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Abstract This paper deals with the problem of robust stabilization for Marko-
vian jump delayed systems with partially known transition rates subject to input
saturation. The problem we address is the design of dynamic anti-windup com-
pensators, which guarantee that the resulting closed-loop constrained systems are
robustly mean-square stable. By employing local sector conditions and an appropri-
ate Lyapunov-Krasovskii function, some sufficient conditions for the solution to this
problem are derived in terms of linear matrix inequalities. Finally, a numerical exam-
ple is provided to demonstrate the effectiveness of proposed method.

Keywords Markovian jump delayed systems · Input saturation ·
Dynamic anti-windup · Partially known transition rates · Robust control

1 Introduction

Recently, lots of significant researches focused on the design of dynamic anti-windup
compensator for the systems with input saturation. In many practical systems, satu-
ration causes the nonlinearity which may lead to performance degradation. In the
past decades, a great number of results have been reported in [2, 3, 12, 13, 18, 19,
42, 43]. For instance, by using passivity theorem to deal with input saturation, some
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analysis results were presented in [12]. An optimization-based approach was pro-
posed to design feedback and anti-windup gains of a controller subject to saturation
in [3]. The static anti-windup synthesis problem for a class of linear systems with
actuator amplitude and rate saturation was considered in [18]. The method based on
multiobjective convex optimization was used to deal with the problem of anti-windup
controller synthesis in [19]. By employing dynamic anti-windup scheme, the stabil-
ity analysis and control synthesis problems for linear system with saturation were
studied in [42, 43]. In addition, time delays which may cause difficulty in stability
analysis and controller design are often encountered in many practical systems, and
the stabilization problem of time-delay systems has attracted many researchers; see,
e.g., [1, 5–7, 11, 15, 16, 29, 36–38], and the references therein. More recently, for
time-delay systems with input saturation, the robust stabilization and optimal control
problems were investigated in [27, 28].

On the other hand, considerable attention has been devoted to the study of Marko-
vian jump systems in [9, 10, 20, 23–25, 30, 34, 41]. When taking time delays into
account Markovian jump systems, various results on stability analysis [4, 14, 21, 46],
controller design [5, 35, 40] and filter design [22, 26, 33, 45] have been presented,
where the transition rates of the Markovian process are assumed to be completely
known. While this assumption was removed in [32, 44]. Furthermore, for Marko-
vian jump systems subject to saturation, the stability analysis and controller design
problems were considered in [8, 17], respectively.

However, to the best of our knowledge, the robust stabilization problem of Marko-
vian jump systems with time-delay and saturating actuators has not been fully inves-
tigated in the recent developed works. In this paper, we consider a class of Markovian
time-delay systems with actuator saturation and partially known transition rates. By
use of Lyapunov–Krasovskii function approach, a dynamic anti-windup compensator
is designed to ensure the locally stability of the resulting closed-loop system. A nu-
merical example is employed to show the potential of the proposed method. The
contribution of this paper can be listed as follows:

(1) Analyze the stability of this class of Markovian jump delayed systems with partly
known transition rates;

(2) Study the robust stabilization problem of the considered Markovian jump delayed
systems with saturation and partly known transition rates by using the dynamic
compensation scheme.

Notation Throughout the paper, for symmetric matrices X and Y , the notation
X ≥ Y (respectively, X > Y ) means that the matrix X − Y is positive semi-definite
(respectively, positive definite). I is the identity matrix with appropriate dimension.
The notation MT represents the transpose of the matrix M ; (Ω, F , P ) is a probabil-
ity space; Ω is the sample space, F is the σ -algebra of subsets of the sample space
and P is the probability measure on F ; E {·} denotes the expectation operator with
respect to some probability measure P . Matrices, if not explicitly stated, are assumed
to have compatible dimensions. The symbol ∗ is used to denote a matrix which can
be inferred by symmetry. He{A} = AT + A.
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2 Model Descriptions and Preliminaries

Consider the following class of Markovian jump systems (Σ) in the probability space
(Ω, F , P ):

ẋ(t) = A
(
δ(t), t

)
x(t) + Ad

(
δ(t), t

)
x
(
t − h(t)

) + B
(
δ(t), t

)
V (t), (1)

y(t) = C
(
δ(t), t

)
x(t), (2)

x(t + θ) = φ(θ), ∀θ ∈ [−τ,0], (3)

where x(t) ∈ R
n is the state vector, V (t) ∈ R

m is the input, y(t) ∈ R
q is the mea-

surement output. The time-delay h(t) ≤ τ , τ is positive constant, and ḣ(t) ≤ d < 1.
{δ(t)} is a continuous-time Markovian process with right continuous trajectories and
taking values in a finite set S = {1,2, . . . , N } with transition probabilities given by

Pr
{
δ(t + 	) = j |δ(t) = i

} =
{

πij	 + o(	) i �= j,

1 + πii	 + o(	) i = j,

where 	 > 0, lim	→0(o(	)/	) = 0 and πij ≥ 0, for j �= i, is the transition rate from
mode i at time t to mode j at time t + 	 and

πii = −
∑

j∈S,j �=i

πij .

In this paper, the transition rates of the jumping process are considered to be partly ac-
cessible. For instance, the transition rates matrix of the system (Σ) may be expressed
as follow:

⎡

⎢⎢⎢
⎣

π11 ? π13 · · · ?
? ? ? · · · π2n

... ?
...

. . .
...

πn1 ? πn3 · · · ?

⎤

⎥⎥⎥
⎦

,

where “?” represents the unknown transition rate. For notational clarity, ∀i ∈ S, the
set Si denotes

Si = Si
k ∪ Si

uk,

with

Si
k

.= {j : πij is known for j ∈ S},
Si

uk

.= {j : πij is unknown for j ∈ S}.
Moreover, if Si

k �= ∅, it is further described as

Si
k = {

ki
1, k

i
2, . . . , k

i
m

}
, (4)

where m is non-negation integer with 1 ≤ m ≤ N and ki
j ∈ Z+,1 ≤ ki

j ≤ N , j =
1,2, . . . , N , represent the j th known element of the set Si

k in the ith row of the
transition rate matrix.
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The plant inputs are supposed to be bounded as follows:

−u0(i) ≤ u(i) ≤ u0(i), u0(i) > 0, i = 1, . . . ,m. (5)

In the system (Σ), to simplify the notation, we denote Ai + 	Ait = A(δ(t), t) for
each δ(t) = i ∈ S, and the other symbols are similarly denoted. Ai , Adi , Bi and Ci

are known real constant matrices of the system (Σ) for each δ(t) = i ∈ S, 	Ai(t),
	Adi(t), 	Bi(t) are unknown real matrices with

[
	Ai(t) 	Adi(t) 	Bi(t)

] = MiFi(t)[Nai Nadi Nbi]. (6)

Assume that the following controller has been designed for stabilizing the system
disregarding the control bounds given in (5) for each δ(t) = i ∈ S:

ẋc(t) = Acixc(t) + Bciuc(t), (7)

yc(t) = Ccixc(t) + Dciuc(t), (8)

where xc(t) ∈ R
nc , uc(t) ∈ R

np and yc(t) ∈ R
m. Aci , Bci , Cci , Dci are matrices with

appropriate dimensions. In consequence of the control bounds, the nominal intercon-
nection of the controller (7)–(8) with the system (Σ) is

uc(t) = y(t), V (t) = sat
(
yc(t)

)
.

Since that the controller was designed disregarding the control input bounds, the fol-
lowing anti-windup compensator is given to ensure the closed-loop stability of the
system (Σ):

ẋa(t) = Aaixa(t) + Baiψ
(
yc(t)

)
, (9)

ya(t) = Caixa(t) + Daiψ
(
yc(t)

)
, (10)

with vectors ψ(yc(t)) = sat(yc(t))−yc(t), xa(t) ∈ R
n+nc , ya(t) ∈ R

nc being, respec-
tively, the input, the state, the output of the compensator. Then it is easy to achieve
the new controller as follows:

ẋc(t) = Acixc(t) + Bciy(t) + ya(t),

yc(t) = Ccixc(t) + Dciuc(t).

Define ξ(t) = [x(t)T xc(t)
T xa(t)

T ]T , the corresponding augmented system will be
represented by the following equations:

ξ̇ (t) = Aξ(t) + Adξ
(
t − h(t)

) + Bψ
(
yc(t)

)
, (11)

u(t) = Kξ(t), (12)

ξ(t + θ) = φ(θ), ∀θ ∈ [−τ,0], (13)

where

A = Âi + 	Âi(t), Ad = Âdi + 	Âdi(t), B = B̂i + 	B̂i(t),

K = [DciCi Cci 0] = [K1 0], and [	Âi 	Âdi 	B̂i] = M̄iFi(t)N,
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with the following matrices:

M̄T
i = [

MT
i 0 0

]
, N = [N̄i Ndi Nbi],

N̄i = [Nai + NbiDciCi NbiDciCi 0] = [Ni1 0],
Ndi = [Nadi 0 0] = [Ndi1 0],

Âi =
[

Āi ǏCai

0 Aai

]
, Âdi =

[
Ādi 0
0 0

]
, B̂i =

[
B̄i + ǏDai

Bai

]
,

Āi =
[

Ai + BiDciCi BiCci

BciCi Aci

]
, Ādi =

[
Adi 0
0 0

]
, B̄i =

[
Bi

0

]
,

Ǐ T = [0 I ].

3 Main Results

In this section, we investigate the design of anti-windup compensator which guaran-
tees the locally stability of the resulting closed-loop system. Before presenting the
main results, we first give the following lemmas:

Lemma 1 [27] For the matrix K of the system (11)–(13), the appropriate matrix
Li ∈ R

m×2(n+nc) is given, if ξ(t) is in the set D(uo), where D(uo) is defined as
follows:

D(uo) = {
ξ(t) ∈ R2(n+nc);−u0(k) ≤ (K(k) − Li(k))ξ(t) ≤ u0(k),

u0(k) > 0, k = 1, . . . ,m
}
,

then for any diagonal positive matrix T ∈ R
m×m, the following inequality holds:

ψ
(
u(t)

)T
T

(
ψ

(
u(t)

) − Liξ(t)
) ≤ 0.

Lemma 2 [31] For the matrices A,D,S,W > 0, the matrix F(t)T F (t) ≤ I with
appropriate dimensions, the following inequalities hold:

(1) ∀ε > 0 and x, y ∈ Rn

2xT DFSy ≤ ε−1xT DDT x + εyT ST Sy.

(2) ∀ε > 0, if W − εDDT > 0,

(A + DFS)T W−1(A + DFS) ≤ AT
(
W − DDT

)−1
A + ε−1ST S.

Lemma 3 [39] For the given matrices X = XT ,D,Z and the matrix R = RT > 0
with appropriate dimensions, for all the F ∈ {F | FT F ≤ R}, the following inequality
holds:

X + DFZ + (DFZ)T < 0,
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if and only if there exists a scalar ε > 0 this makes that the following holds:

X + εDDT + ε−1ZT RZ < 0.

Lemma 4 [3] For the given symmetric matrix S ∈ R
(n+m)×(n+m)

S =
[

S11 S12

ST
12 S22

]

,

where S11 ∈ R
n×n, S12 ∈ R

n×m, S22 ∈ R
m×m, the following conditions are equiva-

lent:

(1) S < 0.

(2) S11 < 0, S22 − ST
12S

−1
11 S12 < 0.

(3) S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

Theorem 1 Consider system (Σ) with V (t) = 0 and partially known transition rates,
for each δ(t) = i ∈ S, the constant d < 1 and scalars εi > 0, if there exist symmetric
positive definite matrices Pi,R,Wi , such that the following linear matrix inequalities
(LMIs) hold:

H0 +
∑

j∈(Si
k)

πij (Hw + Hp) < 0, i ∈ Si
k, (14)

Pi − Wi < 0, j �= i ∈ Si
uk, (15)

Pi − Wi ≥ 0, j = i ∈ Si
uk, (16)

where

H0 =
⎡

⎢
⎣

He(PiAi) + εiN
T
aiNai + R PiAdi PiMi

∗ εiN
T
adiNadi − (1 − d)R 0

∗ ∗ − 1
2εiI

⎤

⎥
⎦ ,

Hp =
[

Pj 0

0 0

]

,

Hw =
[

−Wi 0

0 0

]

,

and “0” is zero matrix with appropriate dimensions, then system (Σ) with V (t) = 0
is stable.

Proof Define the following Lyapunov function for each δ(t) = i ∈ S:

V
(
x(t), i, t

) = x(t)T Pix(t) +
∫ t

t−h(t)

x(θ)T Rx(θ) dθ, (17)
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then we derive

LV
(
x(t), i, t

) = 2x(t)T Pi ẋ(t) +
∑

j∈(s)

πij x
T (t)Pjx(t) + xT (t)Rx(t)

− (
1 − ḣ(t)

)
xT

(
t − h(t)

)
Rx

(
t − h(t)

)

= x(t)T
(
PiAi + AT

i Pi

)
x(t) + 2x(t)T PiAdix

(
t − h(t)

)

+
∑

j∈(s)

πij x(t)T Pjx(t)

+ x(t)T Rix(t) − (
1 − ḣ(t)

)
x
(
t − h(t)

)T
Rx

(
t − h(t)

)

+ 2x(t)T Pi	Aitx(t) + 2x(t)T Pi	Aditx
(
t − h(t)

)
.

Based on the Lemma 2, it is easy to achieve that

2x(t)T Pi	Aitx(t) ≤ ε−1
i x(t)T PiMiM

T
i Pix(t) + εix(t)T NT

aiNaix(t),

2x(t)T Pi	Adit x
(
t − h(t)

)

≤ ε−1
i x(t)T PiMiM

T
i Pix(t) + εix

(
t − h(t)

)T
NT

adiNadix
(
t − h(t)

)
.

Since ḣ(t) < d , then we derive

LV
(
x(t), i, t

) ≤ 2x(t)T
(
PiAi + AT

i Pi

)
x(t) + 2ε−1

i x(t)T PiMiM
T
i Pix(t)

+ εix(t)T NT
aiNaix(t) +

∑

j∈(s)

πij x(t)T Pjx(t) + x(t)T Rix(t)

− (1 − d)x
(
t − h(t)

)T
Rx

(
t − h(t)

)

+ εix
(
t − h(t)

)T
NT

adiNadix
(
t − h(t)

)
,

= ξ(t)H̄ ξ(t)T ,

where

H̄ =
[
He(PiAi) + εiN

T
ai

Nai + R + ∑
j∈(s) πijPj + 2ε−1

i
PiMiM

T
i

Pi PiAdi

∗ εiN
T
adi

Nadi − (1 − d)R

]

,

ξ(t) = [
x(t)T x

(
t − h(t)

)T ]
.

By using the Schur complements, H̄ < 0 is equivalent to

⎡

⎣
He(PiAi) + εiN

T
aiNai + R + ∑

j∈(s) πijPj PiAdi PiMi

∗ εiN
T
adiNadi − (1 − d)R 0

∗ ∗ − 1
2εiI

⎤

⎦

< 0. (18)



2220 Circuits Syst Signal Process (2013) 32:2213–2229

Since
∑

j∈(s) πij = 0, it is easily shown that (18) is satisfied if LMIs in (14)–(16) are
satisfied, which implies that LV (x(t), i, t) < 0, in view of [25], it is easy to see that
system (Σ) is stable. The proof is completed. �

We are now in a position to give some results on the dynamic anti-windup com-
pensator design for the considered system (Σ).

Theorem 2 Consider the closed-loop system (11)–(13) with the partially known
transition rates, for each δ(t) = i ∈ S, the given bound of the input u0, the con-
stant d < 1 and scalars εi > 0, if there exist symmetric positive definite matrices
Xi,Yi,Ri1,Ri3,Wi1, Wi3,G1,G2, diagonal positive definite matrices Si , invertible
matrix Ni , and matrices Âai , B̂ai , Ĉai , D̂ai,Ui,Vi,Ri2,Wi2, such that the following
linear matrix inequalities (LMIs) hold:

[
H0 + ∑

j∈(Si
k)

πijHw + πiiHi ∗
ΛT

1i −Ξ1i

]

< 0, i ∈ Si
k, (19)

[
H0 + ∑

j∈(Si
k)

πijHw ∗
ΛT

2i −Ξ2i

]

< 0, i ∈ Si
uk, (20)

⎡

⎢⎢⎢
⎣

−Wi1 ∗ ∗ ∗
−Wi2 −Wi3 ∗ ∗
Xi Yi −G1 ∗
0 Ni 0 −G2

⎤

⎥⎥⎥
⎦

< 0, j �= i ∈ Si
uk, (21)

[
Xi − Wi1 ∗
Xi − Wi2 Yi − Wi3

]
≥ 0, j = i ∈ Si

uk, (22)

⎡

⎢
⎣

Xi ∗ ∗
Xi Yi ∗

K1Xi + Ui K1Yi + Vi μ2
o(k)

⎤

⎥
⎦ > 0, k = 1, . . . ,m, (23)

G1 − Yi ≤ 0, (24)

where

H0 =

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

H11 ∗ ∗ ∗ ∗ ∗
H21 H22 ∗ ∗ ∗ ∗

XiĀdi XiĀdi −(1 − d)Ri1 ∗ ∗ ∗
YiĀdi YiĀdi −(1 − d)Ri2 −(1 − d)Ri3 ∗ ∗

H51 + Ui H52 + Vi 0 0 −2Si ∗
Ni1Xi Ni1Yi Ndi1Xi Ndi1Yi NbiSi −εiI

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

,

Hi =
⎡

⎢
⎣

Xi Xi 0
Xi Yi 0
0 0 0

⎤

⎥
⎦ , Hw =

⎡

⎢
⎣

−Wi1 ∗ 0
−Wi2 −Wi3 0

0 0 0

⎤

⎥
⎦ ,
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Ξ1i = diag{G1,G2, . . . ,G1,G2, . . . ,G1,G2},
Ξ2i = diag{G1,G2, . . . ,G1,G2},

Λ1i =
[√

πiki
1
Q̄i

√
πiki

2
Q̄i · · · √

πiki
r−1

Q̄i
√

πiki
r
Q̄i · · · √

πiki
m
Q̄i

0 0 · · · 0 0 0 0

]

,

Λ2i =
[√

πiki
1
Q̄i

√
πiki

2
Q̄i · · · √

πiki
m
Q̄i

0 0 · · · 0

]

,

with

H11 = He(ĀiXi) + Ri1 + εiM0,

H21 = ĀiXi + YiĀi
T + ĈT

ai Ǐ
T + ÂT

ai + Ri2 + εiM0,

H22 = He(ĀiYi + Ǐ Ĉai) + Ri3 + εiM0,

H51 = SiB̄
T
i + D̂T

ai Ǐ
T + B̂T

ai , H52 = SiB̄
T
i + D̂T

ai Ǐ
T ,

Q̄i =
[
Xi 0
Yi NT

i

]
, M0 =

[
MiM

T
i 0

0 0

]
,

and “0” is zero matrix with appropriate dimensions, then the resulting closed-loop
system (11)–(13) is locally asymptotically stable for every initial condition belong to
ε(Pi,1). In this case, the desired dynamic anti-windup compensator in the form of
(9) and (10) can be designed with parameters as follows:

NT
i M̃i = I − YiX

−1
i , Aai = M̃−T

i X−1
i ÂaiN

−1
i , (25)

Bai = M̃−T
i X−1

i B̂aiS
−1
i , Cai = ĈaiN

−1
i , Dai = D̂aiS

−1
i . (26)

Proof Define the following Lyapunov function for each δ(t) = i ∈ S

V
(
ξ(t), i, t

) = ξ(t)T Piξ(t) +
∫ t

t−h(t)

ξ(θ)T Rξ(θ) dθ,

then we derive

LV
(
ξ(t), i, t

) = 2ξ(t)T Pi ξ̇ (t) +
∑

j∈(s)

πij ξ
T (t)Pj ξ(t) + ξT (t)Rξ(t)

− (
1 − ḣ(t)

)
ξT

(
t − h(t)

)
Rξ

(
t − h(t)

)

= ξ(t)T
(
PiÂi + ÂT

i Pi

)
ξ(t) + 2ξ(t)T PiÂdiξ

(
t − h(t)

)

+ 2ξ(t)T PiB̂iψ(t) +
∑

j∈(s)

πij ξ
T (t)Pj ξ(t) + ξT (t)Rξ(t)

− (
1 − ḣ(t)

)
ξT

(
t − h(t)

)
Rξ

(
t − h(t)

)

+ ξ(t)T
(
Pi	Âi(t) + 	Âi(t)

T Pi

)
ξ(t)

+ 2ξ(t)T Pi	Âdi(t)ξ
(
t − h(t)

) + 2ξ(t)T Pi	B̂i(t)ψ(t).
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Based on the Lemma 2, we have

2ξ(t)T Pi

(
	Âi(t)ξ(t) + 	Âdi(t)ξ

(
t − h(t)

) + 	B̂i(t)ψ(t)
)

≤ εiξ(t)T PiM̄iM̄
T
i Piξ(t) + ε−1

i β(t)T NT Nβ(t), (27)

where β(t) = [ξ(t)T ξ(t −h(t))T ψ(t)T ]. From (27) and Lemma 1, one easily obtains
the following inequality:

LV
(
ξ(t), i, t

) ≤ ξ(t)T
[
PiÂi + ÂT

i Pi +
∑

j∈(s)

πijPj + R + εiPiM̄iM̄
T
i Pi

]
ξ(t)

+ 2ξ(t)T PiB̂iψ(t) − (1 − d)ξT
(
t − h(t)

)
Rξ

(
t − h(t)

)

+ 2ξ(t)T PiÂdiξ
(
t − h(t)

) − 2ψ
(
u(t)

)T
Ti

(
ψ

(
u(t)

) − Liξ(t)
)

+ ε−1
i β(t)T NT Nβ(t)

≤ β(t)T Φiβ(t) + ε−1
i β(t)T NT Nβ(t), (28)

where

Φi =
⎡

⎣
Ωi ∗ ∗

ÂT
diPi −(1 − d)R ∗

B̂T
i Pi + TiLi 0 −2Ti

⎤

⎦ ,

with

Ωi = PiÂi + ÂT
i Pi +

∑

j∈(s)

πijPj + R + εiPiM̄iM̄
T
i Pi . (29)

Due to
∑

j∈(s) πij = 0, it is easily showed that
∑

j∈(s) πij ξ(t)T Oiξ(t) = 0, where

Oi = OT
i > 0. Adding [−∑

j∈(s) πij ξ(t)T Oiξ(t)] into LV (ξ(t), i, t), we have

Ωi = PiÂi + ÂT
i Pi +

∑

j∈(s)

πijPj −
∑

j∈(s)

πijOi + R + εiPiM̄iM̄
T
i Pi . (30)

By employing the Schur complements, one can obtain
⎡

⎢⎢
⎢
⎣

Ωi ∗ ∗ ∗
ÂT

diPi −(1 − d)R ∗ ∗
B̂T

i Pi + TiLi 0 −2Ti ∗
N̄i Ndi Nbi −εiI

⎤

⎥⎥
⎥
⎦

< 0, (31)

then pre- and post-multiplying (31) by diag(Qi,Qi, Si, I ), respectively, we derive
⎡

⎢⎢⎢
⎣

Ω̄i ∗ ∗ ∗
QiÂ

T
di −(1 − d)Ri ∗ ∗

SiB̂
T
i + Zi 0 −2Si ∗

N̄iQi NdiQi NbiSi −εiI

⎤

⎥⎥⎥
⎦

< 0, (32)
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where

Ω̄i = ÂiQi + QiÂ
T
i +

∑

j∈(s)

πijQiPjQi −
∑

j∈(s)

πijWi + Ri + εiM̄iM̄
T
i ,

Zi = LiQi = [Vi Ũi], Ri = QiRQi, Wi = QiOiQi,

Qi = P −1
i , Si = T −1

i .

Defining H as the left-hand side of (32), it follows that

H = H0 +
∑

j∈(S)

πijHj +
∑

j∈(S)

πijHw

= H0 +
∑

j∈(Si
k,j �=i)

πijHj +
∑

j∈(Si
k)

πijHw + πiiHi

+
∑

j∈(Si
uk,j �=i)

πijHj +
∑

j∈(Si
uk)

πijHw, (33)

where

H0 =

⎡

⎢⎢⎢
⎣

Ω̄i0 ∗ ∗ ∗
QiÂ

T
di −(1 − d)Ri ∗ ∗

SiB̂
T
i + Zi 0 −2Si ∗

N̄iQi NdiQi NbiSi −εiI

⎤

⎥⎥⎥
⎦

,

Hj =
[
QiPjQi 0

0 0

]
, Hw =

[−Wi 0
0 0

]
,

with Ω̄i0 = ÂiQi + QiÂ
T
i + Ri + εiM̄iM̄

T
i and “0” is zero matrix with appropriate

dimensions. From (33), one can easily find that if the following conditions hold, we
have H < 0:

H0 +
∑

j∈(Si
k,j �=i)

πijHj +
∑

j∈(Si
k)

πijHw + πiiHi < 0, j = i ∈ Si
k, (34)

H0 +
∑

j∈(Si
k,j �=i)

πijHj +
∑

j∈(Si
k)

πijHw < 0, j = i ∈ Si
uk, (35)

Hj + Hw < 0, j ∈ Si
uk, j �= i, (36)

Hj + Hw ≥ 0, j ∈ Si
uk, j = i. (37)

Based on the conditions (34), (35) and by using the Schur complements, we derive

[
H0 + ∑

j∈(Si
k)

πijHw + πiiHi Λ1i

ΛT
1i −Ξ1i

]

< 0, i ∈ Si
k, (38)
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[
H0 + ∑

j∈(Si
k)

πijHw Λ2i

ΛT
2i −Ξ2i

]

< 0, i ∈ Si
uk, (39)

where

Ξ1i = diag{Qki
1
,Qki

2
, . . . ,Qki

r−1
,Qki

r
, . . . ,Qki

m
},

Ξ2i = diag{Qki
1
,Qki

2
, . . . ,Qki

m
},

Λ1i =
[√

πiki
1
Qi

√
πiki

2
Qi · · · √

πiki
r−1

Qi
√

πiki
r
Qi · · · √

πiki
m
Qi

0 0 · · · 0 0 0 0

]

,

Λ2i =
[√

πiki
1
Qi

√
πiki

2
Qi · · · √

πiki
m
Qi

0 0 · · · 0

]
.

Here, we denote

Pi =
[

X−1
i ∗

M̃i Ei

]

, Qi = P −1
i =

[
Yi ∗
Ni Fi

]
, γ =

[
I I

M̃iXi 0

]
,

then pre- and post-multiply (38) and (39) by diag(γ T , γ T , I, . . . , I ) and its transpose,
respectively, and define the following variable changes

γ T Wiγ =
[

Wi1 ∗
Wi2 Wi3

]
, γ T

Riγ =
[
Ri1 ∗
Ri2 Ri3

]
,

and Âai = XiM̃
T
i AaiNi , B̂ai = XiM̃

T
i BaiSi , Ĉai = CaiNi , D̂ai = DaiSi , Ui = Vi +

ŨiM̃iXi .
Note that it is easy to find a diagonal positive matrix G = GT ≤ Qi,∀i ∈ S

G =
[
G1 0
0 G2

]
,

then replace the Qki
m

of (38) and (39) by G1 and G2, it follows that (34) and (35) are
equivalent to LMIs (19) and (20). By using Schur complements, from the condition
(36) it follows that

[−Wi Qi

Qi −Qj

]
< 0, (40)

then pre- and post-multiplying (40) by diag(γ T , I ) and its transpose, respectively,
and considering that G ≤ Qj , which implies the LMIs (21) is satisfied. Similarly,
one can easily find that (37) is equivalent to LMIs (22). Since ε(Pi,1) ⊂ D(u0), it
follows that

[
Pi ∗

Ki(k) + Li(k) u2
0(k)

]
> 0, k = 1, . . . ,m, (41)

then pre- and post-multiplying (41) by diag(γ T Qi, I ) and its transpose, we derive
LMIs (23). These imply that the resulting closed-loop system (11)–(13) is locally
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asymptotically stable for every initial condition belong to ε(Pi,1). The proof is com-
pleted. �

Algorithm:

Step 1 : Use the LMIs (19)–(24) of Theorem 2 to get the Âai , B̂ai , Ĉai , D̂ai and
Xi,Yi,Ni .

Step 2 : Based on the variable change which have been given in the proof process,
and the parameters of step 1, compute the Aai,Bai,Cai,Dai .

Remark 1 In this paper, a class of Markovian jump delayed systems with input satu-
ration and partially known transition rates were considered. Different from the com-
mon proportional controller of the recent works, a dynamic anti-windup compensator
is designed to deal with the robust stabilization problem of this class of Markovian
jump delayed systems. Compared with recent developed works(for instance in [2]),
via a dynamic anti-windup compensator, the system state response has less accom-
modation time and damping.

4 Simulation and Numerical Examples

In this section, a numerical example is provided to demonstrate the effectiveness of
the proposed method.

Example 1 Consider the Markovian jump time-delay system (Σ) with the following
parameters:

A1 =
[

0.75 −0.75
1.50 −1.50

]
, A2 =

[
0.15 4.5
2.10 −0.3

]
,

A3 =
[

0.25 2.50
1.20 −2.1

]
, A4 =

[
0.95 −0.35
1.50 −1.50

]
,

B1 = B4 =
[

1
0

]
, B2 =

[
1
1

]
, B3 =

[
1

0.6

]
,

Adi =
[

0.1 0
0.1 −0.2

]
, i = 1,2,3,4,

Ci = [−0.1 −0.2
]
, i = 1,2,3,4,

and with the following parameters of the controller:

Ac1 = −5.50 , Ac2 = −5.0 , Ac3 = −4.5 , Ac4 = −7.0 ,

Bc1 = −1.0 , Bc2 = −0.8 , Bc3 = −0.8 , Bc4 = −1.0 ,

Cc1 = −1.0 , Cc2 = −1.00 , Cc3 = −1.50 , Cc4 = −1.50 ,

Dc1 = 0 , Dc2 = 6 , Dc3 = 5 , Dc4 = −2 .
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In this example, the bounds of the input u0 = 0.05, M = I , d = 0.4, τ = 0.1 and
the transition rate matrix is given by the following:

⎡

⎢⎢
⎣

−0.6 0.5 ? ?
? −0.1 0.05 ?
? ? ? 0.05

0.05 ? ? −0.2

⎤

⎥⎥
⎦ .

Based on the Theorem 2, we derive dynamic anti-windup compensator parameters as
follows:

Aa1 =
⎡

⎣
−2.6724 −350.0889 0.6934
398.7915 −2.0444 4.9097
−0.8806 −5.4585 −1.8213

⎤

⎦ ,

Aa2 =
⎡

⎣
−1.8643 −471.2648 −0.1492
405.6848 −2.5844 11.9746

0.1664 −15.4948 −1.6897

⎤

⎦ ,

Aa3 =
⎡

⎣
−1.8882 −480.8881 −0.1518
407.4357 −2.6199 12.1808

0.1666 −15.8112 −1.7188

⎤

⎦ ,

Aa4 =
⎡

⎣
−2.6752 −340.7602 0.6744
398.9434 −1.9947 4.7752
−0.8821 −5.3138 −1.7714

⎤

⎦ ,

Ba1 =
⎡

⎣
−0.0171
−0.0075
−0.0001

⎤

⎦ , Ba2 =
⎡

⎣
−0.0062
−0.0158
−0.0001

⎤

⎦ ,

Ba3 =
⎡

⎣
−0.0063
−0.0160
−0.0001

⎤

⎦ , Ba4 =
⎡

⎣
−0.0162
−0.0071
−0.0001

⎤

⎦ ,

Ca1 = [
17.2695 0.6817 −19.3071

]
,

Ca2 = [
68.4433 −48.3066 −2.1287

]
,

Ca3 = [
68.7370 −49.2900 −2.1654

]
,

Ca4 = [
17.2752 0.6631 −18.7779

]
,

Da1 = 0.2040 , Da2 = 0.1878 , Da3 = 0.1894 , Da4 = 0.1935.

Then, from Figs. 1(a)–(d), the controller we designed guarantees that the resulting
closed-loop constrained systems are mean-square stable. Note that the transition rates
of the Markovian process of the systems under consideration were often assumed to
be completely known in some recent developed works. In this paper, we consider a
class of Markovian system with partly known transition rates and input saturation via
a dynamic anti-windup compensator combined with a controller. Compared with the
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Fig. 1 (a) System modes evolutions rt ; (b) x(t) of open-loop system; (c) x(t) of closed-loop system;
(d) the control input u(t)

common proportional controller of the recent works, dynamic anti-windup compen-
sator can reduce the accommodation time of the state response of systems.

5 Conclusions

This paper considers the stabilization problem for a class of Markovian jump delayed
systems with input saturation and partially known transition rates, and a methodol-
ogy for synthesizing dynamic anti-windup compensators for systems is presented.
By use of Lyapunov–Krasovskii function method, the sufficient conditions which en-
sure the system is locally stable are given in terms of linear matrix inequalities, and
the trajectories of closed-loop system are bounded for every initial condition belong
to ε(Pi,1). In the future work, we will study the stabilization problem for a class
of singular or stochastic Markovian jump delayed systems with input saturation and
partially known transition rates.
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