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Abstract This paper considers the synchronization and unknown input recovery
problem for a class of digital nonlinear systems based on a nonlinear observer ap-
proach. A generalized Luenberger-like observer is introduced for a class of discrete-
time Lipschitz nonlinear systems. Stability conditions for the existence of asymptotic
observers are established in terms of some linear matrix inequalities. It is shown that
the proposed conditions are less conservative than some existing ones in the recent
literature. Moreover, an observer design method is used to address the problem of
H∞ synchronization and unknown input recovery for a class of Lipschitz nonlinear
systems in the presence of disturbances in both the state and output equations. Fi-
nally, a numerical example is provided to illustrate the effectiveness of the proposed
design.
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1 Introduction

It is known that state estimation plays a key role not only in the control synthesis of
dynamical systems, but also in many engineering applications such as energy sys-
tems, fault detection and isolation, and chaos-based secure communication [3, 8, 16,
20, 21, 30]. However, as we know, it is often difficult or even impossible to design
a state observer for a general nonlinear system. Therefore, many recent efforts have
been undertaken to design observers for some particular classes of nonlinear systems.
A popular class of nonlinear systems is the Lipschitz system, owing to the fact that
most physical system models satisfy a Lipschitz condition, at least locally [13]. Thau
[19] first considered the state observer for Lipschitz nonlinear systems. Following
Thau’s work, many others researchers studied the Lipschitz observer design problem
using various approaches. For instance, the existence conditions of full-order as well
as reduced-order observers were established in Rajamani [17] and Zhu and Han [31],
respectively. A nonlinear adaptive resilient observer was proposed in Pourgholi and
Majd [15]. Observer syntheses for discrete-time Lipschitz systems and Lipschitz de-
scriptor systems were studied in Zemouche and Boutayeb [22] and Lu and Ho [11],
respectively. Robust H∞ observers for uncertain Lipschitz nonlinear systems were
investigated in Abbaszadeh and Marquez [1] using a linear matrix inequality (LMI)
optimization approach.

In general, Lipschitz nonlinear observers can be carried out by using pseudolinear
design techniques [2, 22]. However, this kind of technique may lead to more conser-
vative results. In the recent literature, many efforts have been made to reduce the con-
servativeness of the existing results for Lipschitz nonlinear systems [2, 10, 22]. There
are broadly two approaches to do this. One approach attempts to extend the classi-
cal Lipschitz condition to the “one-sided Lipschitz condition” [2], which includes its
well-known Lipschitz counterpart as a special case. For example, Zhang et al. in [26]
and [27] considered full-order and reduced-order observers for one-sided Lipschitz
nonlinear systems. Another approach is to develop new design techniques and less
conservative conditions that ensure the asymptotic stability of the observer error dy-
namics for Lipschitz nonlinear systems. For instance, Phanomchoeng and Rajamani
[14] studied the Lipschitz nonlinear observer by using Riccati equations [29]. The
circle criterion approach was developed in [3, 7, 10]. By using an LMI approach, less
conservative observer synthesis conditions were established in [22, 28] for discrete-
time Lipschitz nonlinear systems.

On the other hand, one important application of the nonlinear observer design ap-
proach is that it can be applied to chaos synchronization [5, 23, 25, 30]. Indeed, chaos
synchronization or chaos-based secure communication can be regarded as a special
case of an observer design problem, in which only the input and output information
of a drive system is used to construct the state information of the drive system. Con-
sequently, many useful results have been developed based on the nonlinear observer
design technique. In Boutayeb [5], an observer-based method was used to achieve
synchronization and input recovery for a class of digital nonlinear systems. The re-
lated estimation can also be considered as a state and input simultaneous estimation
problem [9]. More recently, Zemouche and Boutayeb [23] provided a unified observer
design method for discrete-time Lipschitz systems and extended it to H∞ synchro-
nization and unknown input recovery. They used a particular Lyapunov function and
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obtained some observer existence conditions. However, it seems that this particular
Lyapunov function cannot reduce the conservativeness [28]. Therefore, how to ob-
tain a less conservative observer synthesis condition is still a challenging problem,
and this motivates our present research.

In this paper, motivated by the recent work of Zemouche and Boutayeb [23], we
revisit the observer design problem for a class of discrete-time Lipschitz nonlinear
systems and consider its application to H∞ synchronization and unknown input esti-
mation. The main contribution of this work is twofold. First, we derive a new observer
synthesis condition, due to a generalized observer structure. Unlike [23], we only em-
ploy the usual quadratic Lyapunov function to analyze the asymptotical stability of
the observer error dynamics. The obtained synthesis condition is simpler, but it can
show that the proposed condition is less conservative than that in [23]. Second, un-
der the framework of H∞ filtering, we extend the proposed observer design method
to the H∞ synchronization and unknown input recovery problem for discrete-time
Lipschitz systems in the presence of disturbances in both the state and output equa-
tions. New observer-based H∞ synthesis conditions are established and formulated
in terms of LMIs. A numerical example on the discrete-time Rössler chaotic system
is provided to illustrate the effectiveness of the proposed design.

Notation R
n represents the n-dimensional real Euclidean space. The symbol ‖·‖

denotes the Euclidean norm. For a symmetric matrix A, A > 0 (A < 0) means that
this matrix is positive definite (negative definite). In symmetric block matrices, we
use an asterisk “∗” to represent a term that is induced by symmetry. I is an identity
matrix with appropriate dimension. The notation

‖x‖�r
2
=

( ∞∑
k=0

∥∥x(k)
∥∥2

) 1
2

is the �r
2 norm of the vector x ∈ R

r , where the set �r
2 is defined by

�r
2 = {

x ∈ R
r : ‖x‖�r

2
< +∞}

.

2 Problem Statement and Observer Synthesis Conditions

This section considers the observer design problem for a class of digital nonlinear
systems, i.e., the discrete-time Lipschitz nonlinear systems. Unlike the approach de-
veloped in Zemouche and Boutayeb [23], here we do not employ the particular Lya-
punov function to deduce the stability conditions for observer error systems. A sim-
pler but less conservative condition is provided to ensure the existence of a state
observer with a generalized observer structure.

2.1 Problem Statement

Consider the following class of discrete-time nonlinear systems described by{
x(k + 1) = Ax(k) + Bf (Hx(k), y(k)) + c,

y(k) = Cx(k)
(1)
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where x(k) ∈ R
n is the state and y(k) ∈ R

p is the measured output. The matrices
A ∈ R

n×n, C ∈ R
p×n, B ∈ R

n×q , and H ∈ R
s×n are known constant matrices, c ∈ R

n

is a constant vector, and f : R
s × R

p → R
q is the nonlinear function of system (1).

The nonlinear map f is assumed to be global Lipschitz, i.e., the inequality∥∥f (v, y) − f (w,y)
∥∥ ≤ γ ‖v − w‖ (2)

holds for all v,w ∈ R
s , where γ > 0 is independent of y.

As proposed in Zemouche and Boutayeb [23], we consider the following observer:{
x̂(k + 1) = Ax̂(k) + Bf (w(k), y(k)) + L(y(k) − Cx̂(k)) + c,

w(k) = Hx̂(k) + K(y(k) − Cx̂(k)).
(3)

Notice that it holds a generalized structure due to the gain K introduced in the non-
linear part of the observer [23]. The design goal is to find the gains K and L such that
the estimation error

e(k) = x(k) − x̂(k) (4)

converges asymptotically toward zero. The error dynamics is governed by

e(k + 1) = (A − LC)e(k) + B�fk, (5)

where

�fk = f
(
v(k), y(k)

) − f
(
w(k), y(k)

)
, v(k) = Hx(k). (6)

In the following, we will propose a new observer synthesis condition for system
(1) under the Lipschitz condition (2). The comparison of conservativeness between
our condition and that given in Zemouche and Boutayeb [23] is also provided.

2.2 Observer Synthesis Conditions

Theorem 1 The observer error dynamics (5) is asymptotically stable if there exist a
scalar ε > 0 and some matrices P > 0, R, and K of appropriate dimensions such
that the following matrix inequality is feasible:⎡

⎢⎢⎢⎣
−P ATPB − CTRB ATP − CTR (H − KC)T

∗ BTPB − εIq 0 0
∗ ∗ −P 0

∗ ∗ ∗ − Iq

εγ 2

⎤
⎥⎥⎥⎦ < 0. (7)

If the matrix inequality (7) is feasible, then the gain matrix L is given by L = P −1RT,
and the gain matrix K is a solution of (7).

Proof Consider the following candidate Lyapunov function:

V (k) = eT(k)P e(k). (8)
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Denote �Vk = V (k + 1) − V (k). Then

�Vk = eT(k + 1)P e(k + 1) − eT(k)P e(k)

= ξT
k

[
ĀTP Ā − P ĀTPB

∗ BTPB

]
ξk, (9)

where Ā = A − LC and

ξk =
[
e(k)

�fk

]
. (10)

From the Lipschitz condition (2), we have

‖�fk‖ ≤ γ
∥∥(H − KC)e(k)

∥∥. (11)

Denote HK = H − KC. Then, from (11) we have

εγ 2eT(k)HT
KHKe(k) − ε�f T

k �fk ≥ 0, (12)

or

ξT
k

[
εγ 2HT

KHK 0
0 −εIq

]
ξk ≥ 0. (13)

Adding the left-hand side term of (13) to the right-hand side term of (9) yields

�Vk ≤ ξT
k Πξk, (14)

where

Π =
[
ĀTP Ā − P + εγ 2HT

KHK ĀTPB

∗ BTPB − εIq

]
.

By applying the Schur complement (see, e.g., Boyd et al. [6]), Π < 0 is equivalent to⎡
⎢⎢⎢⎣

−P ĀTPB ĀTP HT
K∗ BTPB − εIq 0 0

∗ ∗ −P 0

∗ ∗ ∗ − Iq

εγ 2

⎤
⎥⎥⎥⎦ < 0. (15)

Using the notation R = LTP , inequality (15) leads to (7). Therefore, if condition
(7) is satisfied, we have Π < 0, and then it follows from (14) that �Vk < 0 for all
e(k) 	= 0. Consequently, the error dynamics (5) is asymptotically stable according
to the standard Lyapunov stability theory. Moreover, if matrix inequality (7) has a
feasible solution (Ps,Rs,Ks), we can obtain the observer gain L = P −1

s RT
s . This

completes the proof. �

Remark 1 Note that the proposed condition (7) is not a strict LMI. However, one can
use the LMI solver to find a feasible solution of (7) through fixing, a priori, the scalar
variable ε.
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Remark 2 Let us consider a special case, i.e., H = I and K = 0. Under this situation,
the observer (3) will be reduced to the usual Luenberger-like observer as studied
in [4], [22], and [28]. In this case, by using the Schur complement, the observer
synthesis condition (7) will be reduced to the following LMI condition:

⎡
⎣−P + εγ 2I ATPB − CTRB ATP − CTR

∗ BTPB − εIq 0
∗ ∗ −P

⎤
⎦ < 0, (16)

which is the main result of Bara et al. [4]. In this sense, our result is an extension
of [4].

In a recent work by Zemouche and Boutayeb [23], the authors also provided a syn-
thesis condition by using a particular Lyapunov function, i.e., V (k) = eT(k)P e(k) +
�f T

k Q�fk , where P > 0 and Q > 0, to analyze the asymptotic stability of the er-
ror dynamics. However, it seems that this treatment cannot reduce the conservative-
ness [28]. On the contrary, we will show that their results are not less conservative
than Theorem 1. For the purpose of comparison, here we list one of the main results
of [23] (i.e., Theorem 2.2 in [23]) as follows.

Proposition 1 (Theorem 2.2 in [23]) The estimation error converges asymptotically
toward zero if there exist scalars α > 0, β > 0, and matrices P > 0, Q > 0, R, and
K of appropriate dimensions such that the following matrix inequalities are feasible:

[ −P (H − KC)T

H − KC − Is

α

]
< 0, (17)

⎡
⎢⎢⎢⎢⎢⎣

− Is

βγ 2 H − KC 0 0 0

∗ −P η(ATPB − CTRB) 0 ATP − CTR

∗ ∗ ηBTPB − Q − βIq 0 0
∗ ∗ ∗ Q − αIq 0
∗ ∗ ∗ ∗ −P

η

⎤
⎥⎥⎥⎥⎥⎦ < 0, (18)

where η = 1 + γ 2. If these inequalities have a feasible solution, the gain matrix L is
then given by L = P −1RT, and the gain matrix K is a solution of (17) and (18).

Compared to those in Proposition 1, the sufficient condition (7) in Theorem 1
is simpler and involves fewer matrix variables. However, in the following we will
show that the proposed condition (7) in Theorem 1 is less conservative than those in
Proposition 1.

Theorem 2 If there exist scalars α > 0, β > 0, and matrices P > 0, Q > 0, R,
and K of appropriate dimensions such that the matrix inequalities (17) and (18)
are satisfied, then the matrices P , R, K and ε = α+β

η
satisfy condition (7), where

η = 1 + γ 2.
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Proof Assume that there exist some scalars α > 0, β > 0, and matrices P > 0, Q >

0, R, and K of appropriate dimensions satisfying the conditions (17) and (18). It then
follows from (18) that Q − αIq < 0 and⎡

⎢⎢⎢⎣
− Is

βγ 2 H − KC 0 0

∗ −P η(ATPB − CTRB) R̃

∗ ∗ ηBTPB − Q − βIq 0
∗ ∗ ∗ −P

η

⎤
⎥⎥⎥⎦ < 0. (19)

Denote L = P −1RT. Using the Schur complement, (19) is equivalent to

Ξ =
[
Ξ11 η(A − LC)TPB

∗ ηBTPB − Q − βIq

]
< 0, (20)

where

Ξ11 = η(A − LC)TP(A − LC) − P + βγ 2HT
KHK.

On the other hand, condition (7) is equivalent to

Υ =
[
Ξ11 ATPB − CTRB

∗ BTPB − εIq

]
< 0. (21)

Let ε = α+β
η

. Then

ηΥ − Ξ =
[
γ 2(−P + αHT

KHK) 0
0 Q − αIq

]
< 0. (22)

Therefore, we have Υ < 0, i.e., condition (7) is satisfied, which completes the
proof. �

3 H∞ Synchronization and Unknown Input Recovery

In this section, we will extend the observer design method in the previous section to
a nonlinear system with unknown inputs. In general, the simultaneous state and input
estimation for a class of nonlinear systems is still a challenging problem [9]. We
revisit this problem in the background of H∞ synchronization and unknown input
recovery for chaotic communication systems. Further details on this topic can be
found in [5, 23].

As studied in [23], in this section we consider the nonlinear model described by{
x(k + 1) = Ax(k) + Ass(k) + Eωω(k) + Bf (Hxx(k),Hss(k)),

y(k) = Cx(k) + Ds(k) + Dωω(k)
(23)

where x(k) ∈ R
n is the state vector, s(k) ∈ R

m denotes the information to be esti-
mated, y(k) ∈ R

p is the received signal, and w(k) ∈ �r
2 is the vector of bounded dis-

turbances. A, As , B , C, D, Hx , Hs , Eω, and Dω are constant matrices of appropriate
dimensions.
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The nonlinear function f : R
d1 × R

d2 → R
q is assumed to be Lipschitz, i.e.,

∥∥f (v,w) − f (v̂, ŵ)
∥∥ ≤ κf

∥∥∥∥
[

v − v̂

w − ŵ

]∥∥∥∥, ∀v,w, v̂, ŵ, (24)

where κf > 0 is the Lipschitz constant. The matrix D is assumed to be of full column
rank. To simplify the presentation, we use the following notation:

E = [
In 0n×m

]
, M = [

A As

]
, (25)

H = [
C D

]
, Hx,s =

[
Hx 0
0 Hs

]
, ς =

[
x

s

]
. (26)

Since D is of full column rank, the following matrix:

[
E

H

]T [
E

H

]
(27)

is nonsingular. Thus, if we define

[
S T

] =
([

E

H

]T [
E

H

])−1 [
E

H

]T

(28)

where S and T are two real matrices of (n + m) × n and (n + m) × p, respectively,
from (28) we have

SE + T H = In+m. (29)

For system (23) with the unknown input s(k), we can design a state observer as
follows: ⎧⎨

⎩
z(k + 1) = Nz(k) + Ly(k) + SBf (v(k)),

v(k) = Hx,s ς̂(k) + K(y(k) − Hς̂(k)),

ς̂(k) = z(k) + Ty(k)

(30)

where

ς̂ (k) =
[
x̂(k)

ŝ(k)

]
. (31)

Note that the above observer holds the same form as that proposed in Zemouche and
Boutayeb [23]. Now, let us consider the estimation error

ε(k) = ς̂ (k) − ς(k). (32)

Then, we have

ε(k) = z(k) − SEς(k) + T Dωω(k). (33)
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The dynamics of the estimation error is then given by

ε(k + 1) = Nε(k) + (N + FH − SM)ς(k) + SBδfk + (FDω − SEω)ω(k)

+ T Dωω(k + 1), (34)

where

δfk = f
(
v(k)

) − f
(
Hx,sς(k)

)
, F = L − NT. (35)

By setting

N = SM − FH, (36)

the error dynamics can be rewritten as follows:

ε(k + 1) = (SM − FH)ε(k) + SBδfk + (Ēω + FD̄ω)ω̄(k), (37)

where

Ēω = [−SEω T Dω

]
, D̄ω = [

Dω 0
]
, (38)

ω̄(k) =
[

ω(k)

ω(k + 1)

]
. (39)

Thus, our design goal is to find some appropriate matrices L, N , and K such that the
estimation error converges H∞ asymptotically to zero, i.e.,

‖ε‖�n+m
2

≤ λ‖ω‖�r
2
, (40)

where λ > 0 is the prescribed disturbance attenuation level. Without loss of gener-
ality, we assume that the disturbances ω(0) = 0 [23]. Then the above inequality is
equivalent to

‖ε‖�n+m
2

≤ λ√
2
‖ω̄‖�2r

2
. (41)

Consequently, the above observer design problem is equivalent to the follow-
ing H∞ filtering design problem: Given the system (23) and the observer (30), the
H∞ filtering design problem is to determine the matrices N , L, and K so that
limk→∞ ε(k) = 0 for ω(k) = 0, and

‖ε‖�n+m
2

≤ λ√
2
‖ω̄‖�2r

2
∀ω(k) 	= 0; ε(0) = 0. (42)

According to [23], the H∞ filtering design problem is reduced to finding a Lya-
punov function Vk such that

Wk = �Vk + εT(k)ε(k) − λ2

2
ω̄T(k)ω̄(k) < 0, (43)

where

�Vk = Vk+1 − Vk. (44)
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Theorem 3 For a prescribed λ > 0, the H∞ filtering design problem corresponding
to the systems (23) and the observer (30) is solvable, with the H∞ performances less
than λ, if there exist a scalar α > 0 and matrices P > 0, R, and K of appropriate
dimensions such that the following matrix inequality is feasible:

⎡
⎢⎢⎢⎢⎢⎣

−P + In+m M̄TB̃ 0 M̄T HT
K

∗ B̃TP B̃ − αIq B̃TF̄ 0 0

∗ ∗ −λ2

2 I2r F̄ T KT
ω

∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ − 1

ακ2
f

Id1+d2

⎤
⎥⎥⎥⎥⎥⎦ < 0, (45)

where B̃ = SB , HK = Hx,s − KH , Kω = KD̄ω, and

F̄ = P Ēω + RTD̄ω, (46)

M̄ = PSM − RTH. (47)

If (45) admits a solution, then the matrix F is given by F = P −1RT. The matrices N

and L can be deduced from (35) and (36), and the gain K is a direct solution of (45).

Proof Let the Lyapunov function candidate be given as Vk = εT(k)P ε(k). Then,
from (37) we obtain

Wk = χTΩ1χ (48)

where

Ω1 =
⎡
⎢⎣M̃TPM̃ − P + In+m M̃TP B̃ M̃TP F̃

∗ B̃TP B̃ B̃TP F̃

∗ ∗ F̃ TP F̃ − λ2

2 I2r

⎤
⎥⎦ , (49)

with M̃ = SM − FH , F̃ = Ēω + FD̄ω , B̃ = SB , and

χ =
⎡
⎣ε(k)

δfk

ω̄(k)

⎤
⎦ . (50)

Now, let us consider the Lipschitz condition (24). For arbitrary scalar α > 0, the
following inequality holds:

ακ2
f (vk − Hx,sξk)

T(vk − Hx,sξk) − αδf T
k δfk ≥ 0, (51)

where

vk − Hx,sξk = (Hx,s − KH)εk + KD̄ωω̄k = HKεk + Kωω̄k.

Note that the inequality (51) is equivalent to

αχTΩ2χ ≥ 0 (52)
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where

Ω2 =
⎡
⎣ ακ2

f HT
KHK 0 ακ2

f HT
KKω

∗ −αIq 0
∗ ∗ ακ2

f KT
ωKω

⎤
⎦ . (53)

By adding the left-hand side term of (52) to the right-hand side term of (48), we get

Wk ≤ χTΩχ, (54)

where

Ω = Ω1 + Ω2. (55)

Applying the Schur complement and using the notation R = F TP , we can show
the equivalence between Ω < 0 and (45). Consequently, the estimation error vec-
tor converges H∞ asymptotically toward zero with disturbance attenuation level less
than λ, i.e.,

‖ε‖�n+m
2

≤ λ√
2
‖ω̄‖�2r

2
. (56)

From the equivalence between (41) and (40), we have

‖ε‖�n+m
2

≤ λ‖ω‖�r
2
, (57)

which completes the proof. �

Remark 3 Comparing the above Theorem 3 with the corresponding results in Ze-
mouche and Boutayeb [23], we easily find that the condition (45) involves fewer ma-
trix variables. In this sense, our result is simpler than that in [23]. On the other hand,
the simulation example below illustrates that Theorem 3 may be less conservative
than Zemouche and Boutayeb’s result.

4 Simulation Example

In this section, we use an example to illustrate the effectiveness of our results. For
convenience, we borrow the example given in [23]. Let us consider the discrete-time
version of Rössler’s chaotic system (see Fig. 1), obtained from the Euler discretiza-
tion method with a sampling time h = 0.01. The parameters of the system, after
adding an information signal s(k) as in (23), are given by

A =
⎡
⎣1 −h −h

h 1 + ha 0
0 0 1 − hc

⎤
⎦ , As = h

⎡
⎣1

2
0

⎤
⎦ , B =

⎡
⎣0

0
1

⎤
⎦ , (58)

C = [
0 1 0

]
, D = 1, Hx =

[
1 0 0
0 0 1

]
, Hs = 1, (59)
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Fig. 1 The Rössler attractor
with a = b = 0.1 and c = 22

f (Hxx,Hss) = h(x1x3 + x1s + b), (60)

where a = 0.1, b = 0.1, and c = 22, for which the system exhibits a chaotic behavior.
Notice that here the parameter values are different from those in [23]. Assume that
only the transmitted signal is corrupted by noise, i.e., Eω = 0. Moreover, we set
Dω = 1. Note that, from the definition (28), matrices S and T can be deduced as
follows:

S =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 −1 0

⎤
⎥⎥⎦ , T =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ . (61)

From [23], we know the Lipschitz constant κf = 0.045 by extending the nonlinear
term f to a globally Lipschitz function on R

3. If we set the value of α with α = 100,
the condition (45) will become an LMI. By solving this LMI, one can obtain the
following solutions:

P =

⎡
⎢⎢⎣

389.3 −344.5 6.1 7.0
−344.5 1262.0 0 324.3

6.1 0 28.1 2.5
7.0 324.3 2.5 340.9

⎤
⎥⎥⎦ , RT =

⎡
⎢⎢⎣

−6.8868
21.3710
−1.4622
−0.6933

⎤
⎥⎥⎦ , (62)

K =
⎡
⎣ 0.0019

−0.0687
0.7102

⎤
⎦ , (63)

and the optimal value of the disturbance attenuation level is λ = 40.9125.
For simulation, the information to be encrypted and recovered is assumed to be

of the form s(k) = sin(100hk). Assume that the disturbance ω(·) is a Gaussian dis-
tributed random signal with mean zero and standard deviation σ = 0.01. Figures 2
and 3 show the synchronization error and decryption error with respect to k, respec-
tively. The simulation results verify the effectiveness of the proposed design.

Similarly, the proposed design technique can be applied to image transmission
by using a picture as the unknown input information. Moreover, the observer design
approach in this article may have some potential applications in H∞ filtering for
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Fig. 2 Simulation results for
synchronization error
x(k) − x̂(k) with σ = 0.01

Fig. 3 Simulation results for
decryption error s(k) − ŝ(k)

with σ = 0.01

discrete-time singular systems (see, e.g., Lu et al. [12]), observer-based control of
time-delay systems [24], and the H∞ control of active suspension systems (see, e.g.,
Sun et al. [18]).

5 Conclusions

We have addressed the synchronization and input recovery problem for a class of
discrete-time Lipschitz systems by using a nonlinear observer design approach. First,
sufficient conditions for the existence of observers with a generalized structure have
been provided and formulated in terms of LMIs. The proposed conditions are simpler
but less conservative than those in Zemouche and Boutayeb [23], which can be es-
tablished theoretically. Moreover, the observer design method is applied to deal with
H∞ chaos synchronization and unknown input recovery for discrete-time Lipschitz
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nonlinear systems. Finally, the effectiveness and advantages of the proposed design
are illustrated via a numerical example.
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