I 0 D
pT

∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

<0,

∀p ∈N. (43)

Pre- and post-multiplying (43) by diag((Xp)−1, (Xp)−1, (Xp)−1, I, I, I, I ) leads to
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−(Xp)−1 A
p
1 (Xp)−1 A

p
2 (Xp)−1 B

p
1 B

p
2 0 0

∗ −λα(Xp)−1 0 0 0 (Xp)−1C
pT

0

∗ ∗ −λ(1 − α)(Xp)−1 0 0 0 (Xp)−1C
pT

∗ ∗ ∗ −γ 2I 0 D
pT

0

∗ ∗ ∗ ∗ −γ 2I 0 D
pT

∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

∀p ∈N. (44)

Definite Fp = (Xp)−1, we can obtain
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Fp A
p

1 Fp A
p

2 Fp B
p

1 B
p

2 0 0

∗ −αFp 0 0 0 FpC
pT

0

∗ ∗ −(1 − α)Fp 0 0 0 FpC
pT

∗ ∗ ∗ −γ 2I 0 D
pT

0

∗ ∗ ∗ ∗ −γ 2I 0 D
pT

∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

<0,

∀p ∈N. (45)

Partition Fp and (Fp)−1 as

Fp =
[

Rp Σp

ΣpT V p

]

,
(

Fp
)−1 =

[

Sp Λp

ΛpT Up

]

, (46)

where Rp,Sp,Up,V p ∈ Rn×n. It is easy to show from (46) that ΣpΛpT =
I − RpSp .
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Set

Ωp =
[

I Sp

0 ΛpT

]T

, Zp = D
p
c CpRp + C

p
c ΣpT ,

Ψ
p

1 = SpB
p

21D
p
c + ΛpB

p

c1, Ψ
p

2 = SpB
p

22D
p
c + ΛpB

p

c2,

Φ
p

1 = Sp
(

A
p

1 + B
p

21D
p
c C

p

2

)

R
p + SpB

p

21C
p
c ΣpT + ΛpB

p

c1C
p

2 Rp

+ ΛpA
p

c1Σ
pT ,

Φ
p

2 = Sp
(

A
p

1 + B
p

22D
p
c C

p

2

)

R
p + SpB

p

22C
p
c ΣpT + ΛpB

p

c2C
p

2 Rp

+ ΛpA
p

c2Σ
pT .

Pre- and post-multiplying (45) diag(ΩpT ,ΩpT ,ΩpT , I, I, I, I ) and diag(Ωp,Ωp,

Ωp, I, I, I, I ), respectively, we have

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−ΩpT FpΩp ΩpT A
p
1 FpΩp ΩpT A

p
2 FpΩp ΩpT B

p
1

∗ −λαΩpT FpΩp 0 0

∗ ∗ −λ(1 − α)ΩpT FpΩp 0

∗ ∗ ∗ −γ 2I

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ΩpT B
p
2 0 0

0 ΩpT FpC
pT

0

0 0 ΩpT FpC
pT

0 D
pT

0

−γ 2I 0 D
pT

∗ −I 0
∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (47)

with

ΩpT FpΩp =
[

Rp I

I Sp

]

,

ΩpT A
p

1 FpΩp =
[

A
p

1 Rp + B
p

21Z
p A

p

1 + B
p

21D
p
c C

p

2

Φ
p

1 SpA
p

1 + Ψ
p

1 C
p

2

]

,

ΩpT A
p

2 FpΩp =
[

A
p

2 Rp + B
p

22Z
p A

p

2 + B
p

22D
p
c C

p

2

Φ
p

2 SpA
p

2 + Ψ
p

2 C
p

2

]

,
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B
pT

1 Ωp = [

B
pT

11 + D
pT

21 D
pT
c B

pT

21 B
pT

11 Sp + D
pT

21 Ψ
pT

1

]

,

B
pT

2 Ωp = [

B
pT

12 + D
pT

21 D
pT
c B

pT

22 B
pT

12 Sp + D
pT

21 Ψ
pT

2

]

,

C
p
FpΩp = [

C
p

1 Rp + D
p

12Z
p C

p

1 + D
p

12D
p
c C

p

2

]

.

Then we take

Y
p
F = ΩpT FpΩp, Y

p
A1

= ΩpT A
p

1 FpΩp, Y
p
A2

= ΩpT A
p

2 FpΩp,

Y
p
B1

= B
pT

1 Ωp, Y
p
B2

= B
pT

2 Ωp, Y
p
c = C

p
FpΩp.

The condition (39) can be obtained.
Suppose that the LMIs (39) admits feasible solutions Rp > 0, Sp > 0, D

p
c , Ψ

p

1 ,
Ψ

p

2 , Φ
p

1 , Φ
p

2 and Zp with p ∈ N . Since Y
p
F > 0, ΣpΛpT = I − RpSp is non-

singular. Therefore, invertible matrices Σp and Λp can be computed. Then, Up and
V p can be computed from RpΛp + ΣpUp = 0 and ΣpT Sp + V pΛpT = 0, respec-
tively. We can find that the positive scalar μ ≥ 1 can be obtained by solving (41), then
the average dwell time τa can be obtained from (40). And the rest of the controller
parameters A

p

c1, A
p

c2, B
p

c1, B
p

c2, C
p
c with p ∈ N can be obtained by solving (42).

This completes the proof. �

Remark 6 If there is only one subsystem in system (36), it will degenerate to be a
general 2D FM LSS model which is a special one of 2D switched systems. Theorem 2
is also applicable for 2D FM LSS systems, which means that our results are more
general than the ones just for 2D FM LSS systems. Compared with the existing result
in the literature [10], we get sufficient conditions of output feedback H∞ stabilization
instead of state feedback H∞ stabilization.

4 Examples

In this section, we shall illustrate the results developed earlier via two examples. All
simulations are performed with LMI control toolbox [12].

Example 1 This numerical example demonstrates the design of a 2D H∞ controller
for the following 2D switched system of type (36) with two subsystems:

Subsystem 1:

A1
1 =

[−0.2450 0.0307
−0.1444 0.0008

]

, A1
2 =

[−0.2860 0.1800
−0.1435 −0.4601

]

,

B1
11 =

[

0.8392
0.6288

]

, B1
12 =

[

1.0322
0.2071

]

,

B1
21 =

[

0.1338
1.0708

]

, B1
22 =

[

0.6298
0.9778

]

,
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C1
1 = [0.005 0.1 ], C1

2 = [1 10 ],
D1

11 = 0.3, D1
12 = 0.1, D1

21 = 0.03, D1
22 = 0.

Subsystem 2:

A2
1 =

[−0.2450 0.0008
−0.1444 0.0307

]

, A2
2 =

[−0.2860 −0.4601
−0.1435 0.1800

]

,

B2
11 =

[

0.8392
0.2071

]

, B2
12 =

[

1.0322
0.9778

]

,

B2
21 =

[

0.1338
0.6288

]

, B2
22 =

[

0.6298
1.0708

]

,

C2
1 = [0.1 0.005 ], C2

2 = [10 1 ],
D2

11 = 0.3, D2
12 = 0.1, D2

21 = 0.03, D2
22 = 0.

Take λ = 0.75, α = 0.6 and γ = 10, according to Theorem 2, solving (39) gives
rise to the following solutions:

R1 =
[

197.2681 −103.3501
−103.3501 65.6891

]

, R2 =
[

15.7966 −17.5360
−17.5360 54.3629

]

,

S1 =
[

154.9188 −128.5563
−128.5563 244.3175

]

, S2 =
[

112.7032 −126.8899
−126.8899 213.6495

]

,

Φ1
1 =

[−0.4870 −0.0077
−0.6565 0.1357

]

, Φ2
1 =

[−0.4834 0.1163
0.3148 0.1961

]

,

Φ1
2 =

[−0.2485 0.1995
0.3106 −0.4696

]

, Φ2
2 =

[

0.0730 −0.2655
−0.4215 0.0970

]

,

Z1 = [24.3453 −11.2155 ], Z2 = [−2.6035 18.2364 ],
D1

c = 0.0528, D2
c = 0.0506,

Ψ 1
1 =

[

8.6536
3.7301

]

, Ψ 2
1 =

[

1.0636
−0.3689

]

,

Ψ 1
2 =

[−22.8833
57.4539

]

, Ψ 2
2 =

[

3.0049
−1.7051

]

.

Then, Up and V p with p ∈ 2 can be computed

U1 =
[

0.0031 −0.0012
−0.0012 0.0157

]

, U2 =
[

0.0034 0.0007
0.0007 0.0377

]

,

V 1 = 107 ×
[

2.3565 0.0085
0.0085 0.0044

]

, V 2 = 106 ×
[

5.2571 −0.0140
−0.0140 0.0067

]

.
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Fig. 1 Response of state
x1(i, j)

The positive scalar μ = 2.3834 can be obtained by solving (41), then τ ∗
a = 3.0191

can be obtained from (40). And the rest of the controller parameters A
p

c1, A
p

c2, B
p

c1,
B

p

c2, C
p
c with p ∈ 2 can be obtained by solving (42)

A1
c1 =

[−0.0589 0.2202
0.0094 0.2275

]

, A1
c2 =

[−0.1526 1.6987
0.0025 0.4386

]

,

B1
c1 =

[

7.2039
−3.6735

]

, B1
c2 =

[−51.2096
−15.7511

]

,

C1
c = [−0.0003 0.0025 ], D1

c = 0.0505;

A2
c1 =

[

0.2216 0.3603
0.0183 0.0229

]

, A2
c2 =

[

0.2808 −0.2963
0.03499 0.3633

]

,

B2
c1 =

[

7.6501
−0.2021

]

, B2
c2 =

[

11.1692
−0.2422

]

,

C2
c = [0.0015 0.0025 ], D2

c = 0.0488.

Choosing τa = 4, the simulation results are shown in Figs. 1, 2 and 3, where the
boundary condition of the system is

x(i, j) = 1

50(j + 1)
, ∀0 ≤ j ≤ 20, i = 0,

x(i, j) = 1

50(i + 1)
, ∀0 ≤ i ≤ 20, j = 0,

and w(i, j) = 0.5 exp(−0.025π(i + j)). It can be seen from Figs. 1–3 that the system
is exponentially stable. Furthermore, when the boundary condition is zero, by com-
puting, we get

∑∞
i=0

∑∞
j=0 λi+j‖z‖2

2 = 0.2741 and
∑∞

i=0
∑∞

j=0 ‖w‖2
2 = 14.6952,

and it satisfies the condition (2) in Definition 2. It can be seen that the system has a
weighted H∞ disturbance attenuation level γ = 10.
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Fig. 2 Response of state
x2(i, j)

Fig. 3 Switching signal

Example 2 It is known that some dynamical processes in gas absorption, water
stream heating and air drying can be described by the Darboux equation [23]. Now
we consider a dynamical process with multiple subsystems:

∂2s(x, t)

∂x∂t
= a

σ(x,t)
1

∂s(x, t)

∂t
+ a

σ(x,t)
2

∂s(x, t)

∂x
+ a

σ(x,t)
0 + bσ(x,t)f (x, t) (48)

where s(x, t) is an unknown function at x(space) ∈ [0, xf ] and t (time) ∈ [0,∞),

a
σ(x,t)
0 , a

σ(x,t)
1 , a

σ(x,t)
2 and bσ(x,t) are real coefficients with σ(x, t) being the switch-

ing signal, and f (x, t) is the input function. Define

r(x, t) = ∂s(x, t)

∂t
− a

σ(x,t)
2 s(x, t)

and xT (i, j) = [rT (i, j) sT (i, j)], where x(i, j) = x(iΔx, jΔt). It is easy to verify
that Eq. (48) can be converted into a 2D switched FM LSS model of the form (36)
when without disturbance input:
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A
σ(i,j)

1 =
[

1 + a
σ(i,j)

1 Δx (a
σ(i,j)

1 a
σ(i,j)

2 + a
σ(i,j)

0 )Δx

0 0

]

, A
σ(i,j)

2 =
[

0 0
Δt 0

]

,

B
σ(i,j)

21 =
[

bσ(i,j)Δx

0

]

, B
σ(i,j)

22 =
[

0
0

]

.

It should be noted that the value of σ(i, j) depends on i + j , so σ(i, j) can be writ-
ten as σ(i + j). Now we assume that the 2D switched system has two subsystems
with a1

0 = 0.2, a2
0 = 0.3, a1

1 = −10, a2
1 = −8, a1

2 = −1, a2
2 = −2, b1 = 10, b2 = 8,

Δx = 0.1 and Δt = 0.5. Taking the noise input w(i, j) = 0.5 exp(−0.025π(i + j)),
we can get a 2D switched discrete system in the form of (36) with parameters as
follows:

Subsystem 1:

A1
1 =

[

0 1.02
0 0

]

, A1
2 =

[

0 0
0.5 0

]

,

B1
11 =

[

0.1
0

]

, B1
12 =

[

0
0.1

]

, B1
21 =

[

1
0

]

, B1
22 =

[

0
0

]

,

C1
1 = [1 10 ], C1

2 = [1 10 ],
D1

11 = 0.3, D1
12 = 0.1, D1

21 = 0.03, D1
22 = 0.

Subsystem 2:

A2
1 =

[

0.2 1.63
0 0

]

, A2
2 =

[

0 0
0.5 0

]

,

B2
11 =

[

0.2
0

]

, B2
12 =

[

0
0.05

]

, B2
21 =

[

0.8
0

]

, B2
22 =

[

0
0

]

,

C2
1 = [1 10 ], C2

2 = [1 10 ],
D2

11 = 0.3, D2
12 = 0.1, D2

21 = 0.03, D2
22 = 0.

Take λ = 0.75, α = 0.6 and γ = 10. According to Theorem 2, we can get a 2D
switched output feedback controller of the form (37) with

A1
c1 =

[−0.0097 −0.0384
0.0027 0.0106

]

, A1
c2 =

[−1.0313 −3.9227
0.3267 1.0533

]

,

B1
c1 =

[

18.7114
−5.1523

]

, B1
c2 =

[

1.6242
5.5622

]

,

C1
c = 10−5 × [−0.9527 0.7637 ], D1

c = −0.1045;

A2
c1 = 10−3 ×

[−0.0143 0.5437
0.0789 −0.7291

]

, A2
c2 =

[−2.8819 −2.9440
4.4824 3.6717

]

,
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B2
c1 =

[

1.1809
−1.6818

]

, B2
c2 =

[

2.4408
1.6085

]

,

C2
c = 10−4 × [−0.1480 −0.1306 ], D2

c = −0.2062.

Thus the system can be H∞ stabilized via the designed controller.

5 Conclusions

This paper has investigated the problems of stability and weighted H∞ disturbance
attenuation performance analysis for 2D discrete switched systems described by the
FM LSS model. An exponential stability criterion is obtained via the average dwell
time approach. Some sufficient conditions for the existence of weighted H∞ distur-
bance attenuation level γ for the considered system are derived in terms of LMIs.
In addition, a 2D dynamic output feedback controller is designed to solve the H∞
control problem. Finally, two examples are also given to illustrate the applicability of
the proposed results.
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