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Abstract This paper mainly investigates the disturbance rejection problem of
Markov jump systems with bounded disturbance and saturation, in the case that only
part of the transition probabilities are known in the discrete-time domain. The mode-
dependent state feedback controller is designed to ensure that the resulting closed-
loop system is stochastically stable and satisfies the optimal disturbance rejective
index, meanwhile, the state of the system is to remain in an expected small region
including origin in terms of disturbances. Specifically, the stochastically stable con-
ditions are formulated by parameter-dependent Lyaponuv methodology and further
established as linear matrix inequalities (LMIs). Sweeping the auxiliary parameters
in the domain of definition, the global optimal disturbance rejective index is obtained.
Finally, tolerance capability is further analyzed to evaluate the disturbance rejection
level. Two numerical examples, a common linear system and a Markov jump system
with completely known and partly unknown transition probabilities, are presented to
illustrate the potential of the results, respectively.

Keywords Disturbance rejection · Discrete Markov jump system ·
Tolerance analysis · Saturation · Partly unknown transition probabilities

1 Introduction

In practice, the structure and parameters of abundant engineering systems tend to
vary due to random changes such as component failures, changing subsystem in-
terconnection and etc. In this case, deterministic models cannot perfectly represent
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the dynamic of these changes. Thus, Markov jump linear systems (MJSs) are a set
of dynamics with transitions among the models governed by a Markov chain taking
values in a finite set. In the engineering field, the Markov chain model associated
with this characteristic of stochastic modeling superiority has been widely applied to
model the dynamic of system during the past decades [1, 6, 11]. More attractive re-
sults in control field have been obtained (see controller design [7, 12], 2D MJSs filter
design[15], Kalman filter [13], saturated controller design [8, 9], sliding mode control
[10, 14, 16, 17]). Typically, MJSs evolve according to Markov stochastic process (or
chain). The transition probabilities (TPs), one crucial factor in the Markov process
(or chain), determine the behavior and performance of MJSs. However, sometimes
TPs are impractical to full accessible due to the fact that the cost may be probably
expensive. A typical example can be found in communication networks [21, 24], in
which the packet dropouts may be random in different internals of networks and the
TPs are costly to access. Fortunately, the efforts directly facing the partially unknown
TPs have been proved to be feasible, pioneer works with respect to partially unknown
TPs have also been reported (see robust stabilization [18], fault detection [19, 20]),
H∞ control and filter [21, 22]).

Also, in practice, actuator saturation nonlinearity generally exists. As we know,
almost all the actuators have a limited working region; once the system input ex-
ceeds the maximal capacity or lower than the minimal capacity, then, it will lead to
the actuator saturation nonlinearity, and such nonlinearity is a complicated nonlin-
ear constraint and cannot be avoided in the system. It occurs very common in a lot
of biochemistry systems, networked control systems, and communication systems.
Since this nonlinearity degrades system performance or even leads to unstable sys-
tem behavior, actuator saturation may probably be the most dangerous nonlinearity in
many systems. Thus, saturation nonlinearity has persistently received attention over
the past decades, and some attempts have been done on control problems of linear
systems [2, 4, 5].

On the other hand, external disturbance often occur in MJSs because of the num-
bers of subsystems and the stochastic jump through the transition process, and this
detrimental factor may reduce the performance of the controller, or what is more,
make the closed-loop system unstable. Plenty of results referred to disturbance for
switch systems and MJSs have been reported (see H∞ control and filter [3, 23]); in
this literature, H∞, a bounded input and output index, is widely used to evaluate the
system performance by investigating the energy of controlled output. Despite this,
H∞ performance index assumes the external disturbance are L2 space integrable or
summable. However, in most engineering fields, the bound of perturbance is more
convenient to obtain. For bounded disturbance, the problem of disturbance attenu-
ation for linear systems has been exploited [4, 5]. Surprisingly, although plenty of
results have been reported about the controller design for Markov jump systems, no
attention has been paid to investigate the problem of disturbance rejection for MJLs
subject to saturation, which is generally existed in practice, even in a full accessi-
ble TPs’ context. Therefore, this motivates us to address the challenge and necessary
work of solving disturbance rejection problem for discrete Markov jump systems
subject to partly unknown TPs and saturation.

In this paper, we consider the problem of disturbance rejection for Markov jump
systems with partly unknown TPs and saturation in the discrete-time domain. The ap-
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proach followed in this paper gives a sufficient condition to design mode-dependent
state feedback controller to guarantee that the resulting closed-loop system is stochas-
tically stable and the influence caused by disturbance to the state is reduced to the
minimal level. Moreover, the disturbance rejection index relationship among the com-
mon linear system and Markov jump system with completely known and partly un-
known transition probabilities is analyzed. Finally, tolerance capability is also ana-
lyzed to evaluate disturbance rejection level.

This paper is organized as follows: In Sect. 2, the dynamical structure of the sys-
tem is defined and the purposes of the paper are stated. Section 3 gives the concept of
stochastic stability. In Sect. 4, stabilization conditions of disturbance rejection are de-
rived. In Sect. 5, the tolerance is analyzed to evaluate the disturbance rejection level
in terms of LMIs formulation. In Sect. 6, two numerical examples, a common linear
system and a Markov jump system with completely known and partly unknown tran-
sition probabilities are provided to illustrate the validity of the results, respectively.
Section 7 concludes the paper.

Notations. In the sequel, the notation Rn stands for a n-dimensional Euclidean
space; the transpose of a matrix is denoted by AT; E{·} denotes the mathematical
statistical expectation of the stochastic process or vector; ∂ is the boundary of a set;
a positive-definite matrix is denoted by P > 0; I is the unit matrix with appropriate
dimension; and ∗ means the symmetric term in a symmetric matrix.

2 Problem Statement and Preliminaries

Consider a probability space (M,F,P ) where M , F and P represent the sample
space, the algebra of events and the probability measure defined on F , respectively,
then the following discrete-time Markov jump systems (MJSs) are considered in this
paper:

xk+1 = A(rk)xk + B(rk)σ (uk) + E(rk)wk, (2.1)

where xk ∈ Rn is the state vector of the system, uk ∈ Rm is the input vector of the
system, wk ∈ {wT

k wk ≤ 1} is the bounded external disturbance vector of the sys-
tem. σ(uk) = [σ(u1k) σ (u2k) · · · σ(umk)]T and σ(ulk) = {sign(ulk)min{1, |ulk|}},
{rk, k ≥ 0} is the concerned discrete-time stochastic Markov chain which takes values
in a finite state set Γ = {1,2,3, . . . , τ }, and r0 represents the initial mode, the tran-
sition probability matrix is defined as π(k) = {πij (k)}, i, j ∈ Γ , πij (k) = P(rk+1 =
j |rk = i) is the transition probability from mode i at time k to mode j at time k + 1,
which satisfies πij (k) ≥ 0 and

∑τ
j=1 πij (k) = 1. The transition probabilities matrix

is defined by

π =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

π11 π12 . . . π1τ

π21 π22 . . . π2τ

...
...

. . .
...

πτ1 πτ2 . . . πττ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.2)
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The set Γ contains τ modes of system (2.1), when rk = i, i ∈ Γ , for simplicity,
the matrices A(rk), B(rk), E(rk) and F(rk) are denoted as Ai , Bi , Ei , and Fi .

In addition, the matrix of partly unknown transition probabilities means some el-
ements in matrix π are not available, for instance, consider system (2.1) with four
operation modes, the transition probabilities matrix π may be shown as

π =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

? π12 ? ?

π21 π22 ? ?

π31 ? ? ?

? ? π43 ?

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (2.3)

where “?” represents the inaccessible transition probabilities.
For clarity, here, we denote π = πk

i + πuk
i ,∀i ∈ Γ , if πk

i �= 0, and redescribe it as
πk

i = (κ1
i , . . . , κl

i ),∀1 ≤ l ≤ τ , where κl
i represents the lth known element in the ith

row of π , Πk
i = ∑

j∈πk
i
πij . Before proceeding with the study, we briefly introduce

some preliminaries.

Definition 2.1 For any initial mode r0, and a given initial state x0 which evolves in
an initial state set, discrete-time Markov jump system (2.1) (with wk = 0) is said to
be stochastically stable such that

lim
T →∞E

{
T∑

k=0

xT
k xk|x0, r0

}

< ∞. (2.4)

Definition 2.2 Given a matrix Hi for system (2.1), one can denote hqi as the qth row
of matrix Hi , and then, a symmetric polyhedron set is defined as follows:

Θ(Hi) = {
xk ∈ Rn : |hqixk| ≤ 1, q = 1,2, . . . ,m

}
. (2.5)

Lemma 2.1 [4] Given matrices uk ∈ Rm and vk ∈ Rm for system (2.1), if |vk| < 1,
then, σ(uk) = ∑2m

t=1 θt (Mtuk + M−
t vk), where 0 ≤ θt ≤ 1,

∑2m

t=1 θt = 1, Mt are m ×
m diagonal matrices whose diagonal elements are either 1 or 0, and M−

t = I − Mt

Lemma 2.2 [5] Given matrices vk = Hixk for system (2.1), if xk ∈ Θ(Hi), that is,
|vk| < 1, then, σ(Fixk) = ∑2m

t=1 θt (MtFi + M−
t Hi)xk . Obviously, {MtFi + M−

t Hi :
t ∈ [1,2m]} is the set formed by matrices, and these matrices are formed by choosing
some rows from Fi and the remaining from Hi .

Lemma 2.3 [4] For given symmetric matrices Pi > 0, one can define a series of
ellipsoid sets as follows:

ε(Pi,1) = {
xk ∈ Rn : xT

k Pixk ≤ 1
}
. (2.6)
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3 Stochastic Stability

The objective of this section is to discuss stochastic stability of the closed loop for
system (2.1).

Theorem 3.1 Consider system (2.1) with partly unknown TP matrix (2.3) and wk =
0, if there exists a set of symmetric positive definite matrices Pi > 0, and Fi , Hi ,
∀i ∈ Γ , such that

(
Ai + Bi

(
DtFi + D−

t Hi

))T ∑

j∈Γ

πijPj

(
Ai + Bi

(
DtFi + D−

t Hi

)) − Pi < 0,

t ∈ [
1,2m

]
, (3.1)

ε(Pi,1) ⊂ Θ(Hi) (3.2)

then the set
⋂τ

i=1 ε(Pi,1) is contained in the domain of stochastically stable attrac-
tion of the closed-loop system (2.1).

Proof Construct a Lyapunov function as

V (xk, rk = i) = xT
k Pixk (i ∈ Γ ). (3.3)

Recalling Lemmas 2.1 and 2.2, �V (xk, i) for system (2.1) is obtained as

�V (xk, i) = E
{
V (xk+1, rk+1)

} − V (xi, rk)

= xT
k+1

∑

j∈Γ

πijPjxk+1 − xT
k Pixk

= xT
k

[
(
Ai + Bi

(
DtFi + D−

t Hi

))T

×
∑

j∈Γ

πijPj

(
Ai + Bi

(
DtFi + D−

t Hi

)) − Pi

]

xk

= xT
k Φi(t)xk, t ∈ [

1,2m
]
. (3.4)

For system (2.1), condition (3.1) implies

�V (xk, i) < 0. (3.5)

Denote δ = mint λmin(−Φi(t)),∀i ∈ Γ where λmin(−Φi(t)) is the minimal eigen-
value of (−Φi(t)). Hence,

�V (xk, i) ≤ −δxT
k xk (3.6)

then

E

{
T∑

k=0

�V (xk, i

}

= E
{
V (xT +1, T + 1)

} − V (x0, r0) ≤ −δE

{
T∑

k=0

xT
k xk

}

(3.7)
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thus, the following inequality holds:

E

{
T∑

k=0

xT
k xk

}

≤ 1

δ

{
V (x0, r0) − E

{
V (xT +1, T + 1)

}}
<

1

δ
V (x0, r0) (3.8)

which implies

lim
T →∞E

{
T∑

k=0

xT
k xk|x0, r0

}

≤ 1

δ
V (x0, r0) < ∞. (3.9)

From Definition 2.1, the system (2.1) is stochastically stable. This completes the
proof. �

4 Disturbance Rejection

In this section, we will develop the stabilization results which guarantee that system
(2.1) satisfies the optimal disturbance rejective index in discrete-time context.

Theorem 4.1 For system (2.1) and a given ellipsoid ε(Pi,1), i ∈ Γ , if there exist an
Hi and a positive number η such that

(1 + η)
(
Ai + Bi

(
DtFi + D−

t Hi

))T ∑

j∈Γ

πijPj

(
Ai + Bi

(
DtFi + D−

t Hi

))

+
((

1 + 1

η

)

λmax
(
ET

i PjEi

) − 1

)

Pi < 0, ∀t ∈ [
1,2m

]
(4.1)

and ε(Pi,1) ⊂ Θ(Hi), then
⋂τ

i=1 ε(Pi,1) is a strictly invariant set for system.

Proof Consider V (x) = xT
k Pixk , we need to show that

�Vk = xT
k

[
(
Ai + Biσ (Fix) + Eiwk

)T

×
∑

j∈Γ

πijPj

(
Ai + Biσ (Fix) + Eiwk

)
]

xk − xT
k Pixk < 0 (4.2)

since wT
k wk ≤ 1 and using the fact that (a + b)T(a + b) ≤ (1 + η)aTa + (1 + 1

η
)bTb,

(
Ai + Biσ (Fix) + Eiwk

)T ∑

j∈Γ

πijPj

(
Ai + Biσ (Fix) + Eiwk

)

≤ max
t∈[1,2m]

xT
k (1 + η)

(
Ai + Bi

(
DtFi + D−

t Hi

))T

×
∑

j∈Γ

πijPj

(
Ai + Bi

(
DtFi + D−

t Hi

))
xk
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+
(

1 + 1

η

)

wT
k ET

i

∑

j∈Γ

πijPjEiwk − xT
k Pixk

≤ max
t∈[1,2m]

xT
k (1 + η)

(
Ai + Bi

(
DtFi + D−

t Hi

))T

×
∑

j∈Γ

πijPj

(
Ai + Bi

(
DtFi + D−

t Hi

))
xk

+
(

1 + 1

η

)

λmax
(
ET

i PjEi

) − xT
k Pixk. (4.3)

To prove the strict invariance, ∀t ∈ [1,2m], xk ∈ ⋂
ε(Pi,1), one sufficient condition

is that there exists an η such that

xT
k (1 + η)

(
Ai + Bi

(
DtFi + D−

t Hi

))T ∑

j∈Γ

πijPj

(
Ai + Bi

(
DtFi + D−

t Hi

))
xk

+
(

1 + 1

η

)

λmax
(
ET

i PjEi

) − 1 < 0. (4.4)

Noticing that 1 = xT
k Pixk on ∂ε(Pi,1), we see that (4.4) is guaranteed by (4.1). �

Theorem 4.2 For a given initial x0 and reference set χ0, consider system (2.1) with
partly unknown TP matrix (2.3), let α > 0 be a scalar, if there exist symmetric positive
definite matrices Pi > 0, and Fi , Hi , ∀i ∈ Γ , such that

sup α, (4.5)

αχ0 ⊂
⋂

ε(Pi,1), (4.6)
(
Ai + Bi

(
DtFi + D−

t Hi

))T ∑

j∈Γ

πijPj

(
Ai + Bi

(
DtFi + D−

i Hi

))

+ 1

1 + η

(
1 + η

η
λmax

(
ET

i PjEi

) − 1

)

Pi < 0, t ∈ [
1,2m

]
, (4.7)

|hiqx| ≤ 1, ∀x ∈
⋂

ε(Pi,1), i ∈ Γ,q ∈ [1,m]. (4.8)

when Ei = 0, recalling Theorem 3.1, system (2.1) is stochastically stable and if α > 1,
then x0 is in the domain of stochastically stable attraction by the set theory.

Remark 4.1 For a given x0 in the domain of stochastically stable attraction, since
there are infinitely many choices of the feedback matrices Fi , we will use this extra
freedom for disturbance rejection; that is, to drive the state of the system (2.1) with
partly unknown transition probabilities (2.3) and bounded disturbance into a region
including the origin as small as possible and the state remaining in it.

Theorem 4.3 Consider a given initial x0 and reference set χ0 for system (2.1) with
partly unknown TP matrix (2.3), let α > 0 be a scalar, if there exist symmetric positive
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definite matrices Pi > 0, and Fi , Hi , ∀i ∈ Γ , such that

inf α, (4.9)

ε(Pi,1) ⊂ αχ∞, (4.10)
(
Ai + Bi

(
DtFi + D−

t Hi

))T ∑

j∈Γ

πijPj

(
Ai + Bi

(
DtFi + D−

i Hi

))

+ 1

1 + η

(
1 + η

η
λmax

(
ET

i PjEi

) − 1

)

Pi < 0, t ∈ [
1,2m

]
, (4.11)

|hiqx| ≤ 1, ∀x ⊂
⋂

ε(Pi,1), i ∈ Γ,q ∈ [1,m]. (4.12)

Thus system (2.1) is stochastically stable and has a prescribed disturbance reject
performance index α.

Remark 4.2 Theorems 4.2 and 4.3 just give us the conceptional description of the
domain of stochastically stable attraction and disturbance rejection level from the
viewpoint of set theory. We will give the specific proofs of this description in Theo-
rem 4.4.

Theorem 4.4 Consider a given initial x0 and reference set χ0 for system (2.1) with
partly unknown TP matrix (2.3), let γ = α2 > 0 be a scalar, if there exist symmetric
positive definite matrices Qi = P −1

i > 0, and Yi = FiQi , Zi = HiQi , η > 0, λ ∈
(0,

η
1+η

), ∀i ∈ Γ , such that

inf γ, (4.13)

Qi − γ ∗ R−1 < 0, (4.14)
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Πk
i (λ

η
− 1

1+η
)Qi ∗ ∗ ∗

√
κ1
i Bi(DiYi + D−

i Zi)) −Q1 ∗ ∗
...

...
. . .

...
√

κl
iBi(DiYi + D−

i Zi)) ∗ ∗ −Ql

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, ∀i ∈ Γ, j ∈ πk
j , (4.15)

⎡

⎣
( λ
η

− 1
1+η

)Qi ∗
Bi(DiYi + D−

i Zi)) −Qj

⎤

⎦ < 0, ∀i ∈ Γ, j ∈ πuk
j , (4.16)

⎡

⎣
−λ ET

i

∗ −Qk

⎤

⎦ < 0, ∀i ∈ Γ,k ∈ Γ, (4.17)

⎡

⎣
−1 Ziq

∗ −Qi

⎤

⎦ < 0, ∀i ∈ Γ,q ∈ [1,m], (4.18)
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then system (2.1) with partly unknown transition probabilities (2.3) and bounded
disturbance is stochastically stable and has a prescribed optimal disturbance reject
performance index α.

Proof Let γ = α2, From the literature [5] and Lemma 2.3, when the reference set is
an ellipsoid ε(R,1), condition (4.10) is equivalent to R

γ
≤ Pi , which can be guaran-

teed by (4.14). Since one always has
∑

j∈Γ πij = 1, the left-hand side of (4.11) can
be rewritten as

(
Ai + Bi

(
DiYi + D−

i Zi

))T ∑

j∈Γ

πijPj

(
Ai + Bi

(
DiYi + D−

i Zi

))

+
∑

j∈Γ

πij

1

1 + η

(
1 + η

η
λmax

(
ET

i PjEi

) − 1

)

Pi < 0 (4.19)

Due to the fact that
∑

j∈Γ πij = πk
i + πuk

i , (4.19) is equal to

(
Ai + Bi

(
DiYi + D−

i Zi

))T ∑

j∈πk
i

πijPj

(
Ai + Bi

(
DiYi + D−

i Zi

))

+ (
Ai + Bi

(
DiYi + D−

i Zi

))T ∑

j∈πuk
i

πijPj

(
Ai + Bi

(
DiYi + D−

i Zi

))

+
∑

j∈πk
i

πij

1

1 + η

(
1 + η

η
λmax

(
ET

i PjEi

) − 1

)

Pi

+
∑

j∈πuk
i

πij

1

1 + η

(
1 + η

η
λmax

(
ET

i PjEi

) − 1

)

Pi < 0 (4.20)

which is equivalent to

(
Ai + Bi

(
DiYi + D−

i Zi

))T ∑

j∈πk
i

πijPj

(
Ai + Bi

(
DiYi + D−

i Zi

))

+
∑

j∈πuk
i

πij

(
(
Ai + Bi

(
DiYi + D−

i Zi

))T
Pj

(
Ai + Bi

(
DiYi + D−

i Zi

))

+ Πk
i

1

1 + η

(
1 + η

η
λmax

(
ET

i PjEi

) − 1

)

Pi

+ 1

1 + η

(
1 + η

η
λmax

(
ET

i PjEi

) − 1

)

Pi

)

< 0 (4.21)

Using Schur complement, (4.15) and (4.16) guarantees (4.21). (4.17) implies the ex-
istence of λmax. From [5], (4.12) is equivalent to (4.18). This completes the proof. �
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Remark 4.3 Theorem 4.2 gives a method to check if the initial state is in the do-
main of stochastically stable attraction. For a given initial state x0 = [x1

0 , . . . , xn
0 ]T,

condition (4.6) is converted to
⎡

⎣
− 1

α2 ∗
x

q

0 −Q

⎤

⎦ < 0, ∀q ∈ [1, n], (4.22)

if α > 1, then x0 is in the domain of stochastically stable attraction.

Remark 4.4 Since Theorem 4.4 are parameter-dependent LMIs, before solving these
LMIs, the two parameters η,λ need to be fixed. Sweeping these two parameters in the
domain of definition, the global optimal (not local optimal in the domain of definition)
disturbance rejection index can be obtained.

5 Tolerance Analysis

In this section, the disturbance tolerance capability, which reveals the disturbance re-
jective capability from another perspective of view, is evaluated. The main concern is,
for a given disturbance rejection level α, what the maximum amplitude β of distur-
bance is, then we can still maintain the state of system in this small region associated
with α including the origin.

Theorem 5.1 Consider a given initial x0 and reference set χ0 and wT
k wk ≤ β2 = ω,

β > 0 for system (2.1) with partly unknown TP matrix (2.3) and a given disturbance
rejection level α, if there exist symmetric positive definite matrices Qi = P −1

i > 0
and Yi = FiQi , Zi = HiQi , η > 0, λ ∈ (0,

η
1+η

), ∀i ∈ Γ , such that

sup ω, (5.1)

Qi − α2 ∗ R−1 < 0, (5.2)
⎡

⎢
⎢
⎢
⎢
⎢
⎣

Πk
i (ωλ

η
− 1

1+η
)Qi ∗ ∗ ∗

√
κ1
i Bi(DiYi + D−

i Zi) −Q1 ∗ ∗
...

...
. . .

...√
κl
iBi(DiYi + D−

i Zi) ∗ ∗ −Ql

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0, ∀i ∈ Γ, j ∈ πk
j , (5.3)

[
(ωλ

η
− 1

1+η
)Qi ∗

Bi(DiYi + D−
i Zi) −Qj

]

< 0, ∀i ∈ Γ, j ∈ πuk
j , (5.4)

⎡

⎣
−λ ET

i

∗ −Qk

⎤

⎦ < 0, ∀i ∈ Γ,k ∈ Γ, (5.5)

⎡

⎣
−1 Ziq

∗ −Qi

⎤

⎦ < 0, ∀i ∈ Γ,q ∈ [
1,2m

]
. (5.6)

Analogous to the proof of Theorem 4.4, we omit the proof of Theorem 5.1.
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Remark 5.1 Here, before solving these LMIs, we first fix these parameters ω ≥ 1,
η, λ, and then check the feasibility of LMIs (5.1)–(5.6) to get the supper bound of β .

6 Illustrative Examples

In this section, two numerical examples are investigated to evaluate the performance
of our developed approach; the system parameters including four modes are given as
follows:

Example 1 Consider system (2.1) as a special system, that is, mode 1–4 have the
same parameters. In this case, the jump system is degenerated to a discrete linear
system,

A1 =
[

0.50 −0.30
0.10 0.60

]

, B1 =
[−0.026

0.247

]

, E1 =
[

0.0657
0.0582

]

,

A2 = A1, B2 = B1, E2 = E1,

A3 = A1, B3 = B1, E3 = E1,

A4 = A1, B4 = B1, E4 = E1.

By solving LMIs (4.13)–(4.18), an admissible state feedback controller can obtained
as F = [0.4572 −2.8252].

Figure 1 shows the state response of the corresponding closed-loop system for
initial condition x0 = [−0.2 0.15]T with bounded disturbance wk = 0.5 sin(k). Ap-
plying Theorem 4.2, we obtain α > 1, and this means x0 is in the domain of stochas-
tically stable attraction. And we can use the extra freedom of feedback controllers to
restrict the disturbance. It can be seen from Fig. 1 that the influence of the disturbance
is constrained to a small and flat ellipsoid, which means the disturbance is suppressed
on a decent level.

Fig. 1 States trajectory of linear system
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Table 1 Transition
probabilities Case I 1 2 3 4

1 0.10 0.20 0.30 0.40

2 0.10 0.10 0.50 0.30

3 0.40 0.10 0.15 0.35

4 0.20 0.20 0.30 0.30

Case II 1 2 3 4

1 0.10 0.20 ? ?

2 ? ? ? 0.30

3 ? ? 0.15 0.35

4 0.20 0.20 0.30 0.30

Remark 6.1 It is noted that the simulation Example 1 shows the stable attraction with
bounded disturbance and saturation, which reveals the case that the Markov model
degenerates to a common linear system when the different four system modes change
to one mode. This case shows that the results in [5] can be viewed as a special case
in this stochastic mode frame.

Example 2 Consider the discrete jump system with four modes as the following data:

A1 =
[

0.50 −0.30
0.10 0.60

]

, B1 =
[−0.026

0.247

]

, E1 =
[

0.0657
0.0582

]

,

A2 =
[

0.36 −0.30

0.20 0.50

]

, B2 =
[−0.030

0.100

]

, E2 =
[

0.0308
0.0453

]

,

A3 =
[

0.70 −0.25

0.10 0.70

]

, B3 =
[−0.010

0.320

]

, E3 =
[

0.0236
0.0292

]

,

A4 =
[

0.65 −0.35

0.25 0.65

]

, B4 =
[−0.010

0.220

]

, E4 =
[

0.0586
0.0323

]

.

The two different types of the TP are considered in Table 1. Our purpose here is to
design a mode-dependent state feedback stabilizing controller such that the resulting
closed-loop system is stochastically stable and restrains the influence of disturbance
in a certain level as small as possible. By solving (4.13)–(4.18) in Theorem 4.4, the
controller gains are calculated as

Case I: F1 = [0.9630 −3.0605], F2 = [0.7432 −5.9797],
F3 = [1.0385 −2.6259], F4 = [0.7095 −3.8489],

Case II: F1 = [1.1194 −3.1332], F2 = [0.6515 −5.9469],
F3 = [1.0074 −2.6157], F4 = [0.7098 −3.8491].
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Fig. 2 States trajectory of jump linear system

Table 2 Minimal rejection
level index Parameters η∗ λ∗ αmin

Case I 1.099 0.281 0.1698

Case II 0.701 0.170 0.2352

Figure 2 shows two diacritical state trajectories of the closed-loop systems with both
completely and partly unknown transition probabilities matrix under the initial state
x0 = [−0.2 0.15]T and the external disturbance wk = 0.5 sin(k).

It can be shown that the state of Case I (completely known transition probabili-
ties matrix) is finally restricted in a more diminutive region including the origin than
Case II (partly unknown transition probabilities matrix), this means the rejection level
of disturbance in the completely known case is more effective than that in the partly
unknown case. The main reason is that a complete transition probabilities matrix case
more than sufficiently uses the transition information and then reduces the conserva-
tion.

Furthermore, applying the Theorem 4.4, we can also get the minimum rejection
level index α (see Table 2), more precisely, the αmin is 0.1698 in Case I while it is
0.2352 in Case II, which also demonstrates the conclusion shown in Fig. 2.

More interestingly, it can be seen that the curve of the linear system shows a mini-
ellipsoid whereas that of Markov jump system (Fig. 2) finally displays an irregu-
lar appearance but it still in an expected region. This phenomenon impartially and
virtually reveals the jumping behavior among different categories of system modes
according to Markov dynamic.

From another perspective of view, since Table 2 gives us some guidance about
choosing α, more precisely, αCase I ≥ 0.1698 and αCase II ≥ 0.2352, we here choose
α from 0.25 to 0.45. Table 3 shows that, for the same given disturbance rejection
level, Case I has better disturbance tolerance margin (tolerating larger amplitude of
disturbance) than Case II. This result is consistent with that of Table 2.
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Table 3 Disturbance tolerance
margin Rejection level α 0.25 0.35 0.45

ToleranceCase I βmax 1.47 1.79 1.89

ToleranceCase II βmax 1.06 1.43 1.57

Remark 6.2 Note that we also considered the disturbance tolerance capability of dis-
crete Markov jump systems, that is, for a given toleration index, we found the maxi-
mal energy of the disturbances. This approach provides a new perspective on distur-
bance rejection.

7 Conclusions

This paper concerns the problem of disturbance rejection for discrete Markov
jump systems with partly unknown transition probabilities and saturation subject to
bounded disturbance. And this paper also gives the methodology to design mode-
dependent state feedback controller to evaluate disturbance rejection level and dis-
turbance tolerance capability. Two numerical examples are presented to illustrate the
validity of the results. The developed results are expected to extend to issues such as
output feedback and estimation in the presence of saturation.
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