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Abstract This paper is concerned with the problem of delay-dependent stability
analysis for a class of two-dimensional (2D) discrete switched systems described
by the Roesser model with state delays. First, the concept of average dwell time is
extended to 2D switched systems with state delays. Then, based on the average dwell
time approach, a delay-dependent sufficient condition for the exponential stability of
the addressed systems is derived. All the results are formulated in terms of linear
matrix inequalities (LMIs), which can be solved efficiently. A numerical example is
given to illustrate the effectiveness of the proposed method.

Keywords 2D systems · Switched systems · State delays · Exponential stability ·
Average dwell time · Linear matrix inequality (LMI)

1 Introduction

Two-dimensional (2D) systems are gaining momentum because of their broad appli-
cations in many areas such as multidimensional digital filtering, linear image pro-
cessing, signal processing, and process control [8, 14, 18]. The stability analysis of
2D systems has attracted a great deal of interest, and some significant results have
been obtained in [1, 10, 19, 36].

It is known that time delays frequently occur in practical systems and are often
the source of instability, so it is of significance to study time-delay systems. Re-
cently, many useful results on such systems have appeared. The resulting criteria

S. Huang · Z. Xiang (�)
School of Automation, Nanjing University of Science and Technology, Nanjing 210094, People’s
Republic of China
e-mail: xiangzr@mail.njust.edu.cn

S. Huang
e-mail: hspei@sina.cn

mailto:xiangzr@mail.njust.edu.cn
mailto:hspei@sina.cn


2822 Circuits Syst Signal Process (2013) 32:2821–2837

can be classified into two categories: delay-independent and delay-dependent. Since
delay-dependent criteria make use of information on the length of delays, they are
less conservative than delay-independent ones. Recently, the free-weighting matrix
approach [11] was employed to investigate the output feedback control of a linear
discrete-time system with an interval time-varying delay. A new model transforma-
tion was analyzed and applied for the stability analysis of uncertain discrete-time
systems with a time-varying delay in the state in [16]. In [24], a new delay-interval
stability condition was established for systems with time delay varying in an interval.
The stability problems of neural networks with time delays were investigated in [17,
38]. For 2D systems, some delay-independent stability results have appeared in [21,
32–34]. The issues of stability analysis, H∞ control, and filtering for 2D discrete sys-
tems with constant delays have been investigated in [20, 22, 35]. Some results on the
delay-dependent stability and stabilization of 2D discrete systems with time-varying
delays have also been reported in the literature [6, 7, 9, 37].

On the other hand, switched systems have received considerable attention over
the past several decades due to their extensive applications in, e.g., mechanical sys-
tems, the automotive industry, aircraft and air traffic control, and switched power
converters. A switched system is a hybrid system consisting of a finite number of
continuous-time or discrete-time subsystems and a switching signal specifying the
switch between these subsystems. Several methods have been developed to study
switched systems, such as the common Lyapunov function approach, the single Lya-
punov function method, the average dwell time (ADT) scheme, and the multiple Lya-
punov function method. In particular, the ADT method has been proven to be a more
powerful and effective tool for stability analysis and stabilization of switched sys-
tems; see, for example, [5, 12, 13, 15, 25–29, 31, 39] and references cited therein.

Recently, there are a few reports on 2D discrete switched systems. Benzaouia et
al. [2] first considered 2D switched systems with arbitrary switched sequences, and
the stabilization problem of 2D discrete switched systems was investigated in [3];
a sufficient condition for the asymptotic stability of such systems was proposed and
a stabilizing controller was developed in terms of linear matrix inequalities (LMIs).
It should be noted that these papers focus on studying the asymptotic stability of the
2D switched systems, and the obtained results are based on common and multiple
Lyapunov function approaches. In [30], the authors extended the concept of ADT in
switched systems to 2D delay-free switched systems, and then designed a switching
rule to guarantee the exponential stability of delay-free 2D switched systems. How-
ever, to the best of our knowledge, the problem of stability for 2D switched systems
with state delays has not been investigated to date, especially for the exponential
stability problem of 2D switched systems with state delays. Moreover, the method
proposed in [30] cannot be directly applied to 2D switched systems with state delays.
This motivates us to shorten this gap in the present investigation.

In this paper, we are interested in investigating the stability of 2D discrete switched
systems represented by the Roesser model with state delays. The ADT approach is
utilized for the stability analysis. The main contributions of this paper can be sum-
marized as follows: (i) the concept of ADT is further extended to 2D switched sys-
tems with state delays, and a new Lyapunov–Krasovskii functional is constructed to
investigate the stability of the system under consideration and a delay-dependent sta-
bility criterion is obtained; (ii) the exponential stability, which guarantees a decay
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rate where asymptotic stability does not, is first established for 2D switched systems
with state delays, and the corresponding stability result is different from the asymp-
totical stability results presented in [7, 9]; (iii) all the results are formulated in terms
of LMIs, which can be solved efficiently.

This paper is organized as follows. In Sect. 2, the problem formulation and some
necessary lemmas are given. In Sect. 3, based on the ADT approach, the exponential
stability problem of 2D discrete switched systems with state delays is addressed, and
a delay-dependent sufficient condition for the existence of the exponential stability is
derived in terms of a set of LMIs. A numerical example is provided to illustrate the
effectiveness of the proposed approach in Sect. 4. The concluding remarks are given
in Sect. 5.

Notation Throughout this paper, the superscript “T ” denotes the transpose, and the
notation X ≥ Y (X > Y ) means that matrix X − Y is positive semidefinite (positive
definite, respectively). ‖ · ‖ denotes the Euclidean norm. I represents the identity
matrix with an appropriate dimension. Ih is the identity matrix with n1 dimension
and Iv is the identity matrix with n2 dimension. The asterisk ∗ in a matrix is used to
denote the term that is induced by symmetry. The set of all nonnegative integers is
represented by Z+.

2 Problem Formulation and Preliminaries

Consider the following 2D discrete linear switched systems with state delays:

[
xh(i + 1, j)

xv(i, j + 1)

]
= Aσ(i,j)

[
xh(i, j)

xv(i, j)

]
+ A

σ(i,j)
d

[
xh(i − dh(i), j)

xv(i, j − dv(j))

]
(1)

where xh(i, j) is the horizontal state in Rn1 , xv(i, j) is the vertical state in Rn2 , and
x(i, j) is the whole state in Rn with n = n1 + n2. σ(i, j) is a switching rule which
takes its values in the finite set N := {1, . . . ,N}, N is the number of subsystems, and
i and j are integers in Z+. σ(i, j) = k ∈ N means that the kth subsystem is active.
The matrices

Ak =
[

Ak
11 Ak

12

Ak
21 Ak

22

]
, Ak

d =
[

Ak
d11 Ak

d12

Ak
d21 Ak

d22

]
, k ∈ N (2)

where matrices Ak
11 ∈ Rn1×n1 , Ak

12 ∈ Rn1×n2 , Ak
21 ∈ Rn2×n1 , Ak

22 ∈ Rn2×n2 , Ak
d11 ∈

Rn1×n1 , Ak
d12 ∈ Rn1×n2 , Ak

d21 ∈ Rn2×n1 , Ak
d22 ∈ Rn2×n2 are constant matrices. dh(i)

and dv(j) are delays along the horizontal and vertical directions, respectively. We
assume that dh(i) and dv(j) satisfy

dhL ≤ dh(i) ≤ dhH , dvL ≤ dv(j) ≤ dvH (3)
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where dhL, dhH , dvL, and dvH denote the lower and upper delay bounds along the
horizontal and vertical directions, respectively. The boundary conditions are given by

xh(i, j) = hij , ∀0 ≤ j ≤ z1, −dhH ≤ i ≤ 0,

xh(i, j) = 0, ∀j > z1, −dhH ≤ i ≤ 0,

xv(i, j) = vij , ∀0 ≤ i ≤ z2, −dvH ≤ j ≤ 0,

xv(i, j) = 0, ∀i > z2, −dvH ≤ j ≤ 0,

(4)

where z1 < ∞ and z2 < ∞ are positive integers, and hij and vij are given vectors.
In the paper, it is assumed that the switch occurs only at each sampling point of i

or j , and the switch sequence can be described as(
(i0, j0), σ (i0, j0)

)
,

(
(i1, j1), σ (i1, j1)

)
, . . . ,

(
(iκ , jκ), σ (iκ , jκ)

)
, . . . (5)

where (iκ , jκ) denotes the κ th switching instant. It should be noted that the value of
σ(i, j) is only dependent on the value of i + j (see [3, 30]).

Remark 1 If there is only one subsystem in system (1), it will degenerate to the
following 2D discrete systems with state delays:[

xh(i + 1, j)

xv(i, j + 1)

]
= A

[
xh(i, j)

xv(i, j)

]
+ Ad

[
xh(i − dh(i), j)

xv(i, j − dv(j))

]
.

Definition 1 System (1) is said to be exponentially stable under σ(i, j) if for a given
z ≥ 0, there exist positive constants c and ξ , such that

∑
i+j=D

∥∥x(i, j)
∥∥2 ≤ ξe−c(D−z)

∑
i+j=z

∥∥x(i, j)
∥∥2

C
(6)

holds for all D ≥ z, where
∑

i+j=z

∥∥x(i, j)
∥∥2

C

�= sup
−dhH ≤θh≤0,
−dvH ≤θv≤0

∑
i+j=z

{∥∥xh(i − θh, j)
∥∥2 + ∥∥xv(i, j − θv)

∥∥2
,

∥∥δh(i − θh, j)
∥∥2 + ∥∥δv(i, j − θv)

∥∥2}
,

δh(i − θh, j) = xh(i − θh + 1, j) − xh(i − θh, j),

δv(i, j − θv) = xv(i, j − θv + 1) − xv(i, j − θv)

Remark 2 From Definition 1, it is easy to see that when z is given,
∑

i+j=z ‖x(i, j)‖2
C

will be bounded and
∑

i+j=D ‖x(i, j)‖2 will tend to be zero exponentially as D goes
to infinity, which also means ‖x(i, j)‖ tends to be zero.

Definition 2 [30] For any i + j = D ≥ z = iz + jz, let Nσ(i,j)(z,D) denote the
switching number of σ(i, j) on an interval [z,D). If

Nσ(i,j)(z,D) ≤ N0 + D − z

τa

(7)
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holds for given N0 ≥ 0 and τa ≥ 0, then the constant τa is called the average dwell
time and N0 is the chatter bound.

Lemma 1 [4] For a given matrix S = [ S11 S12

ST
12 S22

]
, where S11 and S22 are square matri-

ces, the following conditions are equivalent:

(i) S < 0;
(ii) S11 < 0, S22 − ST

12S
−1
11 S12 < 0;

(iii) S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

Lemma 2 [23] For any vector φ(t) ∈ Rn, two positive integers ω1 and ω2, and matrix
0 < G ∈ Rn×n, the following inequality holds:

−(ω2 − ω1 + 1)

ω2∑
t=ω1

φT (t)Gφ(t) ≤ −
[

ω2∑
t=ω1

φT (t)

]
G

[
ω2∑

t=ω1

φ(t)

]
.

3 Main Results

In this subsection, we focus on the problem of stability analysis for 2D discrete
switched system (1). The following theorem presents a delay-dependent sufficient
condition for system (1) to be exponentially stable.

Theorem 1 Consider system (1), for given positive scalars dhL, dhH , dvL, dvH and
α < 1, if there exist positive definite symmetric matrices

P k =
[
P k

h 0
0 P k

v

]
, Qk =

[
Qk

h 0
0 Qk

v

]
, Wk =

[
Wk

h 0
0 Wk

v

]
,

Rk =
[

Rk
h 0

0 Rk
v

]
, Rk

h =
[

Rk
1h Rk

2h

Rk
2h

T Rk
3h

]
, and Rk

v =
[

Rk
1v Rk

2v

Rk
2v

T Rk
3v

]

with appropriate dimensions, k ∈ N , such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Λ3Rk
2Ak

d
Λ2Rk

3 −Λ2Rk
2 AkT (P k + Qk) (AkT − In)Rk

3

∗ −Λ2Qk 0 0 AkT
d

(P k + Qk) AkT
d

Rk
3

∗ ∗ −Λ2(Rk
3 + Wk) Λ2Rk

2 0 0

∗ ∗ ∗ −Λ2Rk
1 0 0

∗ ∗ ∗ ∗ −Pk − Qk 0
∗ ∗ ∗ ∗ ∗ −Λ−1

3 Rk
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(8)
where

Λ1 = diag
{
(dhH − dhL)Ih, (dvH − dvL)Iv

}
,

Λ2 = diag
{
α1+dhH Ih,α

1+dvH Iv

}
, Λ3 = diag

{
αd2

dH Ih,αd2
vH Iv

}
,
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Φ11 = Λ3R
k
1 − Λ2R

k
3 + α

(−P k + Wk + Λ1Q
k
)

+ Λ3R
k
2

(
Ak − In

) + (
Ak − In

)T
RkT

2 Λ3,

Rk
1 = diag

{
Rk

1h,R
k
1v

}
, Rk

2 = diag
{
Rk

2h,R
k
2v

}
, Rk

3 = diag
{
Rk

3h,R
k
3v

}
,

holds. Then system (1) is exponentially stable for any switching signal with ADT
satisfying

τa > τ ∗
a = lnχ

− lnα
(9)

where χ ≥ 1 satisfies

P k ≤ χP l, Qk ≤ χQl, Wk ≤ χWl, Rk ≤ χRl, ∀k, l ∈ N. (10)

Proof See the Appendix for the detailed proof. �

Remark 3 In Theorem 1, we propose a delay-dependent sufficient condition for the
existence of the exponential stability for 2D discrete switched system (1). Note that
this condition is obtained by using the ADT approach, and the parameter α plays a
key role in obtaining τ ∗

a .

Remark 4 It is easy to see that a larger α will be favorable for the feasibility of matrix
inequality (8), while a smaller α is more expected to decrease τ ∗

a . Thus we can first
choose a smaller α; then by increasing the parameter α appropriately, we can find the
feasible solution of P k , Qk , Wk , and Rksuch that (8) holds, and τ ∗

a can be obtained
from (9) and (10).

Remark 5 Note that when χ = 1 in (9), the inequalities in (10) become P k = P l ,
Qk = Ql , Wk = Wl , and Rk = Rl , ∀k, l ∈ N . In this case, we have τa > τ ∗

a = 0,
which means that the switching signal can be arbitrary.

When dhH = dhL = dh and dvH = dvL = dv , system (1) generates to the following
system:

[
xh(i + 1, j)

xv(i, j + 1)

]
= Aσ(i,j)

[
xh(i, j)

xv(i, j)

]
+ A

σ(i,j)
d

[
xh(i − dh, j)

xv(i, j − dv)

]
, (11)

where dh and dv are constant delays along the horizontal and vertical directions,
respectively. The boundary conditions are defined in (4). Then we have the following
result.

Corollary 1 Consider system (11), for given positive constants dh, dv and α < 1, if
there exist positive definite symmetric matrices

P k =
[
P k

h 0
0 P k

v

]
, Wk =

[
Wk

h 0
0 Wk

v

]
, Rk =

[
Rk

h 0
0 Rk

v

]
,
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Rk
h =

[
Rk

1h Rk
2h

Rk
2h

T Rk
3h

]
, and Rk

v =
[

Rk
1v Rk

2v

Rk
2v

T Rk
3v

]

with appropriate dimensions, k ∈ N , such that

⎡
⎢⎢⎢⎢⎢⎣

Θ11 Λ̄3R
k
2Ak

d + Λ̄2R
k
3 −Λ̄2R

k
2 AkT P k (AkT − In)R

k
3

∗ −Λ̄2(R
k
3 + Wk) Λ̄2R

k
2 AkT

d P k AkT
d Rk

3

∗ ∗ −Λ̄2R
k
1 0 0

∗ ∗ ∗ −P k 0
∗ ∗ ∗ ∗ −Λ̄−1

3 Rk
3

⎤
⎥⎥⎥⎥⎥⎦

< 0, (12)

where

Θ11 = Λ̄3R
k
1 − Λ̄2R

k
3 + α

(−P k + Wk
) + Λ̄3R

k
2

(
Ak − In

) + (
Ak − In

)T
RkT

2 Λ̄3,

Λ̄2 = diag
{
α1+dhIh,α

1+dv Iv

}
, Λ̄3 = diag

{
αd2

hIh,αd2
v Iv

}
holds. Then system (11) is exponentially stable for any switching signal with ADT
satisfying (9), where χ ≥ 1 satisfies

P k ≤ χP l, Wk ≤ χWl, Rk ≤ χRl, ∀k, l ∈ N. (13)

Proof Following the proof line of Theorem 1, the corollary can be obtained. �

Remark 6 It should be noted that when dh(i) = 0 and dv(j) = 0 in system (1), the
stability result presented in Theorem 1 will reduce to the result of Theorem 1 pro-
posed in [30].

4 Numerical Example

In this section, we present an example to illustrate the effectiveness of the proposed
approach. Consider system (1) with parameters as follows:

A1 =
⎡
⎣ 0.8 −0.6 0.018

0.15 0.04 0
0.025 0 0.12

⎤
⎦ , A1

d =
⎡
⎣ 0.12 0 0.06

0.12 0.03 0
0.035 0.15 0.04

⎤
⎦ ,

A2 =
⎡
⎣ 0.9 −0.5 0.02

0.1 0.3 0
0.02 0 0.09

⎤
⎦ , A2

d =
⎡
⎣ 0.1 0 0.05

0.1 0.02 0
0.03 0.12 0.03

⎤
⎦ ,

dh(i) = 3 + sin

(
πi

2

)
, dv(j) = 4 + sin

(
πj

2

)
,

where the state dimensions are n1 = 2 and n2 = 1.
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From the example, it is easy to get that the lower and upper delay bounds along
the horizontal and the vertical directions are given by dhL = 2, dhH = 4, dvL = 3, and
dvH = 5. By using the LMI Toolbox to solve Theorem 1, we find that the condition
(8) holds when α is chosen in the interval [0.819,1). That is, the stability of the given
system can be verified by applying the method proposed in the paper.

Taking α = 0.85, the following solution is obtained:

P 1 =
⎡
⎣ 0.1829 −0.1428 0

−0.1428 0.1985 0
0 0 0.0919

⎤
⎦ , Q1 =

⎡
⎣ 0.0124 −0.0019 0

−0.0019 0.0184 0
0 0 0.0245

⎤
⎦ ,

P 2 =
⎡
⎣ 0.209 −0.1859 0

−0.1859 0.221 0
0 0 0.0715

⎤
⎦ , Q2 =

⎡
⎣ 0.0067 −0.0025 0

−0.0025 0.0101 0
0 0 0.0224

⎤
⎦ ,

W1 =
⎡
⎣ 0.0058 −0.0081 0

−0.0081 0.0214 0
0 0 0.0126

⎤
⎦ , W2 =

⎡
⎣ 0.0029 −0.0046 0

−0.0046 0.0101 0
0 0 0.0224

⎤
⎦ ,

R1
h =

⎡
⎢⎢⎣

0.0038 −0.0053 0.0070 −0.0088
−0.0053 0.0096 −0.0054 0.0107
0.0070 −0.0054 0.0260 −0.0220

−0.0088 0.0107 −0.0220 0.0240

⎤
⎥⎥⎦ , R1

v =
[

0.0016 0.0016
0.0016 0.0024

]
,

R2
h =

⎡
⎢⎢⎣

0.0013 −0.0017 0.0046 −0.0056
−0.0017 0.0028 −0.0043 0.0065
0.0046 −0.0043 0.0297 −0.274

−0.0056 0.0065 −0.274 0.0301

⎤
⎥⎥⎦ , R2

v =
[

0.0007 0.0007
0.0007 0.0012

]
.

Furthermore, by (9) and (10), we get χ = 8.4841 and τ ∗
a = 13.16. Therefore, accord-

ing to Theorem 1, we obtain that under the ADT scheme τa > 13.16, the given system
is exponentially stable.

Fig. 1 The response of state
xh

1 (i, j)
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Fig. 2 The response of state
xh

2 (i, j)

Fig. 3 The response of state
xv(i, j)

Fig. 4 Switching signal
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The simulation results are shown in Figs. 1, 2, 3 and 4 under arbitrary (randomly
generated) boundary conditions. Figures 1, 2 and 3 plot the responses of three states,
xh

1 (i, j), xh
2 (i, j), and xv(i, j), and Fig. 4 depicts the switching signal with ADT

satisfying τa = 14. From the simulation results, it can be observed that the proposed
method is effective.

5 Conclusions

This paper has investigated the problem of stability analysis for a class of 2D dis-
crete switched systems represented by the Roesser model with state delays. A delay-
dependent sufficient condition for the exponential stability of the system under con-
sideration has been derived in terms of LMIs via the average dwell-time approach.
An example is also given to illustrate the applicability of the proposed approach.

Acknowledgements This work was supported by the National Natural Science Foundation of China
under Grant No. 61273120.

Appendix: The proof of Theorem 1

Proof Without loss of generality, we assume that the kth subsystem is active. We con-
sider the following Lyapunov–Krasovskii functional candidate for the kth subsystem:

Vk

(
x(i, j)

) = V h
k

(
xh(i, j)

) + V v
k

(
xv(i, j)

)
, (14)

where

V h
k

(
xh(i, j)

) =
5∑

g=1

V h
gk

(
xh(i, j)

)
, V v

k

(
xv(i, j)

) =
5∑

g=1

V v
gk

(
xv(i, j)

)
,

V h
1k

(
xh(i, j)

) = xh(i, j)T P k
h xh(i, j),

V h
2k

(
xh(i, j)

) =
i∑

r=i−dh(i)

xh(r, j)T Qk
hx

h(r, j)αi−r ,

V h
3k

(
xh(i, j)

) =
i−1∑

r=i−dhH

xh(r, j)T Wk
hxh(r, j)αi−r ,

V h
4k

(
xh(i, j)

) =
−dhL∑

s=−dhH +1

i−1∑
r=i+s

xh(r, j)T Qk
hx

h(r, j)αi−r ,

V h
5k

(
xh(i, j)

) = dhH

−1∑
s=−dhH

i−1∑
r=i+s

ηh(r, j)T Rk
hη

h(r, j)αi−r ,
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V v
1k

(
xv(i, j)

) = xv(i, j)T P k
v xv(i, j),

V v
2k

(
xv(i, j)

) =
j∑

t=j−dv(j)

xv(i, s)T Qk
vx

v(i, s)αj−t ,

V v
3k

(
xv(i, j)

) =
j−1∑

t=j−dvH

xv(i, t)T Wk
v xv(i, t)αj−t ,

V v
4k

(
xv(i, j)

) =
−dvL∑

s=−dvH +1

j−1∑
t=j+s

xv(i, t)T Qk
vx

v(i, t)αj−t ,

V v
5k

(
xv(i, j)

) = dvH

−1∑
s=−dvH

j−1∑
t=j+s

ηv(i, t)T Rk
vη

v(i, t)αj−t ,

ηh(r, j) = [
xh(r, j)T δh(r, j)T

]T
, ηv(i, t) = [

xv(i, t)T δv(i, t)T
]T

,

δh(r, j) = xh(r + 1, j) − xh(r, j), δv(i, t) = xv(i, t + 1) − xv(i, t),

where

P k
h > 0, P k

v > 0, Qk
h > 0, Qk

v > 0, Wk
h > 0, Wk

v > 0,

Wk
h > 0, Rk

h =
[

Rk
1h Rk

2h

RkT
2h Rk

3h

]
> 0, and Rk

v =
[

Rk
1v Rk

2v

RkT
2v Rk

3v

]
> 0

are real matrices to be determined.
Then we have

V h
1k

(
xh(i + 1, j)

) − αV h
1k

(
xh(i, j)

)
= xh(i + 1, j)T P k

h xh(i + 1, j) − αxh(i, j)T P k
h xh(i, j), (15)

V h
2k

(
xh(i + 1, j)

) − αV h
2k

(
xh(i, j)

)
≤ xh(i + 1, j)T Qk

hx
h(i + 1, j) − α1+dhH xh

(
i − dh(i), j

)T
Qk

hx
h
(
i − dh(i), j

)

+
i−dhL∑

r=i+1−dhH

xh(r, j)T Qk
hx

h(r, j)αi+1−r , (16)

V h
3k

(
xh(i + 1, j)

) − αV h
3k

(
xh(i, j)

)
= αxh(i, j)T Wk

hxh(i, j) − α1+dhH xh(i − dhH , j)T Wk
hxh(i − dhH , j), (17)
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V h
4k

(
xh(i + 1, j)

) − αV h
4k

(
xh(i, j)

)
= α(dhH − dhL)xh(i, j)T Qk

hx
h(i, j)

−
i−dhL∑

r=i+1−dhH

xh(r, j)T Qk
hx

h(r, j)αi+1−r , (18)

V h
5k

(
xh(i + 1, j)

) − αV h
5k

(
xh(i, j)

)
= αd2

hH ηh(i, j)T Rk
hη

h(i, j) − dhH αdhH +1

×
i−1∑

r=i−dhH

ηh(r, j)T Rk
hη

h(r, j), (19)

V v
1k

(
xv(i, j + 1)

) − αV h
1k

(
xv(i, j)

)
= xv(i, j + 1)T P k

v xv(i, j + 1) − αxv(i, j)T P k
v xv(i, j), (20)

V v
2k

(
xv(i, j + 1)

) − αV v
2k

(
xv(i, j)

)
≤ xv(i, j + 1)T Qk

vx
v(i, j + 1) − α1+dvH xv

(
i, j − dv(j)

)T
Qk

vx
v
(
i, j − dv(j)

)

+
j−dvL∑

t=j+1−dvH

xv(i, t)T Qk
vx

v(i, t)αj+1−t , (21)

V v
3k

(
xv(i, j + 1)

) − αV v
3k

(
xv(i, j)

)
= αxv(i, j)T Wk

v xv(i, j) − αdvH +1xv(i, j − dvH )T Wk
v xv(i, j − dvH ), (22)

V v
4k

(
xv(i, j + 1)

) − αV v
4k

(
xv(i, j)

)
= α(dvH − dvL)xv(i, j)T Qk

vx
v(i, j)

−
j−dvL∑

t=j−dvH +1

xv(i, t)T Qk
vx

v(i, t)αj−t+1, (23)

V v
5k

(
xv(i, j + 1)

) − αV v
5k

(
xv(i, j)

)
= αd2

vH ηv(i, j)T Rk
vη

v(i, j) − dvH αdvH +1

×
j−1∑

t=j−dvH

ηv(i, t)T Rk
vη

v(i, t). (24)
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By Lemma 2, it can be obtained from (19) and (24) that

V h
5k

(
xh(i + 1, j)

) − αV h
5k

(
xh(i, j)

)
≤ αd2

hH ηh(i, j)T Rk
hη

h(i, j) − αdhH +1

×
(

i−1∑
r=i−dhH

ηh(r, j)T

)
Rk

h

(
i−1∑

r=i−dhH

ηh(r, j)

)

≤ αd2
hH xh(i, j)T

(
Rk

1h − Rk
2h − RkT

2h + Rk
3h

)
xh(i, j)

+ αd2
hH xh(i, j)T

(
Rk

2h − Rk
3h

)
xh(i + 1, j)

+ αd2
hH xh(i + 1, j)T

(
Rk

2h − Rk
3h

)T
xh(i, j)

− αdhH +1xh(i, j)T Rk
3hx

h(i, j) + 2αdhH +1xh(i, j)T Rk
3hx

h(i − dhH , j)

− αdhH +1xh(i − dhH , j)T Rk
3hx

h(i − dhH , j) − αdhH +1

×
(

i−1∑
r=i−dhH

xh(r, j)T

)
Rk

1h

(
i−1∑

r=i−dhH

xh(r, j)

)

− αdhH +1

(
i−1∑

r=i−dhH

xh(r, j)

)T

Rk
2h

[
xh(i, j) − xh(i − dhH , j)

]

− αdhH +1[xh(i, j) − xh(i − dhH , j)
]T

RkT
2h

(
i−1∑

r=i−dhH

xh(r, j)

)

+ αd2
hH xh(i + 1, j)T Rk

3hx
h(i + 1, j), (25)

V v
5k

(
xv(i, j + 1)

) − αV v
5k

(
xv(i, j)

)

≤ αd2
vH ηv(i, j)T Rk

vη
v(i, j) − αdvH +1

(
j−1∑

t=j−dvH

ηv(i, t)T

)
Rk

v

(
j−1∑

t=j−dvH

ηv(i, t)

)

= αd2
vH xv(i, j)T

(
Rk

1v − Rk
2v − RkT

2v + Rk
3v

)
xv(i, j)

+ αd2
vH xv(i, j)T

(
Rk

2v − Rk
3v

)
xv(i, j + 1)

+ αd2
vH xv(i, j + 1)T

(
Rk

2v − Rk
3v

)T
xv(i, j)

− αdvH +1xv(i, j)T Rk
3vx

v(i, j) + 2αdvH +1xv(i, j)T Rk
3vx

v(i, j − dvH )

− αdvH +1xv(i, j − dvH )T Rk
3vx

v(i, j − dvH ) − αdvH +1

×
(

j−1∑
t=j−dvH

xv(i, t)T

)
Rk

1v

(
j−1∑

t=j−dvH

xv(i, t)

)
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− αdvH +1

(
j−1∑

t=j−dvH

xv(i, t)

)T

Rk
2v

[
xv(i, j) − xv(i, j − dvH )

]

− αdvH +1[xv(i, j) − xv(i, j − dvH )
]T

RkT
2v

(
j−1∑

t=j−dvH

xv(i, t)

)

+ αd2
vH xv(i, j + 1)T Rk

3vx
v(i, j + 1). (26)

Denote

Λ1 = diag
{
(dhH − dhL)Ih, (dvH − dvL)Iv

}
,

Λ2 = diag
{
α1+dhH Ih,α

1+dvH Iv

}
, Λ3 = diag

{
αd2

hH Ih,αd2
vH Iv

}
.

From (25) and (26), we obtain the following relationship:

V h
k

(
xh(i + 1, j)

) − αV h
k

(
xh(i, j)

) + V v
k

(
xv(i, j + 1)

) − αV v
k

(
xv(i, j)

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
xh(i, j)

xv(i, j)

]
[

xh(i − dh(i), j)

xv(i, j − dv(j))

]
[
xh(i − dhH , j)

xv(i, j − dvH )

]
[∑i−1

r=i−dhH
xh(r, j)∑j−1

t=j−dvH
xv(i, t)

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

⎡
⎢⎢⎣

Ψ11 Ψ12 Λ2R
k
3 −Λ2R

k
2∗ Ψ22 0 0

∗ ∗ Ψ33 Λ2R
k
2∗ ∗ ∗ −Λ2R
k
1

⎤
⎥⎥⎦

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
xh(i, j)

xv(i, j)

]
[

xh(i − dh(i), j)

xv(i, j − dv(j))

]
[
xh(i − dhH , j)

xv(i, j − dvH )

]
[∑i−1

r=i−dhH
xh(r, j)∑j−1

t=j−dvH
xv(i, t)

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

where

Ψ11 = Λ3
(
Rk

1 − Rk
2 − RkT

2 + Rk
3

) − Λ2R
k
3 + α

(−P k + Wk + Λ1Q
k
)

+ Λ3
[(

Rk
2 − Rk

3

)
Ak + AkT

(
Rk

2 − Rk
3

)T ] + AkT
(
P k + Qk + Λ3R

k
3

)
Ak,

Ψ12 = Λ3
(
Rk

2 − Rk
3

)
Ak

d + AkT
(
P k + Qk + Λ3R

k
3

)
Ak

d,

Ψ22 = −Λ2Q
k + AkT

d

(
P k + Qk + Λ3R

k
3

)
Ak

d, Ψ33 = −Λ2
(
Rk

3 + Wk
)
.
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In addition, applying Lemma 1, inequality (8) is equivalent to the following inequal-
ity: ⎛

⎜⎜⎜⎝
Ψ11 Ψ12 Λ2R

k
3 −Λ2R

k
2∗ Ψ22 0 0

∗ ∗ Ψ33 Λ2R
k
2

∗ ∗ ∗ −Λ2R
k
1

⎞
⎟⎟⎟⎠ < 0.

Thus, it is easy to obtain

V h
k (i + 1, j) + V v

k (i, j + 1) < α
(
V h

k (i, j) + V v
k (i, j)

)
. (28)

Notice that for any nonnegative integer D > z = max(z1, z2), one has that V h(0,D) =
V v(D,0) = 0. Then summing up both sides of (28) from D − 1 to 0 with respect to
j and 0 to D − 1 with respect to i, one gets

∑
i+j=D

Vk(i, j) = V h
k (0,D) + V h

k (1,D − 1) + V h
k (2,D − 2) + · · ·

+ V h
k (D − 1,1) + V h

k (D,0)

+ V v
k (0,D) + V v

k (1,D − 1) + V v
k (2,D − 2) + · · ·

+ V v
k (D − 1,1) + V v

k (D,0)

< α
(
V h

k (0,D − 1) + V v
k (0,D − 1) + V h

k (1,D − 2) + V v
k (1,D − 2)

+ · · · + V h
k (D − 1,0) + V v

k (D − 1,0)
)

= α
∑

i+j=D−1

Vk(i, j). (29)

Assume that the switching number of σ(i, j) on an interval [z,D) is υ =
Nσ(i,j)(z,D), and let (iκ−υ+1, jκ−υ+1), (iκ−υ+2, jκ−υ+2), . . . , (iκ , jκ) denote the
switching points of σ(i, j) over the interval [z,D). Thus, denoting mi = ii + ji ,
i = κ − υ + 1, . . . , κ , it follows from (10) and (29) that

∑
i+j=D

Vσ(iκ ,jκ )(i, j) < αD−mκ
∑

i+j=mκ

Vσ(iκ ,jκ )(i, j)

< χαD−mκ−1
∑

i+j=mκ−1

Vσ(iκ−1,jκ−1)(i, j)

< · · ·
< χυαD−mκ−υ+1

∑
i+j=m−

κ−υ+1

Vσ(iκ−υ ,jκ−υ)(i, j)

< χυαD−z
∑

i+j=z

Vσ(iκ−υ ,jκ−υ)(i, j)

< e
−(− lnχ

τa
−lnα)(D−z)

∑
i+j=z

Vσ(iκ−υ ,jκ−υ)(i, j). (30)
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Notice from (14) that there exist two positive constants a and b(a < b) such that

∑
i+j=D

Vσ(iκ ,jκ )(i, j) ≥ a
∑

i+j=D

∥∥x(i, j)
∥∥2

,

∑
i+j=z

Vσ(iκ−υ ,jκ−υ)(i, j) ≤ b
∑

i+j=z

∥∥x(i, j)
∥∥2

C
.

(31)

Combining (30) and (31), we obtain

∑
i+j=D

∥∥x(i, j)
∥∥2

<
b

a
e
−(− lnχ

τa
−lnα)(D−z)

∑
i+j=z

∥∥x(i, j)
∥∥2

C
. (32)

By Definition 1, it follows from (9) that 2D discrete switched system (1) is exponen-
tially stable. The proof is completed. �
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