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Abstract This paper investigates the dynamic output feedback H, stabilization
problem for a class of discrete-time 2D (two-dimensional) switched systems repre-
sented by a model of FM LSS (Fornasini—-Marchesini local state space) model. First,
sufficient conditions for the exponential stability and weighted H, disturbance atten-
uation performance of the underlying system are derived via the average dwell time
approach. Then, based on the obtained results, dynamic output feedback controller
is proposed to guarantee that the resulting closed-loop system is exponentially sta-
ble and has a prescribed disturbance attenuation level y. Finally, two examples are
provided to verify the effectiveness of the proposed method.

Keywords 2D switched systems - Output feedback - Exponential stability -
Hy performance - Dwell time

1 Introduction

In many modeling problems of physical processes, a 2D representation is needed such
as energy exchanging process and electricity transmission [15]. 2D systems have at-
tracted considerable research attention in control theory and practice over the past
few decades due to their wide applications such as multi-dimensional digital filter-
ing, linear image processing, signal processing, and process control [9, 15, 22]. 2D
systems can be represented by different models such as the Roesser model, Fornasini—
Marchesini model and Attasi model. Some important problems such as realization,
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reachability, stability, stabilization and minimum energy control have been exten-
sively investigated [8, 16].

On the other hand, a considerable interest has been devoted to the research of
switched systems during the recent decades. A switched system comprises a family of
subsystems described by continuous or discrete-time dynamics, and a switching law
that specifies the active subsystem at each instant of time. Apart from the switching
strategy to improve control performance [7, 26], switched systems also arise in many
engineering applications, for example, in motor engine control, constrained robotics
and networked control systems [1, 4, 36]. Many techniques are effective tools deal-
ing with switched systems, such as common quadratic Lyapunov function method,
multiple Lyapunov function method, and average dwell time approach [6, 20, 21, 24,
30].

It is well known that the switching phenomenon may also occur in practical 2D
systems, for example, the thermal processes in chemical reactors, heat exchangers
and pipe furnaces with multiple modes, can be expressed by a 2D switched system.
So 2D switched systems have also attracted considerable research attention. There
are a few reports on 2D discrete switched systems, Benzaouia et al. firstly consid-
ered 2D switched systems with arbitrary switching sequences [2], where the process
of switching was considered as a Markovian jumping one. Furthermore, they investi-
gated the stabilizability problem of discrete 2D switched systems in [3]. Recently, the
exponential stability and stabilization of the discrete 2D switched system in Roesser
model was firstly investigated via the average dwell time approach in [29]. H> control
problem for 2D switched systems in Roesser model was addressed in [11].

However, perturbations and uncertainties widely exist in the practical systems. In
some cases, the perturbations can be merged into the disturbance, which can be sup-
posed to be bounded in the appropriate norms. A main advantage of H, control is
that its performance specification takes into account the worst case performance of
the system in terms of energy gain. This is more appropriate for system robustness
analysis and robust control under modeling uncertainties and disturbances than other
performance specifications. Recently, the problems of robust H, control and filtering
for 2D systems have been studied by many researchers [13, 14, 17, 19, 27, 32-34].
The same problems of switched systems have also been studied in [18, 25, 28, 35].
Hy, control problem for 2D switched systems in Roesser model have been investi-
gated in [10]. However, to the best of our knowledge, the dynamic output feedback
H control problem of 2D switched systems in FM LSS model has not yet been fully
investigated, which motivates this present study.

In this paper, we are interested in Hy, control problem of discrete 2D switched
systems described by the FM LSS model. The main theoretical contributions are
twofold: (1) Sufficient conditions are proposed to guarantee the exponential stabil-
ity with a prescribed weighted H, disturbance attenuation level for the 2D switched
system by using the average dwell time approach. (2) The corresponding output feed-
back controller is designed to achieve the prescribed weighted H, disturbance atten-
uation level y. It should be noted that these conditions are presented in the form of a
set of LMIs (linear matrix inequalities).

This paper is organized as follows. In Sect. 2, the problem formulation and some
necessary lemmas are given. In Sect. 3, the weighted Hy, performance analysis and
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control problems are addressed by the average dwell time approach. Two examples
are provided to illustrate the effectiveness of the proposed approach in Sect. 4. Con-
cluding remarks are given in Sect. 5.

Notations Throughout this paper, the superscript “T” denotes the transpose, and
the notation X > Y (X > Y) means that matrix X — Y is positive semi-definite
(positive definite, respectively). || - || denotes the Euclidean norm. I represents the
identity matrix. diag{a;} denotes a diagonal matrix with the diagonal elements a;,
i=1,2,...,n. X~ ! denotes the inverse of X. The asterisk * in a matrix is used to
denote the term that is induced by symmetry. R” denotes the n dimensional vector.
For a matrix P, Amin(P) means the smallest eigenvalue of P and Apax (P) means the
largest eigenvalue of P. The set of all nonnegative integers is represented by Z . The
I> norm of a 2D signal w(i, j) is given by

= | 33w p|?

i=0 j=0

where w(i, j) belongs to [{[0, 00), [0, c0)}.

2 Problem Formulation and Preliminaries

Consider the following FM LSS model for a 2D switched system:

o (i4j+1)

x(, j+1) + A x(i+1, )

x(l+1,]+1) =A‘17(l'+j+1)

+BY w6, j+ D+ By w1 ), ()
2@, j) = H°"Dx (i, j) + L7 D, j),

where x (i, j) € R" is the state vector, w(i, j) € R is the noise input which belongs
to [2{[0, 00), [0, c0)}, z(, j) € R? is the controlled output. i and j are integersin Z_ .
o(i+j):Zy— N={1,2,..., N} is the switching signal. N is the number of sub-
systems. o (i + j) =k, k € N, means that the kth subsystem is active at the instant
i+7]. Ak, A’E, B{‘ s Bé‘ , H*, L* are constant matrices with appropriate dimensions.

In the paper, the switch can be assumed to occur only at each sampling points of
or j. The switching sequence can be described as

(mo, o(mo)), (ml, a(ml)), ey (mﬂ, a(mﬂ)), e 2)

withmy, =iy + jz, m =0,1,2,..., my denotes the wth switching instant.
Remark 1 As stated in literature [3, 29], the 2D system causality imposes an incre-

ment depending only on i + j, thus the value of the switching signal can be assumed
to be only dependent upon i + j and the switching sequence can be expressed as (2).
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Remark 2 System (1) is of significance because it can be used to describe the relation
between voltage and current in a long transmission line with multiple modes, some
multi-mode processes of gas absorption, water stream heating, air drying, and some
thermal processes with multiple subsystems, for example in chemical reactors, heat
exchangers and pipe furnaces.

Remark 3 1If there is only one subsystem in system (1), it will degenerate to the
following 2D system in FM LSS model [31]:

xG+1,j+D=A1x G, j+ 1D+ Ax(i+1,))
+Biw(,j+ 1)+ Bwi+1,)),
2@, j) = Hx (i, j) + Lw(, j).
Therefore, the addressed system (1) can be viewed as an extension of 2D FM LSS
systems to switched systems. In other words, system (1) not only represents the well-
known 2D FM LSS model [31], but also describes the 2D FM LSS system with
certain switching property, which demonstrates that system (1) is rational.

For 2D discrete switched system (1), we consider a finite set of initial conditions,
that is, there exist positive integers z1 and z» such that

x(0, j)=vj, YO0=<j<z,

x({,0)=w;, VY0<i<z,

vo=wo, i=j=0, 3)
x(0,j)=0, Vj>z,

x(@,0)=0, Vi>z

where z1 < 00 and z2 < 0o are positive integers, v; and w; are given vectors.

Denote ||x (i, )|, =supl{llxG, )l :i+j=ri=<z1,]<z2}. We give the follow-
ing definitions.

Definition 1 System (1) is said to be exponentially stable under o (i + j) if for a
given z > 0, there exist positive constants ¢ and &, such that

Y IxGp* st Y x| 4)
i+j=D i+j=z

holds for all D > z.

Remark 4 From Definition 1, it is easy to see that when z is given, Zi+j:z lx (i, j) ||f

will be bounded, and ) _; . j=p X, J) > will tend to be zero exponentially as D goes
to infinity, which also means that ||x (i, j)|| will tend to be zero exponentially.

Definition 2 For a given scalar y > 0, system (1) is said to have a weighted distur-

bance attenuation level y under switching signal o (i + j) if it satisfies the following
conditions:
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(1) when w(i, j) =0, system (1) is asymptotically stable or exponentially stable;
(2) under the zero-boundary condition, we have

DY WHIZIZ) < v DD Iwl3. YO #w e hf[0.00).[0,00))  (5)
i=0 j=0 i=0 j=0

where 0 < y < 1 and the l,-norm of 2D discrete signal z(i, j) and w(i, j) are
defined as

1213 =] =G + 1. )5+ =G, j + D3

, , , (6)
w5 =|w + 1, H];+ |wa. j+ D

Definition 3 [29] Forany i+ j= D >z =i+ j;,let Ny (z, D) denote the switching
number of o (-) on an interval [z, D). If

D—z

Ta

N5 (z, D) = No +

(N

holds for given Ng > 0 and 7, > 0, then the constant 7, is called the average dwell
time and Ny is the chatter bound.

. . Si S '
Lemma 1 [5] For a given matrix S = [ S'Tl SZ ], where S11 and S»; are square matri-
12
ces, the following conditions are equivalent.
i) §S<0;

(i) S11 <0, S — SLS;,'S12 < 0;
(iii) S22 <0, Si1 — S1285,' ST, <0.
Lemma 2 Consider 2D discrete switched system (1) with w(i, j) = 0, for a given

positive constant A < 1, if there exist a set of positive-definite symmetric matrices
Gk e R"™ " k¢ N, such that

K, [«GF 0 KT ok gk
1 _,\[ 0 (l—a)Gki| AT GR Ak S 0, 8)
where

AR =[at AL], 0<a<1,

then, the system is exponentially stable for any switching signal with the average
dwell time satisfying

In
%
=" 9
ta = Ta —InX ©)
where u > 1 satisfies

G* <uG', Vk,leN. (10)

Birkhauser



1100 Circuits Syst Signal Process (2014) 33:1095-1117

Proof Without loss of generality, we assume that the kth subsystem is active. For the
kth subsystem, we consider the following Lyapunov function candidate:

VEG, j) =xT G, HG X, j) (11)
where G* is an n x n positive-definite matrix for any k € N, and thus

VG, j)>0 forx(,j)#0
and

vk, j)=0 only when x(i, j) =0.
Then we have
VEG+1, i+ 1) = A[aVEG j+ D+ A = VEG+1, )]
=—[xTG j+D xTG@+1, )]
X{/\[aGk 0 :|_AkTGkAk}|:x(iaj+l)]

0 (1—0[)Gk x(l—i-l:])
[ ; I .7 .+1
— [T+ D) xT(l+1,J)]Wk[;C8_|]_l,j§] (42

WhereAkz[Alf Aé],0<k< lL,andO<a < 1.
From (8), we get

VEG+ 1, j+ 1D <A[aVEG j+ D+ A —a)VEG+1, ). (13)
The equality holds only if
VEG+1,j+ )=V +1,))=Vvki, j+ 1) =0.
It follows from (13) that

>V p=a ) VEG . (14)

i+j=M+1 itj=M

Now let v = Ny (z, D) denote the switching number of o (-) on an interval [z, D),
and let my_y41 < My—_yy2 < -+ < me—1 < m, denote the switching points of o (-)
over the interval [z, D), thus, for D € [m,, m,+1), we have from (14)

Yo VoImIG, jy <aPme 3 vetm, ). (15)

i+j=D i+j=m

Using (10) and (11), at switching instant m, =i + j, we have

Do VMG su Yy verIaL)). (16)

i+j:’nk i+j:ml(
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In addition, according to Definition 3, it follows that

D_
v=Ns(z,D) < No+
Ta

a7)

Therefore, the following inequality can be obtained easily:

D VeI jy <Al 3T vemI, jy < paP e YT veeng, )

i+j=D i+ j=my i+j=mg

M)LD—mK Z VO'(mK—l)(L J)ATe e
i+j=m,_1
S “oe
< MV*IAD*mKﬂ)H Z VU(mk—qul)(i,j)

i+j=mg_yt1
< MV)LD*W!H;H Z VG(Z)(i’j))\mx—erl*Z
i+j=z
< u'APTE YT VI, (18)

i+j=z

Inequality (18) can be rewritten as follows:

P A () e ) W A () (19)

i+j=D i+j=z

—Inu.

In the view of (11), there exist two positive constants a and b (a < b) such that

Ty ) =a S v b Y x|’

i+j=D i+j=D i+j=z i+j=z
(20)
where @ = mingey Amin(G¥), b = maxken Amax(GX).
Combining (19) and (20), it is easy to get
lnu 1
D EXCY = RO N ] 1)
i+j=D i+j=z
By Definition 1, we know that if — ln“ —InA >0, thatis 7, > 7} = h;#w the 2D
discrete switched system is exponentlally stable.
The proof is completed. d

Remark 5 Note that when = 1 in (9), (10) turns out to be GK = G, Vk,l € N.
In the case, we have 1, > ) = 0, which means that the switching signal can be
arbitrary.
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3 Main Results

3.1 Hy Performance Analysis

In this section, we focus on the Hy, performance analysis of the 2D switched systems.
The following theorem presents sufficient conditions which can guarantee that system
(1) is exponentially stable and has a prescribed weighted H, disturbance attenuation
level y.

Theorem 1 For given positive scalars y and 0 < o < 1, if there exist symmetric and
positive-definite matrices G >0, p € N, such that

[—G?  GPAY GP A} G’B{ G'BY 0 0 ]
x  —raGP 0 0 o HT 0
* * —A(1—a)GP 0 0 0 HT
s s s —y2I 0 LrT 0 | <0,
* * s s —y2r o LrT
* * * * * —1 0
| * * * * * * -1 |
VpeN (22)

then, 2D switched system (1) is exponentially stable and has a prescribed weighted
Hy disturbance attenuation level y for any switching signals with average dwell
time satisfying (9), where > 1 satisfies (10).

Proof 1t is an obvious fact that (22) implies that inequality (8) holds. By Lemma 2,
we can find that system (1) is exponentially stable when w(i, j) = 0. Now we are in
a position to prove that system (1) has a prescribed weighted H, performance y for
any nonzero w(i, j) € [2{[0, c0), [0, c0)}.

To establish the weighted Hy, performance, we choose the same Lyapunov func-
tional candidate as in (11) for system (1). Following the proof line of Lemma 2,
we can get

VPG +1,j+ D) <A[aVPG, j+ D+ —a)VPG+ 1, p]+y*w w-7'7,
with
=[G+ Ta+1Lp], w=[lai+D wli+1, )],
if
<0 (23)
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where
pT
Ay
At
_ p p p p
V= BT GP[A] Ay By B, ]
1
pT
B,
HPTHP — 0GP 0 HPTLP 0
* HPTHP — (1— @)AGP 0 HPTLD
+ * * —y21 4 LPTLP 0 ’
* * * —y2r4+LrTLp
VpeN.

Using Lemma 1 to (23), we can get the equivalent inequality as follows:

I —1 p 4 p p
—(GP) Al A3 By B,
APT HPTHP — 0GP 0 HPTLP 0
art 0 HPTHP —3(1 — a)GP 0 HPTLP
BT LPTHP 0 —y21+LPTLP 0
BT 0 LPTHP 0 —y2r4+LPTLp
< 0. 24)

Pre- and post-multiplying (24) by diag(G?, I, I, I, I'), we obtain

[ —GP GPAY GPAY GP Bl GPBY 7]
APTGP HPTHP — jaGP 0 HPTLP 0
AT Gp 0 HPTHP — (1 — a)GP 0 HPTLP
B'Gr  LrTHP 0 —y2 1+ LPTLP 0
| BY 6P 0 LPT HP 0 2+ LPTLP |
<0. (25)

Then using Lemma 1, we find that (22) is equivalent to (25).
Thus it can be obtained from (22) that

VP41, j4+ D) = AlaVPE, j+ D+ (1 —a)VPi+1, )]
—yw'w+z'z7<0. (26)
Then we have
VP41, j4+1D) <AaVPG, j+ D)+ —a)VPi+1, )]

+ywlw-z"z. 27)
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Let

2 +1, ) 2

zZ(, j+1)

wi@+1, j)
w@, j+ 1)

2
ra+j+0=z13—ywl3 = —y?

(28)

2 2

Summing up both sides of (27) from (D — 2) to 0 with respect to j and O to
(D — 2) with respect to i, respectively, and applying the zero-boundary condition,
one gets

D VI

i+j=D
<n Y Ve - > TG )
i+j=D—-1 i+j=D-2
D2
< 3D-m Z VU('"'()(i,j)— Z Z AD—Z—z—JF(i,j)
i+j=my m=m,—1itj=m
D-2
< pua D Z Vo= jy— Z Z AP, )
i+j=(m/()_ m:m,(—l i+j:m
B T L O S L S ()
i+j=mc—1 ij=me=2
D-2

— > D APTTrG )

m=m,—1i+j=m
= Z No+1.D)) D=(me=D) yo(me—1) ;.
i+j=m—1

D-2

B Z Z Mo (i1, D=2—i=j iy

m=m,—2i+j=m

< Z MNo(i-i-j,D))LD—me] Vg(mkfl)(i, )
i+j=me_i

D-2
_ Z Z MNG(Z+]+1’D))\.D_2_I_JF(1.,j)

m=m,_1—1i+j=m

Z MNa(i-FJ'—LD))\D—mK—l VO'(mK—z)(l" 7
i+j=(me_1)~

D-2
_ Z Z [,LNO(Z+]+1’D))\.D_2_I_]F(I.,j)

m=m,_1—1i+j=m

IA
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< Z MNU(I-Q-j,D))\'D—lva’(l)(l,])
i+j=1

D-2

_ Z Z ,u,N“(i+j+l’D)AD_2_i_-jF(i,j). (29)

m=0i+j=m

Under the zero-initial condition, we have

Z MNU(i+j’D))\,D7]V(T(1)(l.,j):0. (30)
i+j=1
Thus, we have
D-2
oY pNe LR jy < = Y VI, ) <0 (B1)
m=0i+j=m i+j=D

Multiplying the both sides of (31) by 1o (:?) | we can get the following inequality:

D-2 D-2
—No(1,i+j+1)y D—2—i—j ;=2 —No(Li+j+1)y D=2—i—j =2
§ 2 w o (Li+j+ ))» i ]||Z||2 < 2 § w o (1i+j+ ))» i J||w||2.

m=0i+j=m m=0i+j=m
(32)
Noting N, (1,i + j+ 1) < (i + j)/t4, and using (9), we have
M—Na(l,i+j+l) — ¢ No(Lit+j+D)Inp > eliti)ind (33)
Thus
D-2 D-2
Z e(l+j)ln)\)\'D—2—l—j”Z”%<Z Z M—NU(I,I-F‘]-FI))\’D—Z—I—]”w”%
m=0i+j=m m=0i+j=m
(34)
D-2
2 2 2— —
= APREIR <y Z ([
m=0i+j=m m=0i+j=m
oo D=2 oo D—
D SO ST 35 3 SRCESRTE:
D=2m=0i+j=m D=2m=0i+j=m
o o0 o0 o0
i+Jjn=12 D-2— 2 —2 D-2—
I ID IR ST D S DL
m=0i+j=m D=2+m m=0i+j=m D=2+m
1 & i+ =2 ) | = —2
= T 2 MR <y =0 D Wl
m=0i+j=m m=0i+j=m
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o o
= > AR <Y D 1wl

m=0i+4j=m m=0i+4j=m
oo X (o e o}
i+jn=2 2 —2
= Y Y IR < YD Il (35)
i=0 j=0 i=0 j=0

According to Definition 3, we can see that system (1) is exponentially stable and has
a prescribed weighted Hy, disturbance attenuation level y.
The proof is completed. 0

3.2 Hy, Control Problem

In this subsection, we shall deal with the Hy, control problem of 2D switched systems
via dynamic output feedback. Our purpose is to design a dynamic output feedback
controller such that the closed-loop system is exponentially stable and has a specified
weighted H, disturbance attenuation level y .

Consider the following discrete 2D switched plant in the FM LSS model:

X+ 1, i+ =A7 G 4+ 4 AT x4 1, )

o(i+j+1) o(i+j+1)

+ B}, w(i, j+1)+ B}, w(@ + 1, j)

o(i+j+1) o(i+j+1)

+ B, u(i, j +1) + B3, u(i +1, j), (36)

z(i, j) = Cf(iﬂ)x(z i)+ Dg(lﬂ)w(z j)+ Da(lﬂ)u(l’, 1)

cr(t+/) U(l+J)

¥, ) =C5 " xG, j)+ D3 wi, j) + D, ud, j)
where x(i, j) € R", w(i, j) € R"™, u(i, j) € R, z(i, j) € R% and y(i, Jj) € R are,
respectively, the state, the disturbance input, the control input, the controlled output,

and the measurement output of the plant, i and j are integers in Z. A Ak B{CI,
Bi‘z, Bé‘l, 225 C’l‘, Cz, 11, lez’ DIZ‘I, D’z‘2 with k € N are constant matrlces with
appropriate dimensions. We make no assumption on the statistics of the disturbance
input signal w(i, j) other than that it is energy bounded, i.e., ||w|2 < co. Without
loss of generality, we assume D’z‘2 =0for Vke N.

Introduce the following output feedback controller of order n.:

X+ 1, j+ 1) =A% j+ )+ AT i +1, )

o(i+j+1)

+ B, Y@, j+ D+ B+ 1, ), 37)

u(i, jy =2 x i, ) + DIy, )

where x. € R"c.
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The closed-loop system consisting of the plant (36) and the controller (37) is of

the form
Fi+1j+D) =A%+ D+ ARG + 1, )
+BY TG+ D+ BY T i + 1, ), 38)
2G, ) = %6, )+ D" wa, j)

where (i, j) = [x" (i, j) x[ (i, HI" and

—o(i+j+1) _

Ay

A

—o(i+j+1)
S =

—o(i+j+1)
Bl ==

-0

B,

C

(+j+1)

_A<17(i+j+l) + B;l(i+j+l)Dg(i+j+l) Bgl(i+j+1)cg(i+j+1):|

i Bfl(i+j+l)cg(i+j+l) Aa(i+j+l)

_Arzr(i+j+l) + Bg(i+j+1)Dg(i+j+1) Bgl(i+j+l)cg(i+j+1):|

cl

2

o(i+j+1) ~o@i+j+1) o(i+j+1)

L Bc2 C2 AcZ

'Bfl(i+j+1) + Bgl(i+j+1)Dg(i+j+1)Dczrl(i+j+1):|
o(i+j+1) no(i+j+1) ’

L Bcl D21

2

'Bifz(i-&-j-i-l) + Bg(i+j+l)Dg(i+j+l)D£27](i+j+l):|

o(i+j+1) no(i+j+1)
L BCZ DZI

o+)) _ [Cir(i-i-j) + Dclrz(i+j)Dg(i+j)Cg(i+j) sz(iJrj)Cg(Hj)]v

BN _ poli+i) | pol+h) pol+) poti+))
D = pJ") 4 pIiH) pZiHD pgitd,

For the closed-loop system (38), we state the 2D Hy, control problem as: find
a 2D dynamic output feedback controller of the form in (37) for the 2D plant (36) such
that the closed-loop system (38) has a specified weighted H, disturbance attenuation
level y. The controller design procedure is provided in the following theorem.

Theorem 2 For given positive scalars y and 0 < o < 1, if there exist symmetric and
positive-definite matrices R > 0, SP > 0 and matrices W}, llfzp, CDf, @f, Dt zp,
p €N, such that

B P
_YF
k
ES

*

p
YA1
—)»aYIQ
*

*

*

Yy vploovpl 0 0]
0 0 o v o
—2(1-a)Y? 0 0 o v/M7
* 21 o D' o |<0. VYpeN
s « —21 o D"
* * -1 0
* * * * —1

(39)
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with

[RP 1 —
P 14 14 P P nP
YP = / S,,], D" =D!, +DI,DI D},

o [ APRP + BD ZP AY + BY, DICY
oy SPAT +w/CY

vy - [ AYRP + BY,zP AP + BL,DECY
@5 SPAY +wfCy

P _ T T pT ppT T T, pT
Y} —[BP + D}, DI B B sP+Dj wl,
T T ,pT T T
=B + o2 DI BT B sp 4+ DR W],
YCP =[C/R? +D},ZzP C{ +D},DICY ],
then 2D switched closed-loop system (38) is exponentially stable and has a prescribed

weighted Ho, disturbance attenuation level y for any switching signals with the av-
erage dwell time satisfying

Inp
—InA

(40)

T, > 1) =

where ZP APT =] —RPSP RPAP + XPUP =0, 5PTSP 4+ VP APT =0, and p > 1

satisfies
R X1 RP XP
|:ZqT Vq]<M[EpT Vpi|s Vp,qeﬂ. 41

And the controller parameters can be obtained as follows:

cl=(zP - DlchrY)(zP) T,

-1 -1
By =(A?) (¥ - "B}, D), By =(AP)" (¥ — S" B}, DY),

AP = (A7) (@F = sP (AT + BL, DI CL)R" — SPBY,CL 20T @)

—APBLCIR?)(27)

AP, = (a?)" (@2 — SP(A? + BL,DECD)R” + SPBL,CP 2PT

+ APBYCIRP)(2P) T
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Proof By applying Theorem 1 to the closed-loop system (38), the controller solves
the 2D switched Hy, control problem if the following matrix inequalities hold

[—x»  xPAY XPAY XPBY XPBy 0 0
«  —aXP 0 0 o ¢’ o
% «  —a(l—a)X? 0 0 o ¢’
* * * —y2I 0 " o |<O
* * * * —y2I o D»"
* * * —1 0
| * * * * * * -1 a
VpeN. 43)

Pre- and post-multiplying (43) by diag((X?)~!, (XP)~', (XP)~1,1,1,1,1) leads to

[—xp)=t AP xry=t Ayt BY B 0 0 ]
«  —ra(xP)~! 0 o o @mle!rt o
¥ % “A1-a)x~1 0 0 0 xny~-1eh?
* * * —)/21 0 nld 0 <0,
—yzl 0 BPT
* -1 0
L * * —1
VpeN. (44)
Definite F? = (XP)~!, we can obtain
[ —Fr AVFP ADFP BY B, 0 0 ]
«  —aFP 0 0 o rFrc’ 0
% «  —(1—a)FP 0 0 o rrc’’
* * * —y2I i 0 <0,
—y2I 0 nid
* * * * * —1 0
| * * * * * * =1 ]
VpeN. (45)
Partition F? and (FP)~! as
RP XP 1 sP AP
FPZ[EPT VP]’ (FP) Z[APT UP]’ (46)
where RP,SP,UP,VP € R™". It is easy to show from (46) that P APT =

I — RPSP.
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Set

p ISPT p Peppp P s pT
.Q:O APT | ZP =D CPRP +C. XP",

/' =SPB) D! + AP B!,

cl’

v =SPBY, D! + AP BY,,

®F = sP(AY + BY, DECY)R" + SP B, L =P + AP B!, CIR?
+ AP AP ZPT,

@) = sP(AY + BL,DECY)R" + SPBL,CL =P + APBL,CIRP
+ APAD, ZPT

Pre- and post-multiplying (45) diag(2PT, 27T, 2PT I,1,1,1) and diag(22?, 27,
2P 1,1,1, ), respectively, we have

[ —@rTpror  QPTAVEPQP QPTAVFPQP 2PTBY
* —2a2PTFPQP 0 0
* * A1 —a)2PTFPQP 0
* * * —y21
* k * k
k k k k
L * * * *
2rTBY 0 0 i
o  erTprctt 0
0 0 erTpref?
0 i 0
—)/21 0 BPT
* —1 0
* * =1 |
<0 47)

with

QPTFprz RP I],

M AP P 4 P NP P
QA Frr ATRP? + B}, zP AT + B}, DI C} |
or SPAY +wlch
M AP P 14 P NP P
T prgp _ | AZR+BLZY A7+ ByDIC,
? ®! SPAY +wlcl |’
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By @7 = (5] + D DI B Bl "+ DY w7
BY 2 = (5] + D DI BY Bl 7+ DY w7
C’FPP =[CYRP + D},zP C{+ DI,DICY].
Then we take
YR=QPTFr@r,  Yi =@/TATFrQr,  y{ =QMMAJFPQP,
vyp =Bl @, vp =By aer y/=C'Fra’

The condition (39) can be obtained.

Suppose that the LMIs (39) admits feasible solutions R” > 0, S? > 0, D, ¥,
'1/217, cbf, CDé’ and Z? with p € N. Since Y;f >0, ZPAPT = — RPSP is non-
singular. Therefore, invertible matrices X7 and A” can be computed. Then, U” and
VP can be computed from R? AP + XPUP =0 and XPT §P + VP APT =0, respec-
tively. We can find that the positive scalar i > 1 can be obtained by solving (41), then
the average dwell time 7, can be obtained from (40). And the rest of the controller
parameters A", A”,, B\, BY,, C!' with p € N can be obtained by solving (42).

This completes the proof. g

Remark 6 If there is only one subsystem in system (36), it will degenerate to be a
general 2D FM LSS model which is a special one of 2D switched systems. Theorem 2
is also applicable for 2D FM LSS systems, which means that our results are more
general than the ones just for 2D FM LSS systems. Compared with the existing result
in the literature [10], we get sufficient conditions of output feedback Hy, stabilization
instead of state feedback H, stabilization.

4 Examples

In this section, we shall illustrate the results developed earlier via two examples. All
simulations are performed with LMI control toolbox [12].

Example 1 This numerical example demonstrates the design of a 2D H, controller
for the following 2D switched system of type (36) with two subsystems:

Subsystem 1:

41 [-02450 0.0307 41 _[—0.2860  0.1800
17| —0.1444  0.0008 |’ 271 —0.1435 —0.4601 |’

gl _ [08392 gl _[1:0322

117106288 | 12710.2071 |

gl _[0.1338 gl _[0:6298

207 | 1.0708 | 2709778 |
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Cl =[0.005 0.1], ci=[1 10],

D!, =03, Dl,=0.1, D) =003  Di,=0.
Subsystem 2:

42 _ [ 02450 0.0008 42 _ [ —0-2860  —0.4601

17| —0.1444 0.0307 |’ 271 -0.1435  0.1800 |’

g2 _ [ 08392 g2 _ [1.0322

7102071 | 12710.9778 |

g2 _ [ 01338 52, _ [0.6298

2171 0.6288 | 2271 1.0708 |

C?=1[0.1 0005], C?=[10 1],

D3, =03, D?,=0.1, D3 =003, D3, =0.

Take L =0.75, « = 0.6 and y = 10, according to Theorem 2, solving (39) gives

rise to the following solutions:

Rl _ [ 1972681  —103.3501 R2_ | 157966  —17.5360
| -103.3501  65.6891 | ~ | —17.5360  54.3629 |’

gl _ [ 1549188  —128.5563 @[ 1127032 —126.8899
T | —128.5563 2443175 | ~ | —126.8899  213.6495 |

ol — [ 04870 —0.0077 o2 [ 04834 0.1163

1= -0.6565 0.1357 |’ =1 03148 0.1961

ol _ [ 02485 0.1995 o2 | 00730 —0.2655

27 03106 —0.4696 |’ 27 —0.4215  0.0970 |’

7' =[243453 —112155],  Z?>=[-2.6035 18.2364],

D! =0.0528,  D?=0.0506,

1 [8.6536 » [ 1.0636

1 —[3.7301 + o PIE| 03680 |

| [—22.8833 > [ 3.0049

4’2—[ 574539 | Y27 —17051 |-

Then, U? and V? with p € 2 can be computed

;[ 00031 —0.0012 , [0.0034 0.0007
~ | -0.0012 00157 | = [0.0007 0.0377]
2.3565 0.0085 5.2571
1 _ 107 2 _ 106
Vi=100x [0.0085 0.0044] Ve=10Tx [—0.0140
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Fig. 1 Response of state
x1 @, j)

The positive scalar u = 2.3834 can be obtained by solving (41), then 7 = 3.0191
can be obtained from (40). And the rest of the controller parameters Afl, Afz, Bf 1
BY,, C! with p € 2 can be obtained by solving (42)

Al = —0.0589 0.2202 Al —0.1526 1.6987
71 0.0094 0.2275 | 271 0.0025 0.4386 |’

gl _ [ 7:2039 gl _ [—51.209
1= -3.6735 | 27| ~15.7511 |

C! =[-0.0003 0.0025], D!=0.0505;

42— 0.2216 0.3603 A2 0.2808 —0.2963
¢l 710.0183 0.0229 |° 2710.03499  0.3633 |’

g2 _ [ 76501 g2 _[ 111692
cl ™1 -0.2021 | 27| —0.2422 |

C?=1[0.0015 0.0025],  D?=0.0488.

Choosing 7, = 4, the simulation results are shown in Figs. 1, 2 and 3, where the
boundary condition of the system is

1
i, j) =, Y0=<,<20,i=0,
x(, j) S0+ 1) J [
1
i j)=———, Y0<i<20, j=0,
x(, J) 506+ 1) <i=<20,j

and w(i, j) = 0.5exp(—0.0257 (i 4 j)). It can be seen from Figs. 1-3 that the system
is exponentially stable. Furthermore, when the boundary condition is zero, by com-
puting, we get > o Zjio A+ )Z)3 = 0.2741 and 302, 23’10 w3 = 14.6952,
and it satisfies the condition (2) in Definition 2. It can be seen that the system has a
weighted H, disturbance attenuation level y = 10.
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Fig. 2 Response of state
x2(i, j)

Fig. 3 Switching signal

Example 2 It is known that some dynamical processes in gas absorption, water
stream heating and air drying can be described by the Darboux equation [23]. Now
we consider a dynamical process with multiple subsystems:

82s(x,t) o(x,t) as(x,t) o(x t)as(x’t) o(x,t)
— L =g g a0 b7 f(xt 48
axor o " ax 0 flen @8

where s(x,?) is an unknown function at x(space) € [0, x ] and ¢(time) € [0, 00),
ag(x’t), air(x’t), ag(“) and b° " are real coefficients with o (x, ) being the switch-

ing signal, and f(x, t) is the input function. Define

_ as(x, 1) _

r(x,t)= o7 a;(x’t)s(x,t)

and x7(i, j) = [rT G, j) sT (i, j)], where x(i, j) = x(i Ax, j At). It is easy to verify
that Eq. (48) can be converted into a 2D switched FM LSS model of the form (36)
when without disturbance input:
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Aa(i,j) _ 1+ a‘f(i’j)Ax (a?(i’j)a;(i’j) + ag(i’j))Ax A(T(i‘j) _ 0 O
1 0 0 ’ 2 At 0’
o) [ 7D Ax oj) _ |0

BZI - |: 0 ’ BZZ 10|

It should be noted that the value of o (i, j) depends on i 4 j, so o (i, j) can be writ-
ten as o (i + j). Now we assume that the 2D switched system has two subsystems
with a} =0.2, a5 =03, a] = —10,a} = —8,a) = —1,a3 = =2, b! =10, b> =38,
Ax =0.1 and At = 0.5. Taking the noise input w(i, j) = 0.5exp(—0.0257 (@ + j)),
we can get a 2D switched discrete system in the form of (36) with parameters as
follows:

Subsystem 1:

0.1 0 1 0
Blll=|: 0 i|’ 3112=|:0.11|’ 3211=|:01|’ BZI2Z|:O:|’
cl=[1 10], cl=[1 10],

D, =03, D},=0.1, D} =003,  Di,=0.

Subsystem 2:

, [02 163 > [0 o
Al—[o o | “2%|os of

0.2 0 0.8 0
Blzlz[o:|’ 8122=|:0.05:|’ 3221=|:0:|’ 3222=|:Oi|’
ci=[1 10], c3=[1 10],

D3, =03, D?,=0.1, D5 =003,  D3=0.

Take A = 0.75, « = 0.6 and y = 10. According to Theorem 2, we can get a 2D
switched output feedback controller of the form (37) with

0.0027 0.0106 0.3267 1.0533

gl _[ 187114 gl _[1.6242
ol T | 51523 | 2= | 55622 ]

1 —0.0097 —-0.0384 1 —1.0313 —-3.9227
Acl = ’ ACZ = ’

Cl =107 x[-0.9527 0.7637], D! =—-0.1045;

—0.0143  0.5437 2 —2.8819 —2.9440
9 AC2: )

2 _ -3
Aa =10 X[O.O789 —0.7291 44824 3.6717
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B2 _ 1.1809 Bl _ 2.4408
71 —1.6818 |’ €271 1.6085 |’

C?=10"*x[—-0.1480 —0.1306],  D?=—0.2062.

Thus the system can be H, stabilized via the designed controller.

5 Conclusions

This paper has investigated the problems of stability and weighted H, disturbance
attenuation performance analysis for 2D discrete switched systems described by the
FM LSS model. An exponential stability criterion is obtained via the average dwell
time approach. Some sufficient conditions for the existence of weighted Hy, distur-
bance attenuation level y for the considered system are derived in terms of LMIs.
In addition, a 2D dynamic output feedback controller is designed to solve the Hy
control problem. Finally, two examples are also given to illustrate the applicability of
the proposed results.
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