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Abstract This paper introduces some generalized fundamentals for fractional-order
RLβCα circuits as well as a gradient-based optimization technique in the frequency
domain. One of the main advantages of the fractional-order design is that it increases
the flexibility and degrees of freedom by means of the fractional parameters, which
provide new fundamentals and can be used for better interpretation or best fit match-
ing with experimental results. An analysis of the real and imaginary components, the
magnitude and phase responses, and the sensitivity must be performed to obtain an
optimal design. Also new fundamentals, which do not exist in conventional RLC cir-
cuits, are introduced. Using the gradient-based optimization technique with the extra
degrees of freedom, several inverse problems in filter design are introduced. The con-
cepts introduced in this paper have been verified by analytical, numerical, and PSpice
simulations with different examples, showing a perfect matching.

Keywords Fractional calculus · Fractional filters · Optimization · RLC circuit ·
Sensitivity analysis · Fractional-order elements

1 Introduction

The history of fractional calculus dates back to 1695 with the work of scientists such
as L’Hospital and Leibniz, but the first logic definitions were proposed by Liouville
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in 1834, Riemann in 1847, and Grünwald in 1867 [21, 24]. Fractional calculus can be
considered as a super set of integer-order calculus, which has the potential to accom-
plish what integer-order calculus cannot. The first approximation of the fractional-
order derivative in terms of a complicated system of integer orders was proposed
in 1964 [2], but this approximation is good only in a certain band of frequencies.
Furthermore, different realizations of the fractional elements were introduced dur-
ing the last few years [14, 15, 23, 25, 36, 38, 41] using different techniques. The
theory of fractional-order elements comes from the frequency-dependent losses in
the conventional elements as proved recently in [39, 42, 43]. Moreover, this theory
was extended to the memristive elements (memristor, memcapacitor, and meminduc-
tor) [8, 26]. Many books and researches during the last three decades have aimed to
increase the accessibility of fractional calculus for remodeling most of the existing
applications and analyzing new models in basic natural sciences. For example, many
papers recently have tried to model the electrical impedance of vegetables and fruits
into simple electrical circuit connections using a single fractional capacitor [5, 12].
Generally, the fingerprints of the applied fractional calculus could be built up to in-
clude many physical phenomena based on differentiation and integration [37]. Var-
ious numerical techniques were introduced to solve linear and nonlinear fractional-
order differential equations (FODEs) [3, 7] which model different physical problems.

Fractional calculus depends on the history of the function, which is more realistic
and suitable for modeling, analyzing, and synthesizing and for solving many prob-
lems in bioengineering [17, 18]. Thus different biomedical models can be represented
by simple connections of fractional circuit elements [22]. The existence of an extra
degree of freedom enabled through choosing the fractional order makes its perfor-
mance always superior to that of traditional integer calculus which can be used to
describe the behavior of complex systems and materials. Moreover, modeling with
fractional calculus is used to extract more generalized information and fundamentals
[4, 6, 16, 19, 20]. In addition, the output can be optimized to be closer to the exper-
imental results by adjusting the extra parameters and using a suitable optimization
technique.

From the circuit perspective, the general theorems related to linear oscillators have
been recently generalized to the fractional-order case, beginning with mathematical
proofs, through circuit simulations, and ending with experimental results [28, 29].
A main basis in most of these generalizations is that the frequency of oscillation
for using fractional elements of order α, is proportional to ω

1/α

o1 where ωo1 is the
frequency of oscillation in the case of integer elements and if α = 0.5 (order one-
half), the oscillation frequency increases by a power of 2, which is required for many
high frequency applications. Also, the generalizations of filter theorems are studied
for one or two fractional elements of the same orders showing new fundamentals and
features rather than those of known filters [30, 31, 40].

Due to the extra parameters in the fractional-order modeling over the conventional
integer derivative, new responses and fundamentals and better approximations can be
obtained using a suitable optimization technique. One of the major famous optimiza-
tion criteria is gradient-based optimization, which is used to minimize a general func-
tion F(x) from any starting point. This algorithm requires cycles of n iterations to be
reset as the steepest descent direction that provides the best direction to minimize this
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function. This optimization technique will be used to illustrate how fractional-order
parameters can characterize filter responses which cannot be realized using integer-
order filters.

In this paper, the generalized fractional impedance of all possible topologies for
fractional-order basic circuits that use at most a resistor R, Lβ (fractional inductor
of order β), and a capacitor Cα (fractional capacitor of order α) are introduced, so
this circuit has three traditional variables: R, L and C plus the two fractional orders
α and β . This generalization is full of new fundamentals which cannot be obtained
by the traditional elements, but where the generalized fractional impedance of the
fractional-order RLβCα circuit can be used to model many phenomena in mechani-
cal, biomedical, and even botanical systems. This paper discusses the frequency re-
sponse behavior from different points of interest. The first point is the study of the
basic analysis of the real and imaginary components, as well as the magnitude and
phase responses. Many sensitivity analyses are introduced for different parameters.
Second, the most important cases of this generalized impedance are studied when a
real part (or phase) is zero (or 0,π ), an imaginary part (or phase) is zero (or ±π/2),
and finally when the magnitude equals zero; or the short circuit case. Finally, different
optimization problems for designing filters are discussed based on the gradient-based
optimization technique using the extra fractional-order parameters. Numerical and
PSpice simulation results are also introduced with several examples. However, in or-
der to discuss the previous characteristics, some fundamentals should be introduced.

1.1 Basic Definition of Fractional Capacitor

The most important definition of the fractional derivative is introduced by Caputo [24]
which is denoted by Eq. (1). If α = 1.2, then m = 2, so the fractional derivative of
order 1.2 is equivalent to an integer derivative of order 2 followed by a fractional
integral of order 0.8,

aD
α
t f (t) :=

⎧
⎨

⎩

1
�(m−α)

∫ t

a
f (m)(τ )

(t−τ)α+1−m dτ (m − 1) < α < m

dm

dtm
f (t) α = m

(1)

There are many numerical approximations for the above definition; the most im-
portant one is driven as in (2) by Grünwald-Letnikov [27]. In this definition � and
h are the gamma function and the step size, respectively. It is clear that the sum-
mation takes into account all previous values of f (t) which cover all the historical
background of the function. When α = 1, all items inside the summation will be zero
except for m = 0,1, which will be reduced to the traditional backward difference
formula,

aD
α
t f (t) = lim

h→0

1

hα�(−α)

t−a
h∑

m=0

�(m − α)

m! f (t − mh) (2)

Another advantage of the fractional derivative comes from the Laplace transform
of the fractional derivative, for example, L{aDα

t f (t)} = F(s)/sα , which is equivalent
to the relation between the current and voltage across the fractional-order capacitor
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Fig. 1 Floating fractional-order capacitor realizations

V (s) = I (s)/(Cf sα), where Cf is the value of the fractional capacitor. Then the
phase difference between the current and voltage will be απ/2. In the case of inte-
ger order of the capacitor (α = 1), the general case returns to the well-known phase
difference π/2.

1.2 Realization of Fractional Elements

The modeling of fractional-order systems (e.g., the fractional capacitor) was dis-
cussed during the previous three decades from different points of view. The math-
ematical approximation of the equivalent transfer function (1/sα) to higher integer
order within a certain region of frequencies, passing through its realization using
many branches of resistors and capacitors whose values are related to certain factors,
where 0 < α < 1, is shown in Fig. 1(a) [41], or a tree shape of equal values can be
used to realize the half-order fractional element as shown in Fig. 1(b) [9]. New real-
izations of fractional elements using chemical reactions between different materials
are shown in Fig. 1(c) [1, 9, 13]. All these realizations are a good approximation for
the fractional element within a certain range of frequencies. Moreover, a new half-
order capacitor based on fractal structures was introduced in [10, 11].

In the near future, if scientists are able to realize a wide band fractional capacitor
of order α where 0 < α < 1 only, this will be enough to obtain the full range of α as
follows:

• A fractional capacitor of order 1 < α ≤ 2 can be obtained through the use of
a general impedance converter (GIC) whose input impedance is given by Zin =
Z1Z2Z3/(Z4Z5).
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• A fractional inductor of order 0 < β ≤ 2 can be realized by using the well-known
gyrator circuit whose input impedance is inversely proportional to ZL, so if ZL is
a fractional capacitor of order β , then the input impedance of the gyrator will be a
fractional inductor of the same order.

1.3 Boundary Characteristic Frequencies

An analysis of the generalized impedance of RLβCα shows new fundamental fre-
quencies [32–34] which do not exist in the conventional case. The definitions of these
frequencies are as follows.

• Pure real angular frequency (ωpr): the frequency at which the fractional impedance
is pure real (the phase equals 0 or π ). Then, if a sinusoidal voltage (or current)
source is applied at this frequency, the current (or voltage) will have the same
oscillation and fixed amplitude. This frequency exists if the circuit has at least two
fractional-order elements.

• Pure imaginary angular frequency (ωpi): the frequency at which the fractional
impedance is pure imaginary (the phase equals ±π/2). This frequency exists if the
circuit has two elements at least, and at least one of them is of fractional order.

• Short (or open) circuit angular frequency (ωsc or ωoc): the frequency at which
the magnitude equals zero. In this case, another necessary condition between the
circuit elements should exist. Ideally, in this case, the current (or voltage) will show
free oscillation with ωsc and with a magnitude depending on the initial storage
energy and circuit variables. This frequency will exist if the circuit has at least two
fractional-order elements.

2 Fractional Impedance of Series RLβCα Circuit

The Laplace formula of the total impedance for the series connection of a con-
ventional series RLC circuit is given by Z(s) = R + sL + 1/(sC), where s = jω,
Z(s) will be divided into either real and imaginary parts, or magnitude and phase
parts, which have the following fundamentals:

• The real part depends on R only; however, the imaginary part depends on
{ω,C,L}. Both the magnitude and phase responses are functions of {R,L,C,ω}.
Then there are two independent basic equations in four variables at maximum.

• The real part (related to the power loss) exists if and only if R �= 0, and the imagi-
nary part (related to the restoring energy) is depleted if and only if ωc = 1/

√
LC,

which is the boundary frequency between inductive and capacitive equivalent
impedance; so if ω > ωc, the impedance will be inductive, and otherwise the
impedance will be capacitive.

• The magnitude is always greater than zero, while the phase must always be inside
the range (−π/2,π/2).

• The magnitude response will be very large at both very low and very high frequen-
cies; however, it has a critical minimum at ωc, which is known as the resonance
frequency.
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Fig. 2 The magnitude and phase of the admittance of the series RLC circuit at ω = 1000 rad/sec

Fig. 3 (a) Simple
fractional-order RLβCα circuit,
(b) the corresponding phasor
diagram of the fractional
elements

Figure 2(a) shows the ratio between the resistor R and the impedance magnitude
‖Z‖, which is a function of only three variables {RC,LC, and ω} at a specific value
of ω = 1000 rad/sec. The phase response at the same frequency is plotted in Fig. 2(b)
where the phase changes its sign at LC = 10−6, which is expected because the reso-
nance frequency ωc = 1000 rad/sec.

The equivalent impedance of the simple fractional-order RLβCα circuit shown in
Fig. 3(a) is given by (3), and the fractional phasor diagram is shown in Fig. 3(b).
This phasor diagram describes the magnitude and phase of the impedance for each
element in the circuit. Since the reactance of the fractional inductor makes an angle
βπ/2 with R, it can be resolved into two parts, one in the same direction of R which
is proportional to cos(βπ/2) and the other perpendicular to R with factor sin(βπ/2).
The same can be applied to the fractional capacitor.

Z(jω)

R
=

(

1 + cos(απ
2 )

ωαRC
+ ωβL cos(βπ

2 )

R

)

+ j

(

− sin(απ
2 )

ωαRC
+ ωβL sin(

βπ
2 )

R

)

(3)

The general impedance of RLβCα where 0 < α,β < 2 is more complicated, since
instead of independent terms in both the real and imaginary parts, there will be de-
pendent terms, as will be shown. In order to simplify the magnitude response, two
variables (x and y) will be defined as follows:

x = 1

ωαRC
, y = ωβL

R
(4a)
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Z(jω)

R
=

(

1 + x cos

(
απ

2

)

+ y cos

(
βπ

2

))

+ j

(

−x sin

(
απ

2

)

+ y sin

(
βπ

2

))

(4b)

Both the real and imaginary parts of the circuit impedance have an important role
in design and analysis, such as power (power loss, power storage, power factor),
especially for biomedical applications. The real part of the RLβCα circuit depends on
four parameters, which are α, β , RC, and L/R. Any small changes in the fractional
orders will introduce big differences in the real part; thus, they are the most sensitive
parameters with respect to the real part. The fractional order α exists only in the
second term of the real part T2r , where T2r (α,ω) = cos(απ/2)/ωα .

3 New Fundamentals of the RLβCα Circuit

During the next study, three major special cases will be studied. The first case is
when the magnitude response is pure real, which means the phase response has an
angle of 0 or π . This case demonstrates the instant when all the power delivered to
the circuit is converted into losses. The second special case is when the magnitude
response is pure imaginary (phase response across the lines ±π/2), which happens
when all the delivered power to the circuit is stored inside without any kind of loss.
The last, very special case studied is when both real and imaginary parts deplete the
short circuit magnitude response. In this case, the circuit would not store or lose any
kind of incoming power, and if the circuit is closed, any already-stored power will
circulate and freely oscillate.

3.1 Pure Resistive

In this case Z(jω) is pure real (lossy element). As shown from (3), the imaginary
part will be zero if the operating frequency satisfies (5a), and then the impedance can
be simplified as shown in (5b) which is highly dependent on all parameters. When
ω > ωpr, the generalized impedance in (3) will be an inductive impedance, but when
ω < ωpr, the generalized impedance will be a capacitive impedance. When α or β = 2
(the fractional element in this case will act as a frequency-dependent negative resistor
(FDNR)), the general impedance in (3) will always have an imaginary part, but if
both of them are equal to 2, the general impedance will only be a real part (without
any constraint on ω); however, this real part will be frequency dependent. Also, if
α = β the pure resistive frequency will be ωpr = (LC)−1/(2α) for α �= 2, and the
corresponding pure real impedance Z(jωpr) = R + 2

√
L/C cos(απ

2 ). For the integer
case, when α = β = 1, the pure resistive frequency will be ωpr = 1/

√
LC, which is

known as the resonance frequency, while the pure real impedance Z(jωpr) = R.

ωpr =
(

sin(απ
2 )

LC sin(
βπ
2 )

) 1
α+β

, α,β �= 2 (5a)
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Fig. 4 (a) The relation between ωpr and β for different cases, (b) the pure real impedance Z(jω)pr for
α = β , (c) the imaginary part of the current versus frequency for three different cases

Z(jωpr) = R + sin

(
(α + β)π

2

)(
Lα

Cβ sinα(απ
2 ) sinβ(

βπ
2 )

) 1
α+β

(5b)

Figure 4(a) shows a relation between the pure resistive frequency and the fractional
order β . This frequency has a very wide range according to the relation between α

and β . Figure 4(b) shows the input impedance magnitude ‖Z(jω)‖ at pure resistive
frequency ωpr for different β; it is clear that when β = 1, the real part of Z(jω) =
‖Z(jω)‖ = R. Also Z(jω) will be restricted to the values from 800 � to 1200 �.
Figure 4(c) shows the PSpice simulation results of the imaginary part for the current
passing through the RLβCα circuit versus frequency in three different cases. It is
clear that each curve will cross the horizontal line i = 0 A (that means no imaginary
part, or its impedance is pure real) at the same calculated frequency ωpr from (5a)
which is L = 0.01 and R = 1 k� for three different cases: the first case at α = 0.5,
C = 10 µ, the second case at α = 1, C = 1 µ, and the last case at α = 1.4, C =
0.371 µ.
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Fig. 5 (a) The relation between x and y for the first case, (b) the relation between x and y for the third
case, (c) pure imaginary frequency versus α in the case of α = β , (d) the real part of the current when
R = 1,6 k�, and for different cases

3.2 Pure Inductive or Capacitive

In the second alternative Z(jω) is pure imaginary (lossless, or storing element). The
condition for (3) to be real-free is given by (6a), but this equation is nonlinear for ω

and depends on five independent variables L, C, R, α, and β .

ωα+βLC cos

(
βπ

2

)

+ ωαRC + cos

(
απ

2

)

= 0 (6a)

1 + x cos

(
απ

2

)

+ y cos

(
βπ

2

)

= 0 (6b)

To study different solutions for this equation, let’s use the two definitions in (4a); then
the equivalent equation will be (6b). Also, by removing ω from both definitions (4a),
the following relation will be obtained:

xβyα = Lα

CβRα+β
= K (6c)

Equation (6b) represents a straight line with slope m = −sec(βπ/2) cos(απ/2) as
shown in Fig. 5(a), with axis intersections at (0,−sec(βπ/2)), and (−sec(απ/2),0);
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however, Eq. (6c) represents two curves from the four illustrated in Fig. 5(a), where
the solid curve (located in the first quadrant) must be one of the two curves, and the
curvature of these lines is controlled by the variables (α,β,K). The intersection(s)
between the two equations is (are) the solution(s) of the previous equation. Then if x

or y is given, the frequency ω will easily be obtained from (6b). Since x and y must
be positive values for acceptable solutions, the solid curve is our main interest. This
conclusion will lead to three general cases:

1. α,β < 1: The intersection point has a negative value, which is unacceptable as a
result, thus no solution (the impedance must have real part), as shown in Fig. 5(a).

2. α < 1 < β or < 1 < α: The line makes an angle less than 45°; the system has a
unique solution for (x, y), which means single or multiple operating frequencies
depending on the value of (α + β).

3. α,β > 1: The line makes an angle greater than 45° and part of it is inside the first
quadrant. In this case, there are two possibilities according to the line intersecting
the solid curve or not, as shown in Fig. 5(b). The critical value between the two
possibilities is the point p1 and is given by

P1 = ((
Krα

) 1
α+β ,

(
kr−β

) 1
α+β

)
(7)

where r = β cos(βπ/2)/(α cos(απ/2)). p1 is the point on the solid curve having
the same slope m. The two possibilities can be described as follows.
(a) If P1 lies below the line, there is no intersection, and no solution.
(b) If P1 lies above the line, there are two different intersections, and many oper-

ating frequencies.

In the special case when α = β , Eq. (6a)–(6c) can be solved by quadratic form
and is given by (8). The magnitude under the square root is always less than 1.
Since the solutions must be positive and in this case there are two different solutions,
Fig. 5(c) shows these two possible values of ωpi versus α. For the well-known study
of the resonance circuit of integer order, there is no definition about pure imaginary
impedance because (8) has no solution when α = β = 1. PSpice simulation results for
three different cases which are equivalent to the previously discussed cases are shown
in Fig. 5(d), where case 1 represents no solution for α = 0.5, β = 1, C = 10 µ, and
L = 0.01, case 2 has one solution at fpi ≈ 167 Hz for α = 0.5, β = 1.4, C = 10 µ, and
L = 0.371, and case 3 has two different solutions at fpi1 ≈ 25 Hz; and fpi2 ≈ 81.2 Hz
for α = β = 1.4, C = 0.371 µ, and L = 0.371. All the previous values are the same
as given by the solution of (6a)–(6c).

ωpi =
(

R

2L cos(απ
2 )

(

−1 +
√

1 − 4L

R2C
cos2

(
απ

2

))) 1
α

(8)

3.3 Short Circuit Impedance

It is well known from our previous study that the RLC circuit will not oscillate freely
as a self-oscillation circuit. But this will be different in the generalized fractional-
order RLβCα circuit which can oscillate without any source (just short circuit).
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Fig. 6 (a) The short circuit resistance for different values of α and β , (b) PSpice transient response for
free oscillation of RLαCβ for R = 137 �, α = 1.4, β = 1, C = 0.371 µ, and L = 1

A nonautonomous linear oscillator can oscillate freely if and only if its equivalent
impedance is a short circuit (zero loss, and zero storing energy). Then if both the
real and imaginary parts of (3) are forced to be zero, the frequency of oscillation will
be obtained as ωosc = ωpr, and the condition of oscillation will be given by (9). The
short circuit resistance is illustrated for different values of α and β in Fig. 6(a). For
α,β ≤ 2, this condition will not be satisfied unless (α +β) > 2. This explains why in
integer-order systems, the RLC circuit cannot oscillate. When α = 1.4, C = 0.371 µ,
β = 1, and L = 1, the value of RSC ≈ 317.9 �, and ωosc ≈ 473.6 rad/sec. PSpice sim-
ulation results of the current passing through this RLβCα circuit without any voltage
source, but with initial resistance given by Eq. (9), are shown in Fig. 6(b).

Rsc = − sin

(
(α + β)π

2

)(
Lα

Cβ sinα(απ
2 ) sinβ(

βπ
2 )

) 1
α+β

(9)

4 Gradient-Based Optimization of the RLβCα Filters

The gradient-based optimization requires calculating the error function as well as the
derivatives in each iteration to simplify the search direction, which provides better
convergence than other techniques and is preferable in many inverse problems such
as cancer detection as presented in [35]. Therefore, the study of the sensitivity anal-
ysis is essential before starting this type of optimization. In this paper, the function
fminimax from the optimization toolbox of the Matlab program is selected to perform
the optimization technique. The next two subsections will discuss the sensitivity anal-
ysis of the fractional-order RLC circuit with respect to all possible design parameters.
Finally, the last subsection will introduce different optimization examples for differ-
ent orders.
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Fig. 7 (a) T2r versus α for different frequencies, (b) αc1 versus frequency ω

4.1 Sensitivity Analysis of the Real and Imaginary Parts

The sensitivity of the second term of the real part T2r with respect to α is given by

∂T2r

∂α
= − (π

2 ) sin(απ
2 ) + ln(ω) cos(απ

2 )

ωα
(10)

∂T2r/∂α is almost negative. The critical values of this term can be obtained as
given in (11). Then if ω = {0.1,10,103,105}, and the corresponding critical values
αc1 = {0.6189,1.3811,1.1423,1.0721},

∂T2r

∂α

∣
∣
∣
∣
α=αc1

= 0 → αc1 =
{

2 − 2
π

tan−1( 2
π

ln(ω)) ω > 1
2
π

tan−1(−2
π

ln(ω)) ω < 1
(11)

Traditionally, when α = 1, the term T2r disappears; however, for any other non-
integer order the ratio between the added term and the traditional term is T2r/(RC),
which means that any small values of T2r will be amplified by the ratio (1/(RC))
which is in the order of thousands. Then the study of T2r is not optional, as shown
in the following figures. Figure 7(a) shows the sketch of the second term T2r versus
the fractional order α. The maximum value of T2r increases as the operating angular
frequency is less than one, and these maximum values may increase to higher than
2, which effectively means that the traditional term is neglected with respect to the
added term. As ω increases, the effect of the added term decreases and tends to zero
at very high frequencies. Also, when α is very small, then T2 tends to one; however,
when α > 1, the added term becomes negative. This lets us explore the possibility of
the following fact for the series RCα circuit. The real part of the equivalent impedance
is always greater than R when α < 1 and equal to R at α = 1. But, when α > 1, the
real part may be positive, zero, or negative according to the operating frequency and
RC value at any fractional order α. This specific frequency is called the pure real
angular frequency ωpr. Figure 7(b) shows the relationship between the critical value
αc1 versus ω, which shows a decreasing function in the whole domain. The graph
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Fig. 8 (a) T1i versus α for different frequencies ω, (b) αc2 versus frequency ω

splits into two independent curves at ω = 1, and as ω tends to ∞ the critical αc1
tends to 1.

Note that αc1|ω + αc1|1/ω = 2, which means that the addition of the two critical
fractional powers at any frequency and its reciprocal is 2. Also, the ratio between their
magnitudes is T2r (αc1,1/ω)/T2r (2 − αc1,ω) = −ω2. The negative sign in this ratio
means that one of them is maximum and the other is minimum. For low frequencies
which are less than one and where αc1 < 1, T2r will be maximum; the opposite of this
occurs for frequencies greater than one. As shown in Fig. 8(a), for ω = 0.1 rad/sec,
and ω = 10 rad/sec the magnitude ratio between their extremes is 200, maximum
with a big value for the first and minimum with a small magnitude in the second.

Similarly, the effect of the fractional order α on the imaginary part can be dis-
cussed. The imaginary part of the equivalent impedance is composed of two indepen-
dent parts; the first is concerned with the fractional-order α with RC, and the second
is related to β with L/R values. The first term is T1i (α,ω,RC) = sin(απ/2)/ωα ,
and its derivative with respect to the fractional order α is given as (∂T1i )/∂α =
((π/2) cos(απ/2)− ln(ω) sin(απ/2))/ωα . So, the critical order of the imaginary part
is given by

∂T1i

∂α

∣
∣
∣
∣
α=αc2

= 0 → αc2 =
{

2
π

cot−1( 2
π

ln(ω)) ω ≥ 1

2 + 2
π

cot−1( 2
π

ln(ω)) ω < 1
(12)

From the previous discussion regarding the effect of the fractional-order α, there
is a relationship between both critical orders αc1 and αc2 as follows: αc1 = αc2 +
sgn(ω − 1), where sgn(.) is the sign function which produces either 1 or −1. Fig-
ure 8(a) shows the first term T1i in the imaginary part of the equivalent impedance
versus α for different values of ω. The critical fractional order αc2 versus ω is shown
in Fig. 8(b).

‖Z(jω)‖
R

=
√

1 + x2 + y2 + 2xy cos

(
α + β

2

)

+ 2x cos

(
απ

2

)

+ 2y cos

(
βπ

2

)

(13)
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Fig. 9 Contours of ‖Z‖/R for (a) α,β < 1, (b) α,β > 1

As known, the impedance magnitude is always positive, but it is very interesting to
study the location where there is zero magnitude. According to (13), the 3D graph of
the magnitude as a function of x and y is paraboloid; the contours for this magnitude
function are shown in Fig. 9 for two different cases. When α = β = 0.5, the contours
which have constant magnitude values are circular as shown in Fig. 9(a), but the
center of all these circles exists in the third quarter (x, y < 0), which is unacceptable
since both x and y are always positive. This center is the location for zero magnitude.
However, when α,β > 1, the contours are ellipses and the center of these ellipses lies
in the first quadrant as shown in Fig. 9(b).

Figure 10 shows the effect of the magnitude response with respect to the fractional
orders α and β at certain values of the other parameters, ω, RC, and LC. When
ω = 1 Mrad/sec, RC = 0.001, and LC = 10−8, Fig. 10(b) shows R‖Y(α,β)‖ versus
the full ranges of both fractional orders, which have a wide range for different orders.
The effect of decreasing ω is clear from Fig. 10(a, b), where the original surface has
been shifted in both directions and the y-axis is limited to 0.1 when ω = 10 rad/sec.
The effect of increasing LC is shown in Fig. 10(a, c), where the surface has been
shifted mainly to the back. However, the increase of RC is shown in Fig. 10(a, d).

The phase of the equivalent impedance of the series RLβCα can be defined by
(14), and the surface of this phase as a function of the fractional orders is shown in
Fig. 11(a) at ω = 1 Mrad/sec, RC = 0.001, and LC = 10−8. Then for fixed circuit
parameters and at a specific angular frequency, the phase changes from negative val-
ues to π . To verify the concept that this series circuit can oscillate freely, let us study
the admittance value at ω = 1000 rad/sec, RC = 0.001, and LC = 10−8 as shown in
Fig. 11(b), where there is a discontinuity at certain points in the domain (α,β). The
phase response of the impedance is shown in Fig. 11(c), which shows some regions
of complex discontinuities. To clarify this region, Fig. 11(d) illustrates the contours
of this phase surface, where the point of interest is very clear.

∠Z(jω) = tan−1
(

y sin(
βπ
2 ) − x sin(απ

2 )

1 + y cos(βπ
2 ) + x cos(απ

2 )

)

(14)
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Fig. 10 The admittance magnitude response for different cases with respect to α and β

Fig. 11 (a) Phase response versus fractional orders α and β at ω = 1 Mrad/sec, (b) admittance magnitude
with respect to α and β , (c) phase response versus fractional orders α and β at ω = 1 krad/sec, (d) the
contour of the phase surface at ω = 1 krad/sec
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4.2 Sensitivity Analysis of the Magnitude Response

4.2.1 The Effect of (RC)

The magnitude response versus RC has a critical value at ∂(‖Z(RC)‖/R)/∂(RC) =
0. This critical value (RC)c is given by

(RC)−1
c = −ωα

(

ωβ

(
L

R

)

cos

(
(α + β)π

2

)

+ cos

(
απ

2

))

(15a)

At the critical value of RC, the magnitude of this impedance is always minimum and
is given by

(
(‖Z(RC)‖)

R

)

(RC)c

=
∣
∣
∣
∣sin

(
απ

2

)

+ ωβ

(
L

R

)

sin

(
(α + β)π

2

)∣
∣
∣
∣ (15b)

This minimum value can be zero (short circuit free oscillation) if (RC)sc is chosen
to be (RC)c and (L/R) is chosen such that (L/R)sc = − sin(απ/2)/(ωβ sin((α +
β)π/2)). Figure 12(a) shows the values of (RC)c versus β for different values of
the fractional order α at angular frequency ω = 1 Mrad/sec and R/L = 10−6. Some
curves are plotted for certain ranges of β at which (RC)c is positive. The magnitude
of the admittance versus (RC) is shown in Fig. 12(b) at the listed data. The minimum
magnitude of the impedance at (RC)c is shown in Fig. 12(c), where some local maxi-
mum exists for each curve at β∗, and where β∗ +α = 1−(2/π) tan−1(π/(2 ln(ω)))+
sgn(ω − 1). Then if ω = 1 Mrad/sec, β∗ + α = 1.9279 as shown in Fig. 12(c).

4.2.2 The Effect of (L/R)

Similarly, the effect of the parameter (L/R) on the magnitude response is discussed,
where the critical value is

(
L

R

)

c

= −
(

cos( (α+β)π
2 )

ωα+βRC
− cos(βπ

2 )

ωβ

)

(16a)

and the magnitude at the critical value of L/R is given by

(
(‖Z(RC)‖)

R

)

( L
C

)c

=
∣
∣
∣
∣sin

(
βπ

2

)

+ sin(
(α+β)π

2 )

ωαRC

∣
∣
∣
∣ (16b)

as shown in Fig. 12(d) at α = 0.5, RC = 0.001, and for different values of oper-
ating angular frequency ω = {102,104,106} rad/sec. When the operating frequency
increases, the critical value decreases. Also, each magnitude response has a minimum
value at certain values of β , and this value increases quickly as α increases. The min-
ima of ((‖Z(RC)‖)/R)(L/C)c are not equal as shown; as the frequency increases, the
possibility of the short circuit free oscillation case occurring is increased.
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Fig. 12 (a) The critical value of RC versus β for different α, (b) the admittance magnitude versus RC,
(c) the impedance magnitude at critical RC versus β for different α, (d) the impedance magnitude at
critical RC versus β for different ω

4.2.3 The Effect of α, and β

Now, the effect of a small perturbation in each fractional order is discussed separately.
Figure 13(a) shows that for ω = 1 Mrad/sec, a small change of 0.1 around the integer
order in the fractional order β can be the reason for the magnitude scaling of 100.
Moreover, the peak of the admittance magnitude can be highly magnified for a small
perturbation as shown in Fig. 13(b) where ω = 1000 rad/sec. When α = β the magni-
tude response will be symmetric around ωo = (LC)−1/2α as shown in Fig. 13(c). The
magnitude has the same shape and same symmetry axis, but the bandwidth and peaks
vary as (RC) changes. However, when α �= β this symmetry is volatile as shown in
Fig. 13(d); the lower frequency band is affected with α more than β and vice versa.

5 Optimization Design Examples

Many curves cannot be obtained using the traditional systems, but they may be
achieved using the generalized system due to the extra degree of freedom. For exam-
ple, let us try to model a certain frequency response of a given system by its equiva-
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Fig. 13 (a) The admittance magnitude versus α for different β , (b) the admittance magnitude versus β

for different α, (c) the admittance magnitude versus frequency for different RC at α = β = 1.5, (d) the
admittance magnitude versus frequency for different RC at α = 1.5 and β = 1

lent electrical impedance. Assume the target magnitude response is R‖Y(jω)‖ of the
series connection of RLβCα , with given RC = 10−3, L/R = 10−5, and unknown
fractional order vector p = (α, β). Each response has different characteristic issues,
like the locations of maxima and minima and their magnitude levels, depending on
the vector p. In order to get the best fractional-order vector p for ultimate matching
in the frequency range ω ∈ [1,109] rad/sec, an appropriate optimization technique is
applied to minimize the error between the target and design responses. Fminimax is
a very common optimization function used in the Matlab toolbox; it minimizes the
maximum absolute error vector between the design and the target responses for all
values of ω which belong to its full range. The final optimizer vector p∗ is given by

P ∗ = min
P∈[α,β] max

ω

∥
∥Y(jω,P ) − Ytar(jω)

∥
∥, ∀ω ∈ [

1,109] (17)

The optimization initial factors are given as Pmin = [0.1,0.1], Pmax = [1.9,1.9],
and the initial value chosen for the fractional-order vector is Po = [1.0,1.0], which
is the known traditional integer-order case. The previous example can be extended
for more orders, as seen in the next example, where the target fractional orders are
given by α = 1.3, and β = 1.4. The target response is shown in Fig. 14, where one
can see that this response has different characteristics than the traditional RLC like
two unequally local maxima points and one minimum point.

Using the same previous initializations, Table 1 shows the relation between the
number of iterations, output optimizer fractional order p = [α,β], and the maximum
absolute error, which is given by maxω ‖Y(jω,α,β)−Ytar(jω)‖, ∀ω ∈ [1,106]. The
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Fig. 14 The target response of
the series RLβCα

Table 1 Maximum absolute error versus number of iterations

N α β Maximum absolute error

1 1 1 0.910567211818491

10 1.04227314691733 1.19058231285022 0.783363021308538

20 1.04227314691733 1.19058233059128 0.783363021223020

30 1.04490638447112 1.18898520365004 0.778424042483930

40 1.06022855723747 1.20830274920557 0.748398459660243

50 1.25219002840919 1.43482334357574 0.194130776067777

60 1.25184892989467 1.43459027754894 0.192758239858582

70 1.25188107461205 1.43396172513362 0.189144232680705

80 1.25430797421031 1.43233954829452 0.180024413899684

90 1.27241094543248 1.41993080005695 0.110599232446168

100 1.28687148026980 1.40966695797841 0.0533604622831690

110 1.30000000146210 1.39999984153281 8.84091893582628e-07

118 1.29999999999992 1.40000000000941 5.24729149020686e-11

maximum error decreases from 0.91056 to 5.247 × 10−11 in 118 iterations, and the
fractional orders adapt themselves gradually, as shown in the table. The fractional
order β changes from 1.0, then increases to more than 1.43, and finally return back
to 1.4, which demonstrates the oscillations which can happen in order to reach their
optimized values.

Figure 15(a) shows five responses at different iterations at N = 1, 20, 60, 90, and
118, which are shown in the first column in Table 1; the second and third columns
are the optimized fractional orders. As seen, the responses try to capture the main
characteristics of target response. When N = 1 (integer case) the response is flat with
a single maximum and wide spectrum; then at N = 20, the response changes the
location of the maximum and its width; after 50 iterations, the response is almost in
the same band of frequencies and tries to improve to be closer to the target response.
The maximum absolute error exponentially decreases with the number of iterations
as shown in Fig. 15(b).
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Fig. 15 (a) The response for
five different iterations, (b) the
maximum absolute error versus
the number of iterations, (c) the
optimizer output and the target
orders for 42 different target
cases

Figure 15(c) shows the final output optimizer vector and the target fractional-order
vector for different values of α and β using the analytical derivatives of the designed
response. More than 40 cases are tested during this example, illustrating excellent
fractional-order detection.
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6 Conclusion

This paper discussed the effects of using fractional-order elements (fractional-order
capacitor and fractional-order inductor) instead of integer-order elements in series
RLC circuits where new fundamentals and generalizations of the known fundamen-
tals in circuit theory are introduced, such as generalized expressions for pure resistive,
pure inductive, and pure capacitive conditions. Furthermore, the introduction of free
oscillation conditions is derived. Sensitivity analyses of all circuit parameters are in-
troduced given closed-form expressions to be used in the gradient-based optimization
for filter design, where more than 40 different design examples are tested, showing a
perfect response detection.
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