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Abstract This paper investigates the problem of designing a robust fault-detection
for uncertain T-S fuzzy models based on the delta operator approach. By means of the
T-S fuzzy delta operator systems, a fuzzy fault detection filter system is constructed
via the delta operator approach. The worst case fault sensitivity has been formulated
in terms of linear matrix inequalities. The proposed fault-detection filter not only
ensures the H−-gain from a fault signal to a residual signal greater than a prescribed
value, but also guarantees the H∞-gain from an exogenous input to a residual signal
less than a prescribed value in terms of the solvability of linear matrix inequalities.
The linear matrix inequalities can be solved by an effective algorithm. A numerical
example is provided to illustrate the effectiveness of the proposed design techniques.

Keywords Fault detection · T-S fuzzy system · Delta operator system · Linear
matrix inequality (LMI)

1 Introduction

In control systems, due to the unexpected variations in external surroundings, normal
wear in components, or sudden changes in signals, there may appear different kinds of
malfunction or imperfect behavior in normal operations, and people call them faults
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[35]. The objective of fault detection is to detect the fault signal accurately whenever
it appears. In recent years, fault detection in dynamical systems has attracted consid-
erable attention from many researchers due to the increasing demand for reliability
and safety in industrial processes [12, 32], and [23]. There are also some recently pub-
lished papers on robust H∞-filtering, for example, [1, 31], and [29], and so on. In [3],
the smallest nonzero singular value of the transfer function from fault to residual was
used to evaluate the worst case fault sensitivity. For the purpose of fault detection, the
H− index defined as the smallest singular value of a transfer function matrix was pro-
posed in [16]. A linear matrix inequality (LMI) approach to H−/H∞ fault-detection
observers has been proposed both in [8] and [21]. Although many researchers have
studied the problem of fault detection in linear systems with or without uncertainties
for many years, the problem of fault detection in nonlinear systems remains an open
research area.

One of the main difficulties in designing a fault-detection system for nonlinear
dynamical systems is that a rigorous mathematical model may be very difficult to
obtain, if not impossible. The T-S fuzzy model described by a family of fuzzy IF–
THEN rules was first introduced in [24]. The T-S fuzzy model puts the complex
nonlinear systems into a framework that interpolates some affine local models by a
set of fuzzy membership functions. Based on this framework, a systematic analysis
and design procedure for complex nonlinear systems can be possibly developed in
view of the powerful control theories and techniques in linear systems. Therefore,
many important results on T-S fuzzy systems have been reported, such as in [6, 30,
34], and [33], and the references therein. The T-S fuzzy model has attracted great in-
terest from researchers, and a number of results have been reported in the literature,
including stability analysis [15], H∞-control [9], and state estimation [25]. An adap-
tive fuzzy sliding control method was used for a double-pendulum-and-cart system in
[26]. Adaptive sliding mode control for nonlinear active suspension vehicle systems
using T-S fuzzy approach has been investigated in [14]. Since T-S fuzzy models have
provided a convenient way to study nonlinear systems, a feasible solution of the fault
detection problem for nonlinear systems can be converted to that of fault detection
for T-S fuzzy systems [20]. Two finite-frequency performance indices have been in-
troduced to measure fault sensitivity and disturbance robustness in finite-frequency
ranges in [27]. Reliable fuzzy control problem has been considered for active suspen-
sion systems with actuator delay and fault [13]. However, all the results above are not
related to the case of fast sampling, which means that sampling periods are small in
taking sample for continuous-time systems.

It is well known that discrete systems are suitable for computer realization and
continuous systems are convenient for theoretical analysis. The shorter the sampling
period, the better the system performances for discrete time control systems. Good-
win and Middleton constructed a delta operator instead of the traditional shift oper-
ator for sampling continuous systems at high sampling rate in [7] and [17]. Science
then, the transformations between the delta operator and shift operator transfer func-
tion models have been highlighted [18]. Furthermore, the computational formulation,
properties and applications of the delta operator systems have been illustrated [19].
The relationships between optimal realization sets for the shift operator and delta
operator have been established in [11]. A structure in the shift operator and delta op-
erator has been derived based on a polynomial-operator approach [10]. Especially,



Circuits Syst Signal Process (2014) 33:733–759 735

the book [28] has introduced some new achievements on the delta operator systems.
However, to the best of our knowledge, there have been few papers on fault detection
for T-S fuzzy systems via the delta operator approach, which motivates us to make an
effort in this paper.

The aim of this paper is to design a robust fault-detection for uncertain T-S fuzzy
models based on the delta operator approach. The worst case fault sensitivity has
been formulated in terms of LMIs. The proposed fault-detection filter can ensure the
L2-gain from a fault signal to a residual signal greater than a prescribed value. It can
also guarantees the L2-gain from an exogenous input to a residual signal less than
a prescribed value in terms of the solvability of LMIs. Some simulation results are
provided to demonstrate the effectiveness of the obtained results.

This paper is organized as follows. In Sect. 2, system descriptions and definitions
are presented. Section 3 presents the threshold design. Section 4 gives the main results
for designing a robust fault detection in delta domain for the fuzzy system. Section 5
gives the filter algorithm in detail. In Sect. 6, we present numerical simulation results.
Conclusions are given in Sect. 7.

Notation Throughout this paper, Rn denotes the n-dimensional Euclidean space.
The notation X > Y (X ≥ Y ) means that the matrix X −Y is positive definite (X −Y

is semi-positive definite, respectively). And P > 0 means that P is symmetric and
positive-define; I is the identity matrix of appropriate dimension. For any matrix
A, AT denotes the transpose of matrix A, A−1 denotes the inverse of matrix A.
The shorthand diag{M1,M2, . . . ,Mr} denotes a block diagonal matrix with diago-
nal blocks being the matrices M1,M2, . . . ,Mr .

2 System Description and Definitions

In the section, we consider the following uncertain fuzzy delta operator systems
which are represented by the T-S fuzzy model composed of a set of fuzzy impli-
cations, and each implication is expressed by a linear system model. The ith rule of
this T-S model is of the following form:

Plant Rule i

IF v1(tk) is Mi1and . . . and vϑ(tk) is Miϑ , THEN

δx(tk) = [Ai + �Ai]x(tk) + [Bi + �Bi]w(tk) + [Gi + �Gi]f (tk), (1)

y(tk) = [Ci + �Ci]x(tk) + [Di + �Di]w(tk) + [Ji + �Ji]f (tk) (2)

where i = 1,2, . . . , r , r is the number of IF–THEN rules, vi(tk) are premise variables,
Mij (j = 1,2, . . . , ϑ) are fuzzy sets, ϑ is the number of premise variables, x(tk) ∈R

n

is the state vector with x(0) = 0, w(tk) ∈ R
p and f (tk) ∈ R

q are disturbances and
faults, respectively, that belong to L2[0, ∞]. Matrices Ai , Bi , Ci , Di , Gi , and Ji

are of appropriate dimensions. Matrix functions �Ai , �Bi , �Ci , �Di , �Gi , and
�Ji represent the time-varying uncertainties in the system and satisfy the following
assumptions:

�Ai = E1iF
(
x(tk), tk

)
H1i , �Bi = E2iF

(
x(tk), tk

)
H2i , (3)
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�Ci = E3iF
(
x(tk), tk

)
H3i , �Di = E4iF

(
x(tk), tk

)
H4i , (4)

�Gi = E5iF
(
x(tk), tk

)
H5i , �Ji = E6iF

(
x(tk), tk

)
H6i (5)

where Hji and Eji (j = 1, . . . ,6) are known matrices that characterize the structure
of the uncertainties. Furthermore, the uncertainty satisfies

∥∥F
(
x(tk), tk

)∥∥≤ ρ (6)

where ρ is a known positive constant. Let �i(v(tk)) =∏ϑ
k=1 Mik(vk(tk)) and

ui

(
x(tk)

)=
(

�i(v(tk))∑r
i=1 �i(v(tk))

)

(7)

where Mik(vk(tk)) is the grade of membership of v(tk) in Mik . In this paper,
it is assumed that �i(v(tk)) ≥ 0 for i = 1,2, . . . , r and

∑r
i=1 �i(v(tk)) > 0 for

all tk . Therefore, ui(v(tk)) ≥ 0 for i = 1,2, . . . , r and
∑r

i=1 ui(v(tk)) = 1 for all tk .
Through, the use of fuzzy blending, the final output of the fuzzy delta operator system
(1)–(2) is inferred as follows:

δx(tk) = [
A(u) + �A(u)

]
x(tk) + [

B(u) + �B(u)
]
w(tk)

+ [
G(u) + �G(u)

]
f (tk), (8)

y(tk) = [
C(u) + �C(u)

]
x(tk) + [

D(u) + �D(u)
]
w(tk)

+ [
J (u) + �J(u)

]
f (tk) (9)

where

A(u) =
r∑

i=1

uiAi, B(u) =
r∑

i=1

uiBi, C(u) =
r∑

i=1

uiCi,

G(u) =
r∑

i=1

uiGi, D(u) =
r∑

i=1

uiDi, J (u) =
r∑

i=1

uiJi,

and

�A(u) = E1(u)F
(
x(tk), tk

)
H1(u), �B(u) = E2(u)F

(
x(tk), tk

)
H2(u),

�C(u) = E3(u)F
(
x(tk), tk

)
H3(u), �D(u) = E4(u)F

(
x(tk), tk

)
H4(u),

�G(u) = E5(u)F
(
x(tk), tk

)
H5(u), �J (u) = E6(u)F

(
x(tk), tk

)
H6(u)

with E�(u)F (x(tk), tk)H�(u) =∑r
i=1 uiE�iF (x(tk), tk)H�i , for � = 1,2, . . . ,6.

In this paper, we seek an nth-order fuzzy fault-detection filter as a residual gener-
ator that is inferred as the weighted average of the local models of the form

δx̂(tk) = Â(u)x̂(tk) + B̂(u)y(tk), (10)

ŷ(tk) = Ĉx̂(tk), (11)
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e(tk) = y(tk) − ŷ(tk) (12)

where x̂(tk) is the filter’s state vector, e(tk) is the residual signal, Â(u), B̂(u), and
Ĉ(u) are the matrix functions of appropriate dimensions, ŷ(tk) is the estimate of
y(tk).

The state-space form of the fuzzy system model (8)–(9) with filter (10)–(12) is
given by

δx̌(tk) = Acl(u)x̌(tk) +Bw(u)w(tk) +Bf (u)f (tk), (13)

e(tk) = Ccl(u)x̌(tk) +Dcl(u)w(tk) + Jcl(u)f (tk) (14)

where

x̌(tk) = [
xT (tk) x̂T (tk)

]T
, Acl(u) =

[
A(u) + �A(u) 0

B̂(u)[C(u) + �C(u)] Â(u)

]
,

Bw(u) =
[

B(u) + �B(u)

B̂(u)[D(u) + �D(u)]
]

, Bcl(u) =
[

G(u) + �G(u)

B̂(u)[J (u) + �J(u)]
]

,

Ccl(u) = [
C(u) + �C(u) −Ĉ(u)

]
, Dcl(u) = [

D(u) + �D(u)
]
,

Jcl(u) = [
J (u) + �J(u)

]
.

Before ending this section, the following lemma will be used to prove our main re-
sults.

Lemma 1 [22] (The property of the delta operator) For any time functions x(tk) and
y(tk), the following holds:

δ
(
x(tk)y(tk)

)= δ
(
x(tk)

)
y(tk) + x(tk)δ

(
y(tk)

)+ Tδ
(
x(tk)

)
δ
(
y(tk)

)

where T is a sampling period.

3 Threshold Design

The fault detection problem for the delta operator systems can be viewed as find-
ing the appropriate fault detection filter to make the system asymptotically stable,
minimize the effects of disturbances, and enhance the effects of faults.

In order to detect the faults as in [5], the widely adopted approach is to choose
an appropriate threshold Jth and determine the evaluation function Jr(n), which is
selected as

Jr(n) =

√√√√√
T

n

k0+n∑

k=k0

eT (tk)e(tk) (15)

where k0 denotes the initial evaluation time instant, n denotes the evaluation time
steps. Based on this, the occurrence of faults can be detected by the following logic
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rule:

Jr(n) > Jth ⇒ Fault ⇒ Alarm;
Jr(n) ≤ Jth ⇒ No Fault.

Usually, a threshold function is chosen according to the test. It has been pointed out
in [2] that there are many ways of defining evaluation functions and determining
thresholds. We choose the threshold as discussed in the next section.

4 Robust Fuzzy Fault-Detection Filter Design

A good fault-detection filter should generate a residual signal that is sensitive to faults
and simultaneously insensitive to disturbances and model uncertainties. Under the
assumption that no false alarm is allowed, the threshold should be the maximal value
of the evaluated output in the fault-free operating state.

4.1 Fault-Free Case

When f (tk) = 0 (i.e., there are no faults), the fault-detection filter problem becomes
a standard H∞-filter design problem (fault-free case f (tk) = 0), i.e., designing an
H∞-filter of the form (10)–(12) such that

k0+n∑

k=k0

eT (tk)e(tk) < γ

k0+n∑

k=k0

wT (tk)w(tk). (16)

It is evident that γ > 0 measures the influence of a fault-detection filter to dis-
turbances under the fault-free case. The smaller the γ , the less sensitive the fault-
detection filter to the disturbance. Note that under the assumptions (3)–(5) that w(tk)

is bounded, i.e.,
∑Td

t=0 wT (tk)w(tk) ≤ M , where M is a known scalar, the threshold

can be chosen as Jth =
√

T
n
γM .

With f (tk) = 0, the state-space form of the fuzzy system model (8)–(9) with the
filter (10)–(12) is given by

δx̌(tk) =
[

A(u) 0
B̂(u)C(u) Â(u)

]
x̌(tk) +

[
�A(u) 0

B̂(u)�C(u) 0

]
x̌(tk)

+
[

B(u) + �B(u)

B̂(u){D(u) + �D(u)}
]

w(tk), (17)

e(tk) = y(tk) − ŷ(tk) (18)

where x̌(tk) = [xT (tk) x̂T (tk)]T . Let us reexpress (17)–(18) in a more compact way
as follows:

δx̌(tk) = Acl(u)x̌(tk) + Bcl(u)R−1v(tk) (19)
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where

v(tk) = R

⎡

⎢⎢⎢⎢
⎣

F(x(tk, tk)H1(u)x(tk))

F (x(tk, tk)H3(u)x(tk))

F (x(tk, tk)H2(u)w(tk))

F (x(tk), tk)H4(u)w(tk))

w(tk)

⎤

⎥⎥⎥⎥
⎦

, Acl(u) =
[

A(u) 0
B̂(u)C(u) Â(u)

]
,

Bcl(u) =
[

E1(u) 0 E2(u) 0 B(u)

0 B̂(u)E3(u) 0 B̂(u)E4(u) B̂(u)D(u)

]
,

and R = diag{αI,αI, γ I, γ I, γ I }, where α and γ are positive constants, yet to be
determined according to the following theorem.

Theorem 1 Consider the uncertain fuzzy delta operator system (19). Suppose there
exist scalars α > 0 and γ > 0, matrices X > 0, Y > 0, Aij , and Bij satisfying

X − Y > 0, (20)
⎡

⎣
Ψ1ii Ψ2ii Ψ3ii

∗ Ψ4ii Ψ5ii

∗ ∗ Ψ6ii

⎤

⎦ < 0, (21)

⎡

⎣
Ψ1ij Ψ2ij Ψ3ij

∗ Ψ4ij Ψ5ij

∗ ∗ Ψ6ij

⎤

⎦+
⎡

⎣
Ψ1ji Ψ2ji Ψ3ji

∗ Ψ4ji Ψ5ji

∗ ∗ Ψ6ji

⎤

⎦ < 0 (22)

where

Ψ1ij = (T− 2)

[
Y Y

Y X

]
,

Ψ2ij =
[

YAi YAi

XAi +BiCj + (Y − X)Âi XAi +BiCj

]
,

Ψ3ij =
[

YE1i 0 YE2i 0 YBi

XE1i BiE3j XE2i BiE4j XBi +BiDj

]
,

Ψ4ij =
[
YAi + AT

i Y + αρ2[HT
1iH1j + HT

3iH3j ] AT
ij

∗ Ψ4ij (2,2)

]
,

Ψ5ij =
[

YE1i 0 YE2i 0 YBi

XE1i BiE3j + ℵCT
i E3j XE2i BiE4j + ℵCT

i E4j Ψ5ij (2,5)

]
,

Ψ6ij = −

⎡

⎢⎢
⎢⎢
⎣

αI 0 0 0 0
∗ αI − ℵET

3iE3j 0 −ℵET
3iE4j −ℵET

3iDj

∗ ∗ γ I 0 0
∗ ∗ ∗ γ I − ℵET

4iE4j ℵET
4iDj

∗ ∗ ∗ ∗ γ I − ℵDT
4iD4j

⎤

⎥⎥
⎥⎥
⎦
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with

Ψ4ij (2,2) = AT
i X + XAi +BiCj + CT

i BT
j + αρ2[HT

1iH1j + HT
3iH3j

]

+ ℵCT
i Cj ,

Ψ5ij (2,5) = XBi +BiDj + ℵCT
i Dj

for i = 1,2, . . . , r , ∀i < j ≤ r , where ℵ = 1 + ρ2∑r
i=1

∑r
j=1 ‖HT

2iH2j + HT
4iH4j‖.

Then, (16) is guaranteed. Moreover, the suitable robust filter parameters are given as
follows:

Âij = (Y − X)−1{−XAi −BiCj +Aij − AT
i Y − αρ2[HT

1iH1j + HT
3iH3j

]}
,

B̂i = (Y − X)−1Bi , Ĉi = Ci .

Proof Let us choose a Lyapunov function as

V
(
x̌(tk)

)= x̌T (tk)P x̌(tk) (23)

where P is a constant positive definite matrix. By using Lemma 1, we have

δV
(
x̌(tk)

)= δT
(
x̌(tk)

)
P x̌(tk) + x̌T (tk)P δ

(
x̌(tk)

)+ TδT
(
x̌(tk)

)
Pδ
(
x̌(tk)

)
. (24)

For the positive definite real matrix P , one has

0 = −2δT
(
x̌(tk)

)
P
[
δ
(
x̌(tk)

)− Acl(u)x̌(tk) − Bcl(u)R−1v(tk)
]
. (25)

Taking the delta operator manipulations on V (x̌(tk)) along the closed-loop fuzzy
system (19), we get

δV
(
x̌(tk)

) = (T− 2)δT
(
x̌(tk)

)
Pδ
(
x̌(tk)

)+ δT
(
x̌(tk)

)
PAcl(u)x̌(tk)

+ δT
(
x̌(tk)

)
PBcl(u)R−1v(tk) + x̌T (tk)

(
Acl(u)T P

+ PAcl(u)
)
x̌(tk) + x̌T (tk)Acl(u)T P δ

(
x̌(tk)

)

+ x̌T (tk)PBcl(u)R−1v(tk) + vT (tk)R−1BT
cl (u)P x̌(tk)

+ vT (tk)R−1BT
cl (u)P δ

(
x̌(tk)

)
. (26)

Let us examine the residual term

e(tk)
T e(tk) = (

y(tk) − ŷ(tk)
)T (

y(tk) − ŷ(tk)
)

= x̌T (tk)
[
C(u) −Ĉ(u)

]T [
C(u) −Ĉ(u)

]
x̌(tk)

+ x̌T (tk)
[
C(u) −Ĉ(u)

]T D(u)R−1v(tk)

+ vT (tk)R−1DT (u)
[
C(u) −Ĉ(u)

]
x̌(tk)

+ vT (tk)R−1DT (u)D(u)R−1Dv(tk) (27)

where D(u) = [0 E3(u) 0 E4(u) D(u) ]. Adding and subtracting ℵ(y(tk)− ŷ(tk))
T (y(tk)−

ŷ(tk)) to (27) and from (26), it is obtained that
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δV
(
x̌(tk)

) = (T− 2)δT
(
x̌(tk)

)
Pδ
(
x̌(tk)

)+ 2δT
(
x̌(tk)

)
PAcl(u)x̌(tk)

+ 2δT
(
x̌(tk)

)
PBcl(u)R−1v(tk) + x̌T (tk)

{
2Acl(u)T P

+ ℵ[C(u) −Ĉ(u)
]T [

C(u) −Ĉ(u)
]}

x̌(tk) + ℵvT (tk)

×R−1BT
cl (u)P δx̌(tk) + 2x̌T (tk)

{
PBcl(u) + ℵ[C(u) −Ĉ(u)

]T

×D(u)
}
R−1v(tk) + ℵvT (tk)R−1DT (u)D(u)R−1v(tk)

− ℵ(y(tk) − ŷ(tk)
)T (

y(tk) − ŷ(tk)
)
. (28)

Now let us determine an upper bound for the term vT (tk)R−1v(tk) by using the
triangular inequality as follows:

vT (tk)R−1v(tk) =

⎡

⎢⎢⎢⎢
⎣

F(x(tk), tk)H1(u)x(tk)

F (x(tk), tk)H3(u)x(tk)

F (x(tk), tk)H2(u)w(tk)

F (x(tk), tk)H4(u)w(tk)

w(tk)

⎤

⎥⎥⎥⎥
⎦

T

R

⎡

⎢⎢⎢⎢
⎣

F(x(tk), tk)H1(u)x(tk)

F (x(tk), tk)H3(u)x(tk)

F (x(tk), tk)H2(u)w(tk)

F (x(tk), tk)H4(u)w(tk)

w(tk)

⎤

⎥⎥⎥⎥
⎦

≤ αρ2x̌T (tk)
{
HT

1 (u)H1(u) + HT
3 (u)H3(u)

}
x̌(tk)

+ γwT (tk)
{
I + ρ2(HT

2 (u)H2(u) + HT
4 (u)H4(u)

)}
w(tk).

Knowing that ‖I + ρ2(HT
2 (u)H2(u) + HT

4 (u)H4(u))‖ ≤ ℵ, we have

vT (tk)R−1v(tk) ≤ αx̌T (tk)C
T
cl(u)Ccl(u)x̌(tk) + ℵγwT (tk)w(tk) (29)

where

Ccl(u) = ρ2
[
H1(u) 0
H3(u) 0

]
.

Adding and subtracting vT (tk)R−1v(tk) to (28), we obtain

δV
(
x̌(tk)

) ≤ x̄T (tk)

⎡

⎣
(T− 2)P PAcl(u) PBcl(u)

∗ Π1 Π2

∗ ∗ −(R− ℵDT (u)D(u))

⎤

⎦ x̄(tk)

− ℵ(y(tk) − ŷ(tk)
)T (

y(tk) − ŷ(tk)
)+ ℵγwT (tk)w(tk) (30)

where

x̄(tk) =
⎡

⎣
δ(x̌(tk))
x̌(tk)

R−1v(tk)

⎤

⎦ ,

Π1 = AT
cl(u)P + PAcl(u) + ℵ[C(u) −Ĉ(u)

]T [
C(u) −Ĉ(u)

]

+ αCT
cl(u)Ccl(u),

Π2 = PBcl(u) + ℵ[C(u) −Ĉ(u)
]T D(u).
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Following [4], without loss of generality, we partition P as

P =
[

X Y − X

Y − X X − Y

]
. (31)

Utilizing (31) and letting

x̆(tk) =

⎡

⎢⎢⎢⎢
⎣

[
0 I

I −I

]
δx̌(tk)

[
0 I

I −I

]
x̌(tk)

R−1v(tk)

⎤

⎥⎥⎥⎥
⎦

,

we have the following inequality

δV
(
x̆(tk)

) ≤ x̆T (tk)

⎡

⎣
Φ1(u) Φ2(u) Φ3(u)

∗ Φ4(u) Φ5(u)

∗ ∗ Φ6(u)

⎤

⎦ x̆(tk) − ℵ(y(tk) − ŷ(tk)
)T (

y(tk)

− ŷ(tk)
)+ ℵγwT (tk)w(tk) (32)

where

Φ1(u) = (T− 2)

[
Y Y

Y X

]
,

Φ2(u) =
[

YA(u) YA(u)

XA(u) +B(u)C(u) + (Y − X)Â(u) XA(u) +B(u)C(u)

]
,

Φ3(u) =
[

YE1(u) 0 YE2(u) 0 YB(u)

XE1(u) B(u)E3(u) XE2(u) B(u)E4(u) XB(u) +B(u)D(u)

]
,

Φ4(u) =
[
YA(u) + AT (u)Y + αρ2[HT

1 (u)H1(u) + H3(u)T H3(u)] (A(u))T

∗ Φ4(2,2)

]
,

Φ5(u) =
[

YE1(u) 0 YE2(u) 0 YB(u)

XE1(u) Φ5(2,2) XE2(u) Φ5(2,4) Φ5(2,5)

]
,

Φ6(u) = −(R− ℵDT (u)D(u)
)

with

Φ4(2,2) = AT (u)X + XA(u) +B(u)C(u) + CT (u)BT (u) + ℵCT (u)C(u)

+ αρ2[HT
1 (u)H1(u) + HT

3 (u)H3(u)
]
,

Φ5(2,2) = B(u)E3(u) + ℵCT (u)E3,

Φ5(2,4) = B(u)E4(u) + ℵCT (u)E4(u),

Φ5(2,5) = XB(u) +B(u)D(u) + ℵCT (u)D(u),
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and

A(u) = XA(u) +B(u)C(u) + (Y − X)Â(u) + A(u)T Y

+ αρ2[HT
1 (u)H1(u) + HT

3 (u)H3(u)
]
,

B(u) = (Y − X)B̂(u), C(u) = Ĉ(u).

Note that
⎡

⎣
Φ1(u) Φ2(u) Φ3(u)

∗ Φ4(u) Φ5(u)

∗ ∗ Φ6(u)

⎤

⎦=
r∑

i=1

r∑

j=1

uiuj

⎡

⎣
Φ1ij Φ2ij Φ3ij

∗ Φ4ij Φ5ij

∗ ∗ Φ6ij

⎤

⎦ .

Considering (20)–(22), we have that

δV
(
x̆(tk)

)≤ −ℵ(y(tk) − ŷ(tk)
)T (

y(tk) − ŷ(tk)
)+ ℵγwT (tk)w(tk). (33)

Integrating both sides of (33) yields

k0+n∑

k=k0

δV
(
x̆(tk)

)≤
k0+n∑

k=k0

{−ℵ(y(tk) − ŷ(tk)
)T (

y(tk) − ŷ(tk)
)+ ℵγwT (tk)w(tk)

}
,

or

δV
(
x̆(Td)

)− δV
(
x̆(0)

) ≤
k0+n∑

k=k0

{−ℵ(y(tk) − ŷ(tk)
)T (

y(tk) − ŷ(tk)
)

+ ℵγwT (tk)w(tk)
}
.

Using the fact that x̌ = 0 and δV (x̌(tk)) > 0 for all tk �= 0, we have

k0+n∑

k=k0

(
y(tk) − ŷ(tk)

)T (
y(tk) − ŷ(tk)

)≤ γ

k0+n∑

k=k0

wT (tk)w(tk).

Hence, (16) is guaranteed, which is equal to Jr(n) < Jth. �

4.2 Disturbance-Free Case

Before presenting our main result, we consider the disturbance-free case (w(tk) = 0)
and design a fault-detection H− filter such that

k0+n∑

k=k0

eT (tk)e(tk) > β

k0+n∑

k=k0

f T (tk)f (tk) (34)

where β measures the sensitivity of a fault-detection filter to faults under the
disturbance-free case. The larger the β , the more sensitive the fault-detection filter
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to the faults. The threshold can be chosen as

Jth =

√√√√√
T

n
β

k0+n∑

k=k0

f T (tk)f (tk).

When the disturbance input is zero, the state-space form of the fuzzy system model
(8)–(9) with the filter (10)–(12) is given by

δx̌(tk) =
[

A(u) 0
B̂(u)C(u) Â(u)

]
x̌(tk) +

[
�A(u) 0

B̂(u)�C(u) 0

]
x̌(t)

+
[

B(u) + �B(u)

B̂(u){J (u) + �J(u)}
]

f (tk), (35)

e(tk) = y(tk) − ŷ(tk) (36)

where x̌(tk) = [xT (tk) x̂T (tk)]T . The closed-loop fuzzy delta operator system (35)–
(36) is reexpressed as follows:

δx̌(tk) = Ãcl(u)x̌(tk) + B̃clR̃−1v(tk) (37)

with

ṽ(tk) = R̃

⎡

⎢
⎢⎢⎢
⎣

F(x(tk), tk)H1(u)x(tk))

F (x(tk), tk)H3(u)x(tk))

F (x(tk), tk)H5(u)f (tk))

F (x(tk), tk)H6(u)f (tk))

f (tk)

⎤

⎥
⎥⎥⎥
⎦

, Ãcl(u) =
[

A(u) 0
B̂(u)C(u) Â(u)

]
,

B̃cl(u) =
[

E1(u) 0 E5(u) 0 G(u)

0 B̂(u)E3(u) 0 B̂(u)E6(u) B̂(u)J (u)

]

where R̃ = diag{αI,αI,βI,βI,βI }, with α and β being positive constants, yet to
be determined according to the following theorem.

Theorem 2 Consider the uncertain fuzzy system (37). Suppose there exist scalars
α > 0, β > 0, matrices X > 0, Y > 0, Aij , and Bij satisfying

X − Y > 0, (38)
⎡

⎣
Ψ̃1ii Ψ̃2ii Ψ̃3ii

∗ Ψ̃4ii Ψ̃5ii

∗ ∗ Ψ̃6ii

⎤

⎦ < 0, (39)

⎡

⎣
Ψ̃1ij Ψ̃2ij Ψ̃3ij

∗ Ψ̃4ij Ψ̃5ij

∗ ∗ Ψ̃6ij

⎤

⎦+
⎡

⎣
Ψ1ji Ψ̃2ji Ψ̃3ji

∗ Ψ̃4ji Ψ̃5ji

∗ ∗ Ψ̃6ji

⎤

⎦ < 0 (40)
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where

Ψ̃1ij = (T− 2)

[
Y Y

Y X

]
,

Ψ̃2ij =
[

YAi YAi

XAi +BiCj + (Y − X)Âi XA +BiCj

]
,

Ψ̃3ij =
[

YE1i 0 YE5i 0 YGi

XE1i BiE3j XE5i BiE6j XGi +BiJi

]
,

Ψ̃4ij =
[
YAi + AT

i Y + αρ2[HT
1iH1j + HT

3iH3j ] AT
ij

∗ Ψ̃4ij (2,2)

]
,

Ψ̃5ij =
[

YE1i 0 YE5i 0 YGi

XE1i BiE3j − CT
i E3j XE5i BiE6j − CT

i E6j Ψ̃5ij (2,5)

]
,

Ψ̃6ij = −

⎡

⎢⎢⎢⎢
⎣

αI 0 0 0 0
∗ αI + ET

3iE3j 0 ET
3iE6j ET

3iJj

∗ ∗ βI 0 0
∗ ∗ ∗ βI + ET

6iE6j ℵ̃ET
6iJj

∗ ∗ ∗ ∗ J T
i Jj − β(1 + ℵ̃)I

⎤

⎥⎥⎥⎥
⎦

with

Ψ̃4ij (2,2) = AT
i X + XAi +BiCj + CT

i BT
j + αρ2[HT

1iH1j + HT
3iH3j

]− CT
i Cj ,

Ψ̃5ij (2,5) = XGi +BiJj − CT
i Jj

for i = 1,2, . . . , r , ∀i < j ≤ r , where ℵ̃ = ρ2∑r
i=1

∑r
j=1 ‖HT

5iH5j +HT
6iH6j‖. Then

(34) is guaranteed. Moreover, the suitable robust filter parameters are given as fol-
lows:

Âij = (Y − X)−1{−XAi −BiCj +Aij − AT
i Y − αρ2[HT

1iH1j + HT
3iH3j

]}
,

B̂i = (Y − X)−1Bi , Ĉi = Ci .

Proof Let us choose a Lyapunov function

V
(
x̌(tk)

)= x̌T (tk)P x̌(tk) (41)

where P is a constant positive definite matrix. By using Lemma 1, we have

δV
(
x̌(tk)

)= δT
(
x̌(tk)

)
P x̌(tk) + x̌(tk)P δ

(
x̌(tk)

)+ TδT
(
x̌(tk)

)
Pδ
(
x̌(tk)

)
. (42)

For the positive definite real matrix P , one has

0 = −2δT
(
x̌(tk)

)
P
[
δ
(
x̌(tk)

)− Acl(u)x̌(tk) − B̃cl(u)R̃−1ṽ(tk)
]
. (43)

Taking the delta operator manipulations on V (x̌(tk)) along the closed-loop system
(37), we get

δV
(
x̌(tk)

) = (T− 2)δT
(
x̌(tk)

)
Pδ
(
x̌(tk)

)+ δT
(
x̌(tk)

)
PAcl(u)x̌(tk)
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+ δT
(
x̌(tk)

)
P B̃cl(u)R̃−1ṽ(tk) + x̌T (tk)

(
Acl(u)T P

+ PAcl(u)
)
x̌(tk) + x̌T (tk)Acl(u)T P δ

(
x(tk)

)

+ x̌T (tk)P B̃cl(u)R̃−1ṽ(tk) + ṽT (tk)R̃−1B̃T
cl (u)P x̌(tk)

+ ṽT (tk)R̃−1B̃T
cl (u)P δ

(
x̌(tk)

)
. (44)

Let us examine the residual term

e(tk)
T e(tk) = (

y(tk) − ŷ(tk)
)T (

y(tk) − ŷ(tk)
)

= x̌T (tk)
[
C(u) −Ĉ(u)

]T [
C(u) −Ĉ(u)

]
x̌(tk)

+ x̌T (tk)
[
C(u) −Ĉ(u)

]T J (u)R̃−1ṽ(tk)

+ ṽT (tk)R̃−1J T (u)
[
C(u) −Ĉ(u)

]
x̌(tk)

+ ṽT (tk)R̃−1J T (u)J (u)R̃−1ṽ(tk) (45)

where J (u) = [0 E3(u) 0 E6(u) J (u) ]. Adding and subtracting (y(tk)− ŷ(tk))
T (y(tk)−

ŷ(tk)) to and from (44), one obtains

δV
(
x̌(tk)

) = (T− 2)δT
(
x̌(tk)

)
Pδ
(
x̌(tk)

)+ 2δT
(
x̌(tk)

)
PAcl(u)x̌(tk)

+ 2δT
(
x̌(tk)

)
P B̃cl(u)R̃−1ṽ(tk) + ṽT (tk)R̃−1B̃T

cl (u)P δx̌(tk)

+ x̌T (tk)
{
2Acl(u)T P − [

C(u) −Ĉ(u)
]T [

C(u) −Ĉ(u)
]}

x̌(tk)

+ 2x̌T (tk)
{
P B̃cl(u) − [

C(u) −Ĉ(u)
]T J (u)

}
R̃−1ṽ(tk)

− ṽT (tk)R̃−1J T (u)J (u)R̃−1ṽ(tk)

+ (
y(tk) − ŷ(tk)

)T (
y(tk) − ŷ(tk)

)
. (46)

Now let us determine an upper bound for the term ṽT (tk)QR̃−1ṽ(tk), where Q =
diag{I, I, I, I,0}. Using the triangular inequality, we have

ṽT (tk)QR̃−1ṽ(tk) =

⎡

⎢⎢⎢⎢
⎣

F(x(tk), tk)H1(u)x(tk)

F (x(tk), tk)H3(u)x(tk)

F (x(tk), tk)H5(u)f (tk)

F (x(tk), tk)H6(u)f (tk)

f (tk)

⎤

⎥⎥⎥⎥
⎦

T

R̃Q

⎡

⎢⎢⎢⎢
⎣

F(x(tk), tk)H1(u)x(tk)

F (x(tk), tk)H3(u)x(tk)

F (x(tk), tk)H5(u)f (tk)

F (x(tk), tk)H6(u)f (tk)

f (tk)

⎤

⎥⎥⎥⎥
⎦

≤ αρ2x̌T (tk)
{
HT

1 (u)H1(u) + HT
3 (u)H3(u)

}
x̌(tk)

+ βρ2f T (tk)
{
HT

5 (u)H5(u) + HT
6 (u)H6(u)

}
f (tk).

Knowing that ‖ρ2(HT
5 (u)H5(u) + HT

6 (u)H6(u))‖ ≤ ℵ̃, we have

ṽT (tk)QR̃−1ṽ(tk) ≤ αx̌T (tk)C
T
cl(u)Ccl(u)x̌(tk) + ℵβf T (tk)f (tk)
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where

Ccl(u) = ρ2
[
H1(u) 0
H3(u) 0

]
.

Adding and subtracting ṽT (tk)QR̃−1ṽ(tk) to and from (46), we obtain the following
inequality:

δV
(
x̌(tk)

) ≤ x̄T (tk)

⎡

⎣
(T− 2)P PAcl(u) P B̃cl(u)

∗ Π1 Π2

∗ ∗ −(J T (u)J (u)R̃+QR̃)

⎤

⎦ x̄(tk)

+ (
y(tk) − ŷ(tk)

)T (
y(tk) − ŷ(tk)

)+ ℵ̃βf T (tk)f (tk) (47)

where

x̄(tk) =
⎡

⎣
δ(x̌(tk))

x̌(tk)

R̃−1ṽ(tk)

⎤

⎦ ,

Π1 = AT
cl(u)P + PAcl(u) + αCT

cl(u)Ccl(u)

− [
C(u) −Ĉ(u)

]T [
C(u) −Ĉ(u)

]
,

Π2 = P B̃cl(u) − [
C(u) −Ĉ(u)

]T J (u).

Adding and subtracting β(1 + ℵ̃)f T (tk)f (tk) to and from (47), we obtain the in-
equality

δV
(
x̌(tk)

) ≤ x̄T (tk)

⎡

⎣
(T− 2)P PAcl(u) P B̃cl(u)

∗ Π1 Π2

∗ ∗ −(J T (u)J (u)R̃+QR̃− U)

⎤

⎦ x̄(tk)

+ (
y(tk) − ŷ(tk)

)T (
y(tk) − ŷ(tk)

)− βf T (tk)f (tk)

where U = diag{0,0,0,0, β(1 + ℵ̃)I } and

Π1 = AT
cl(u)P + PAcl(u) + αCT

cl(u)Ccl(u) − [
C(u) −Ĉ(u)

]T [
C(u) −Ĉ(u)

]
,

Π2 = P B̃cl(u) − [
C(u) −Ĉ(u)

]T J (u).

Following [4], without loss of generality, we partition P as

P =
[

X Y − X

Y − X X − Y

]
. (48)

Utilizing (48) and letting
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x̆(tk) =

⎡

⎢⎢⎢⎢
⎣

[
0 I

I −I

]
δx̌(tk)

[
0 I

I −I

]
x̌(tk)

R̃−1ṽ(tk)

⎤

⎥⎥⎥⎥
⎦

,

we have the inequality

δV
(
x̆(tk)

) ≤ x̆T (tk)

⎡

⎣
Φ̃1(u) Φ̃2(u) Φ̃3(u)

∗ Φ̃4(u) Φ̃5(u)

∗ ∗ Φ̃6(u)

⎤

⎦ x̆(tk) + (
y(tk) − ŷ(tk)

)T (
y(tk)

− ŷ(tk)
)− βf T (tk)f (tk)

where

Φ̃1(u) = (T− 2)

[
Y Y

Y X

]
,

Φ̃2(u) =
[

YA(u) YA(u)

XA(u) +B(u)C(u) + (Y − X)Â(u) XA(u) +B(u)C(u)

]
,

Φ̃3(u) =
[

YE1(u) 0 YE5(u) 0 YG(u)

XE1(u) B(u)E3(u) XE5(u) B(u)E6(u) XG(u) +B(u)J (u)

]
,

Φ̃4(u) =
[
YA(u) + AT (u)Y + αρ2[HT

1 (u)H1(u) + H3(u)T H3(u)] (∗)T

A(u) Φ̃4(2,2)

]
,

Φ̃5(u) =
[

YE1(u) 0 YE5(u) 0 YG(u)

XE1(u) Φ̃5(2,2) XE5(u) Φ̃5(2,4) Φ̃5(2,5)

]
,

Φ̃6(u) = −(J T(u)J (u) +QR̃− U
)

with

Φ̃4(2,2) = AT (u)X + XA(u) +B(u)C(u) + CT (u)BT (u) − CT (u)C(u)

+ αρ2[HT
1 (u)H1(u) + HT

3 (u)H3(u)
]
,

Φ̃5(2,2) = B(u)E3(u) − CT (u)E3,

Φ̃5(2,4) = B(u)E6(u) − CT (u)E6(u),

Φ̃5(2,5) = XG(u) +B(u)J (u) − CT (u)J (u),

and

A(u) = XA(u) +B(u)C(u) + (Y − X)Â(u) + A(u)T Y + αρ2[HT
1 (u)H1(u)

+ HT
3 (u)H3(u)

]
,

B(u) = (Y − X)B̂(u), C(u) = Ĉ(u).

Note that



Circuits Syst Signal Process (2014) 33:733–759 749

⎡

⎣
Φ̃1(u) Φ̃2(u) Φ̃3(u)

∗ Φ̃4(u) Φ̃5(u)

∗ ∗ Φ̃6(u)

⎤

⎦=
r∑

i=1

r∑

j=1

uiuj

⎡

⎣
Φ̃1ij Φ̃2ij Φ̃3ij

∗ Φ̃4ij Φ̃5ij

∗ ∗ Φ̃6ij

⎤

⎦ .

Considering (38)–(40), we have

δV
(
x̆(tk)

)≤ (
y(tk) − ŷ(tk)

)T (
y(tk) − ŷ(tk)

)− βf T (tk)f (tk). (49)

Integrating both sides of (49) yields

k0+n∑

k=k0

δV
(
x̆(tk)

)≤
k0+n∑

k=k0

{(
y(tk) − ŷ(tk)

)T (
y(tk) − ŷ(tk)

)− βf T (tk)f (tk)
}
,

or

δV
(
x̆(Td)

)− δV
(
x̆(0)

) ≤
k0+n∑

k=k0

{(
y(tk) − ŷ(tk)

)T (
y(tk) − ŷ(tk)

)

− βf T (tk)f (tk)
}
.

Using the fact that x̌ = 0 and δV (x̌(tk)) > 0 for all tk �= 0, we have

k0+n∑

k=k0

(
y(tk) − ŷ(tk)

)T (
y(tk) − ŷ(tk)

)
> β

k0+n∑

k=k0

f T (tk)f (tk).

Hence, (34) is guaranteed, which is equal to Jr(n) > Jth. �

4.3 Stability Analysis

When the disturbance input and the fault are zero (w(tk) = 0, f (tk) = 0), the state-
space form of the fuzzy system model (8)–(9) with the filter (10)–(12) is given by

δx̌(tk) =
[

A(u) 0
B̂(u)C(u) Â(u)

]
x̌(tk) +

[
�A(u) 0

B̂(u)�C(u) 0

]
x̌(tk) (50)

in which x̌(tk) = [xT (tk) x̂T (tk)]T . The closed-loop system (50) can be reexpressed
as

δx̌(tk) = Ăcl(u)x̌(tk) + B̆cl(u)R̆−1v̆(tk) (51)

where

Ăcl(u) =
[

A(u) 0
B̂(u)C(u) Â(u)

]
, v̆(tk) = R̆

[
F(x(tk), tk)H1(u)x(tk))

F (x(tk), tk)H3(u)x(tk))

]
,

B̆cl =
[
E1(u) 0

0 B̂(u)E3(u)

]
,

and R̆ = diag{αI,αI } are positive constants, yet to be determined according to the
following theorem.
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Theorem 3 Consider the uncertain fuzzy delta operator system (51). Suppose there
exist scalars α > 0 and β > 0, matrices X > 0, Y > 0, Aij , and Bij satisfying

X − Y > 0, (52)
⎡

⎣
Ψ̆1ii Ψ̆2ii Ψ̆3ii

∗ Ψ̆4ii Ψ̆5ii

∗ ∗ Ψ̆6ii

⎤

⎦ < 0, (53)

⎡

⎣
Ψ̆1ij Ψ̆2ij Ψ̆3ij

∗ Ψ̆4ij Ψ̆5ij

∗ ∗ Ψ̆6ij

⎤

⎦+
⎡

⎣
Ψ̆1ji Ψ̆2ji Ψ̆3ji

∗ Ψ̆4ji Ψ̆5ji

∗ ∗ Ψ̆6ji

⎤

⎦ < 0 (54)

where

Ψ̆1ij = (T− 2)

[
Y Y

Y X

]
,

Ψ̆2ij =
[

YAi YAi

XAi +BiCj + (Y − X)Âi XAi +BiCj

]
,

Ψ̆3ij =
[

YE1i 0
XE1i BiE3j

]
, Ψ̆4ij =

[
Ψ̆4ij (1,1) AT

ij

∗ Ψ̆4ij (2,2)

]

,

Ψ̆5ij =
[

YE1i 0
XE1i BiE3j + CT

i E3j

]
, Ψ̆6ij = −

[
αI 0
∗ αI − ET

3iE3j

]

with

Ψ̆4ij (1,1) = YAi + AT
i Y + αρ2[HT

1iH1j + HT
3iH3j

]
,

Ψ̆4ij (2,2) = AT
i X + XAi +BiCj + CT

i BT
j + αρ2[HT

1iH1j + HT
3iH3j

]+ CT
i Cj

for i = 1,2, . . . , γ , ∀i < j ≤ r . Then system (51) is asymptotically stable. Moreover,
the suitable robust filter parameters are given as follows:

Âij = (Y − X)−1{−XAi −BiCj +Aij − AT
i Y − αρ2[HT

1iH1j + HT
3iH3j

]}
,

B̂i = (Y − X)−1Bi , Ĉi = Ci .

Proof Let us choose a Lyapunov function

V
(
x̌(tk)

)= x̌T (tk)P x̌(tk)

where P is a constant positive definite matrix. By using Lemma 1, we have

δV
(
x̌(tk)

)= δT
(
x̌(tk)

)
P x̌(tk) + x̌(tk)P δ

(
x̌(tk)

)+ TδT
(
x̌(tk)

)
Pδ
(
x̌(tk)

)
. (55)

For the positive definite real matrix P , one has

0 = −2δT
(
x̌(tk)

)
P
[
δ
(
x̌(tk)

)− Acl(u)x̌(tk) − B̆cl(u)R̆−1v̆(tk)
]
. (56)
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Taking the time derivative on V (x̌(tk)) along the closed-loop system (51), we get

δV
(
x̌(tk)

) = (T− 2)δT
(
x̌(tk)

)
Pδ
(
x̌(tk)

)+ δT
(
x̌(tk)

)
PAcl(u)x̌(tk)

+ δT
(
x̌(tk)

)
B̆cl(u)R̆−1v̆(tk) + x̌T (tk)P B̆cl(u)R̆−1v̆(tk)

+ x̌T (tk)A
T
cl(u)P δ

(
x̌(tk)

)+ x̌T (tk)
(
AT

cl(u)P + PAcl(u)
)
x̌(tk)

+ v̆T (tk)R̆−1B̆T
cl (u)P x̌(tk) + v̆T (tk)R̆−1B̆T

cl (u)P δ
(
x̌(tk)

)
. (57)

Let us examine the residual term

e(tk)
T e(tk) = (

y(tk) − ŷ(tk)
)T (

y(tk) − ŷ(tk)
)

= x̌T (tk)
[
C(u) −Ĉ(u)

]T [
C(u) −Ĉ(u)

]
x̌(tk)

+ x̌T (tk)
[
C(u) −Ĉ(u)

]T O(u)R̆−1v̆(tk)

+ v̆T (tk)R̆−1OT (u)
[
C(u) −Ĉ(u)

]
x̌(tk)

+ v̆T (tk)R̆−1OT (u)O(u)R̆−1O(u)v̆(tk) (58)

where O(u) = [0 E3(u) ]. Adding and subtracting (y(tk) − ŷ(tk))
T (y(tk) − ŷ(tk)) to

and from (57), one obtains

δV
(
x̌(tk)

) = (T− 2)δT
(
x̌(tk)

)
Pδ
(
x̌(tk)

)+ 2δT
(
x̌(tk)

)
PAcl(u)x̌(tk)

+ 2δT
(
x̌(tk)

)
P B̆cl(u)R̆−1v̆(tk) + x̌T (tk)

{
2Acl(u)T P

+ [
C(u) −Ĉ(u)

]T [
C(u) −Ĉ(u)

]}
x̌(tk) + v̆T (tk)R̆−1B̆T

cl (u)

P δx̌(tk) + 2x̌T (tk)
{
P B̆cl(u) + [

C(u) −Ĉ(u)
]T O(u)

}
R̆−1v̆(tk)

+ v̆T (tk)R̆−1OT (u)O(u)R̆−1v̆(tk)

− (
y(tk) − ŷ(tk)

)T (
y(tk) − ŷ(tk)

)
. (59)

By using the triangular inequality, determine an upper bound for the term v̆T (tk)

R̆−1v̆(tk) as

v̆T (tk)R̆−1v̆(tk) =
[
F(x(tk), tk)H1(u)x(tk)

F (x(tk), tk)H3(u)x(tk)

]T

R̆
[
F(x(tk), tk)H1(u)x(tk)

F (x(tk), tk)H3(u)x(tk)

]

≤ αρ2x̌T (tk)
{
HT

1 (u)H1(u) + HT
3 (u)H3(u)

}
x̌(tk).

Then, we have

v̆T (tk)R̆−1v(tk) ≤ x̌T (tk)C
T
cl(u)Ccl(u)x̌(tk)

where

Ccl(u) = ρ2
[
H1(u) 0
H3(u) 0

]
.
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Adding and subtracting v̆T (tk)R̆−1v̆(tk) to and from (68), we obtain the following
inequality:

δV
(
x̌(tk)

) ≤ x̄T(tk)

⎡

⎣
(T− 2)P PAcl(u) P B̆cl(u)

∗ Π1 Π2

∗ ∗ −(R̆−OT (u)O(u))

⎤

⎦ x̄(tk)

− (
y(tk) − ŷ(tk)

)T (
y(tk) − ŷ(tk)

)

where

x̄(tk) =
⎡

⎣
δ(x̌(tk))

x̌(tk)

R̆−1v̆(tk)

⎤

⎦ ,

Π1 = AT
cl(u)P + PAcl(u) + [

C(u) −Ĉ(u)
]T [

C(u) −Ĉ(u)
]+ CT

cl(u)Ccl(u),

Π2 = P B̆cl(u) + [
C(u) −Ĉ(u)

]T O(u).

Following [4], without loss of generality, we partition P as

P =
[

X Y − X

Y − X X − Y

]
. (60)

Utilizing (60) and letting

x̆(tk) =

⎡

⎢⎢⎢⎢
⎣

[
0 I

I −I

]
δx̌(tk)

[
0 I

I −I

]
x̌(tk)

R̆−1v̆(tk)

⎤

⎥⎥⎥⎥
⎦

,

we have the inequality

δV
(
x̆(tk)

) ≤ x̆T (tk)

⎡

⎣
Φ̆1(u) Φ̆2(u) Φ̆3(u)

∗ Φ4(u) Φ̆5(u)

∗ ∗ Φ̆6(u)

⎤

⎦ x̆(tk)

− (
y(tk) − ŷ(tk)

)T (
y(tk) − ŷ(tk)

)

where

Φ̆1(u) = (T− 2)

[
Y Y

Y X

]
,

Φ̆2(u) =
[

YA(u) YA(u)

XA(u) +B(u)C(u) + (Y − X)Â(u) XA(u) +B(u)C(u)

]
,

Φ̆3(u) =
[

YE1(u) 0
XE1(u) B(u)E3(u)

]
,
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Φ̆4(u) =
[
YA(u) + AT (u)Y + ρ2[HT

1 (u)H1(u) + H3(u)T H3(u)] (∗)T

A(u) Φ4(2,2)

]
,

Φ̆5(u) =
[

YE1(u) 0
XE1(u) B(u)E3(u) + CT (u)E3(u)

]
,

Φ̆6(u) = −(R̆−OT(u)O(u)
)

with

Φ̆4(2,2) = AT (u)X + XA(u) +B(u)C(u) + CT (u)BT (u) + CT (u)C(u)

+ αρ2[HT
1 (u)H1(u) + HT

3 (u)H3(u)
]
,

and

A(u) = XA(u) +B(u)C(u) + (Y − X)Â(u) + AT (u)Y

+ αρ2[HT
1 (u)H1(u) + HT

3 (u)H3(u)
]
,

B(u) = (Y − X)B̂(u), C(u) = Ĉ(u).

Note that

⎡

⎣
Φ1(u) Φ̆2(u) Φ̆3(u)

∗ Φ̆4(u) Φ̆5(u)

∗ ∗ Φ̆6(u)

⎤

⎦=
r∑

i=1

r∑

j=1

uiuj

⎡

⎣
Φ̆1ij Φ̆2ij Φ̆3ij

∗ Φ̆4ij Φ̆5ij

∗ ∗ Φ̆6ij

⎤

⎦ .

Considering (52)–(54), we have that

δV
(
x̆(tk)

)≤ 0.

Hence, (51) is asymptotically stable. �

5 Filter Algorithm

The value γ is very useful for threshold selection in detection decision-making. The
ratio β/γ indicates how good a designed fault detection filter is, and therefore can be
used for evaluation of fault detection filters. As will be shown, the fault detection is
equivalent to a constrained H∞ estimation problem, the latter can be further reformu-
lated as a standard problem of constrained optimization. Thus, we give the following
algorithm:

Algorithm Given a scalar β , search for the lowest possible value of γ making the
error delta operator dynamic system (13)–(14) asymptotically stable and formulate
the following convex optimization problem:
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min γ

s.t.

⎧
⎪⎨

⎪⎩

(i) (20)–(22);
(ii) (38)–(40);
(iii) (52)–(54)

which can be effectively solved by the existing Matlab LMI toolbox.

6 Numerical Example

In the following, we will provide a numerical example to demonstrate the effective-
ness of the proposed methods in this paper.

Example: Consider the following two-rules T-S fuzzy model.
Rule 1: IF x1(tk) is M1, THEN

δx(tk) = [A1 + �A1]x(tk) + Bw(tk) + Gf (tk),

y(tk) = Cx(tk) + Dw(tk) + Jf (tk).

Rule 2: IF x2(tk) is M2, THEN

δx(tk) = [A2 + �A2]x(tk) + Bw(tk) + Gf (tk),

y(tk) = Cx(tk) + Dw(tk) + Jf (tk)

where

A1 =
[−0.134 0.006

0.007 −0.121

]
, A2 =

[−0.162 0.008
0.005 −0.148

]
,

B =
[

0.1 0
0.1 0

]
, C =

[−1 −1
−1 −1

]

with D = 0.1, G = 0.5, J = 0.3, α = 1.4, T = 0.02, �A1 = E11F(x(tk), tk)H11 ,
�A2 = E12F(x(tk), tk)H12 . Assume ‖F(x(tk), tk)‖ ≤ ρ = 1 and

E11 = E12 =
[

0.1 0
0.1 0

]
, H11 = H12 =

[
0 0.2
0 0

]
,

and that the membership functions for rules 1 and 2 are

M1
(
x1(tk)

)= 1

1 + exp(−2x1(tk))
, M2

(
x1(tk)

)= 1 − M1
(
x1(tk)

)
.

To analyze the effects of fault and disturbance on the residual of the detection ob-
server, consider the stuck fault, e.g.,

f (tk) =
{

0.05, k > 100,

0, elsewhere.
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Let the disturbance be

w(tk) = 10 ·
[

1.6 cos(0.02k)e−0.05k + 0.16 sin(0.02k)

1.6 cos(0.02k)e−0.05k + 0.16 sin(0.02k)

]T

.

Using the LMI optimization Algorithm 1 and Theorems 1–3, we obtain

X =
[

4.1643 0.0573
0.0573 4.1451

]
, Y =

[
1.4245 −0.0362

−0.0362 1.4067

]
,

Â11 =
[

0.2896 0.0489
0.0503 0.3023

]
, Â22 =

[
0.2651 0.0570
0.0587 0.2712

]
,

Â12 =
[

0.2126 0.0320
0.0304 0.2103

]
, Â21 =

[
0.1006 0.2319
0.2394 0.1212

]
,

B̂1 =
[

2.0965 −0.6207
−1.5345 3.0387

]
, B̂2 =

[
0.7572 0.4597
1.0894 0.1570

]
,

Ĉ1 =
[−1 −1
−1 −1

]
, Ĉ2 =

[−1 −1
−1 −1

]
.

The resulting fuzzy filter is

δx̂(tk) =
2∑

i=1

2∑

j=1

uiuj

[
Âij x̂(tk) + B̂iy(tk)

]
,

ŷ(tk) =
2∑

i=1

uiĈi x̂(tk)

where u1 = M1(x1(tk)) and u2 = M2(x1(tk)).
Considering the fact that a real state vector in the fuzzy system can be replaced by

an estimated state vector using the fault detection observer obtained in Theorems 1–3,
we first give the simulation results of the state estimate responses of the fuzzy system
in this example for the initial conditions x̂1(0) = x̂2(0) = 0, shown in Fig. 1, where
x̂1(tk) and x̂2(tk) are denoted by xo1(tk) and xo2(tk), respectively. For the initial
condition y(0) = 0, the simulation result of the estimated output of fuzzy system in
this example is shown in Fig. 2, where ŷ(tk) is denoted by yo(tk). Then, the residual
outputs are shown in Fig. 3 with the initial condition r(0) = 0, from which we can see
that the faults are well discriminated from disturbances. To detect the fault, we choose
the residual evaluation function as stated in (15), and the residual evaluation output
is shown in Fig. 4, where J r(n) and Jth are denoted by Jrn and Jth, respectively.

7 Conclusion

This paper has presented a new approach to study the problem of fault de-
tection for the T-S fuzzy systems in the delta domain. We have constructed a
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Fig. 1 State estimate response
of x̂(tk)

Fig. 2 Estimated output of
ŷ(tk)

fuzzy fault detection filter system and dynamics of filtering error generator by
means of the T-S fuzzy model. The worst case fault sensitivity has been formu-
lated in terms of LMIs, which can be effectively solved by an algorithm pro-
posed. The existence of a robust fault detection system that guarantees (i) the H−-
gain from a fault signal to a residual signal greater than a prescribed value and
(ii) the H−-gain from an exogenous input to a residual signal less than a pre-
scribed value is given in terms of the solvability of LMI. A numerical example
has been given to illustrate the effectiveness and potential of the developed tech-
niques.

Acknowledgements The authors would like to thank the anonymous reviewers for their detailed com-
ments which helped to improve the quality of the paper. The work of Hongjiu Yang was supported
by the National Natural Science Foundation of China under Grant 61203023, the Postdoctoral Sci-
ence Foundation of China under Grant 2012M510769, and the Natural Science Foundation of Hebei
Education Department under Grant Q2012060 and the Hebei Provincial Natural Science Fund under
Grand F2013203092, and the Science Technology Research and Development Plan of Qinhuangdao



Circuits Syst Signal Process (2014) 33:733–759 757

Fig. 3 Residual output r(k)

Fig. 4 Residual evaluation
J r(n)

City under Grant 201302A030. The work of Zhixin Liu was supported partially by the Natural Sci-
ence Foundation of China under Grant 61104033, and the Hebei Provincial Natural Science Fund un-
der Grand F2012203109. The work of Changchun Hua was supported by the Science Fund for Dis-
tinguished Young Scholars of Hebei Province (F2011203110), Doctoral Fund of Ministry of Education
of China (20121333110008), the National Natural Science Foundation of China (60934003, 61290322,
61273222).

References

1. M.V. Basin, P. Shi, D.C. Alvarez, J. Wang, Central suboptimal H∞ filter design for linear time-varying
systems with state or measurement delay. Circuits Syst. Signal Process. 28, 305–330 (2009)

2. J. Chen, R.J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems (Kluwer Academic,
Dordrecht, 1999)

3. J. Chen, R. Patton, G. Liu, Optimal residual design for fault diagnosis using multi-objective optimiza-
tion and genetic algorithms. Int. J. Syst. Sci. 27, 567–576 (1996)



758 Circuits Syst Signal Process (2014) 33:733–759

4. D.P. de Farias, J.C. Geromel, J.B.R. do Val, O.L.V. Costa, Output feedback control of Markov jump
linear systems in continuous-time. IEEE Trans. Autom. Control 45, 944–949 (2000)

5. P.M. Frank, X. Ding, Survey of robust residual generation and evaluation methods in observer-based
fault detection systems. J. Process Control 7, 403–424 (1997)

6. H. Gao, Y. Zhao, J. Lam, K. Chen, H∞ fuzzy filtering of nonlinear systems with intermittent mea-
surements. IEEE Trans. Fuzzy Syst. 17, 291–300 (2009)

7. G.C. Goodwin, R.L. Lozano, D.Q. Mayne, R.H. Middleton, “Rapprochement between continuous and
discrete model reference adaptive control. Automatica 22, 199–207 (1986)

8. M. Hou, R.J. Patton, An LMI approach to H−/H∞ fault detection observer, in UKACC International
Conference on Control ’96, vol. 1 (1996), pp. 305–310

9. J. Lam, S. Zhou, Dynamic output feedback H∞ control of discrete-time fuzzy systems: a fuzzy-basis-
dependent Lyapunov function approach. Int. J. Syst. Sci. 38, 25–37 (2007)

10. G. Li, A polynomial-operator-based DFIIt structure for IIR filters. IEEE Trans. Circuits Syst. II, Ex-
press Briefs 51, 147–151 (2004)

11. G. Li, M. Gevers, Comparative study of finite wordlength effects in shift and delta operator parame-
terizations. IEEE Trans. Autom. Control 38, 803–807 (1993)

12. H. Li, Q. Zhao, Probabilistic design of fault tolerant control via parameterization. Circuits Syst. Signal
Process. 26, 325–351 (2007)

13. H. Li, H. Liu, H. Gao, P. Shi, Reliable fuzzy control for active suspension systems with actuator delay
and fault. IEEE Trans. Fuzzy Syst. 20, 342–357 (2012)

14. H. Li, J. Yu, H. Liu, C. Hilton, Adaptive sliding mode control for nonlinear active suspension vehicle
systems using T-S fuzzy approach. IEEE Trans. Ind. Electron. 60, 3328–3338 (2013)

15. C. Lin, Q. Wang, T.H. Lee, Stability and stabilization of a class of fuzzy time-delay descriptor systems.
IEEE Trans. Fuzzy Syst. 14, 542–551 (2006)

16. J. Liu, J. Wang, G. Yang, An LMI approach to minimum sensitivity analysis with application to fault
detection. Automatica 41, 1995–2004 (2005)

17. R.H. Middleton, G.C. Goodwin, Improved finite word length characteristics in digital control using
delta operators. IEEE Trans. Autom. Control 31, 1015–1021 (1986)

18. C.P. Neuman, Transformations between delta and forward shift operator transfer function models.
IEEE Trans. Syst. Man Cybern. 23, 295–296 (1993)

19. C.P. Neuman, Properties of the delta operator model of dynamic physical systems. IEEE Trans. Syst.
Man Cybern. 23, 296–301 (1993)

20. S.K. Nguang, P. Shi, S. Ding, Fault detection for uncertain fuzzy systems: an LMI approach. IEEE
Trans. Fuzzy Syst. 15, 1251–1262 (2007)

21. R.J. Patton, M. Hou, H∞ estimation and robust fault detection, in Proc. Eur. Control Conf., Brussels,
Belgium (1997), pp. 343–349

22. J. Qiu, Y. Xia, H. Yang, J. Zhang, Robust stabilisation for a class of discrete-time systems with time-
varying delays via delta operators. IET Control Theory Appl. 2, 87–93 (2008)

23. J. Qiu, M. Ren, Y. Niu, Y. Zhao, Y. Guo, Fault estimation for nonlinear dynamic systems. Circuits
Syst. Signal Process. 31, 555–564 (2012)

24. T. Takagi, M. Sugeno, Fuzzy identification of systems and its application to modeling and control.
IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)

25. C. Tao, J. Taur, J. Chang, S. Su, Adaptive fuzzy switched swing-up and sliding control for the double-
pendulum-and-cart system. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40, 241–252 (2010)

26. S. Xu, J. Lam, Exponential H∞ filter design for uncertain Takagi–Sugeno fuzzy systems with time
delay. Eng. Appl. Artif. Intell. 17, 645–659 (2004)

27. H. Yang, Y. Xia, B. Liu, Fault detection for T-S fuzzy discrete systems in finite-frequency domain.
IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41, 911–920 (2011)

28. H. Yang, Y. Xia, P. Shi, L. Zhao, Analysis and Synthesis of Detail Operator Systems (Springer, Berlin,
2012)

29. A. Zhang, Robust H∞ filter design for uncertain singular stochastic systems, in 9th International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD) (2012), pp. 156–159

30. J. Zhang, Y. Xia, New LMI approach to fuzzy H∞ filter designs. IEEE Trans. Circuits Syst. II, Express
Briefs 56, 739–743 (2009)

31. H. Zhang, S. Lun, D. Liu, Fuzzy H∞ filter design for a class of nonlinear discrete-time systems with
multiple time delays. IEEE Trans. Fuzzy Syst. 15, 453–469 (2007)

32. K. Zhang, B. Jiang, P. Shi, A new approach to observer-based fault-tolerant controller design for
Takagi–Sugeno fuzzy systems with state delay. Circuits Syst. Signal Process. 28, 679–697 (2009)



Circuits Syst Signal Process (2014) 33:733–759 759

33. J. Zhang, Y. Xia, R. Tao, New results on H∞ filtering for fuzzy time-delay systems. IEEE Trans.
Fuzzy Syst. 17, 128–137 (2009)

34. B. Zhang, J. Lam, S. Xu, Z. Shu, Absolute exponential stability criteria for a class of nonlinear time-
delay systems. Nonlinear Anal., Real World Appl. 11, 1963–1976 (2010)

35. Y. Zhao, J. Lam, H. Gao, Fault detection for fuzzy systems with intermittent measurements. IEEE
Trans. Fuzzy Syst. 17, 398–410 (2009)


	Fault Detection for Uncertain Fuzzy Systems Based on the Delta Operator Approach
	Abstract
	Introduction
	Notation

	System Description and Deﬁnitions
	Threshold Design
	Robust Fuzzy Fault-Detection Filter Design
	Fault-Free Case
	Disturbance-Free Case
	Stability Analysis

	Filter Algorithm
	Algorithm

	Numerical Example
	Conclusion
	Acknowledgements
	References


