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Abstract In this paper, a closed-form analytical expression for fractional order dif-
ferentiation in the fractional Fourier transform (FrFT) domain is derived by utilizing
the basic principles of fractional order calculus. The reported work is a generalization
of the differentiation property to fractional (noninteger or real) orders in the FrFT do-
main. The proposed closed-form analytical expression is derived in terms of the well-
known confluent hypergeometric function. An efficient computation method has also
been derived for the proposed algorithm in the discrete-time domain, utilizing the
principles of the discrete fractional Fourier transform algorithm. An application ex-
ample of a low-pass finite impulse response (FIR) fractional order differentiator in
the FrFT domain has also been investigated to show the practicality of the proposed
method in signal processing applications.
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1 Introduction

The differentiation operation in signal processing has proven to be a very useful math-
ematical operator to determine and estimate the time derivative of a given signal [3].
Digital differentiators form an integral part of many physical systems. For example,
digital low-pass differentiation is often required in processing various biological or
biomechanical data [20], in image processing, the edge of an image can be detected
by using the differential operation [5], and in radar and sonar, the velocity and accel-
eration can be computed from the position measurements using differentiators [17].
An excellent survey on the state of the art of the differentiation operation in signal
processing and its applications was given in [3, 5, 10, 17–20].

In recent years, the concepts of fractional order operators have been investigated
extensively in science and engineering applications [10], including the design of frac-
tional order digital differentiators, which have received much attention in the research
community. Also, there has been a surge of research in signal processing following
the introduction of the fractional Fourier transform (FrFT) by Namias [9].

In the research area of fractional order calculus (FOC), the integer order n of the
derivative Dnp(x) = dnp(x)/dxn of the function p(x) is generalized to the frac-
tional order ‘Dμp(x)’, where μ is a real number [10]. One of the important research
issues in FOC is to implement the fractional order operator Dμ in continuous and
discrete-time domains.

Since fractional order differentiation is the theme of this paper, we can emphasize
that on two occasions including the work of [7] and [18], the differentiation prop-
erty was independently extended to the class of the Fourier transform (FT) and FrFT
respectively, but it was not extended to the noninteger orders.

In this paper, the fractional order differentiation of a given signal in the FrFT for
different fractional orders is proposed by utilizing the inherent approach of fractional
operators of FOC. The concept behind the study is that it involves two different vari-
able parameters: the fractional order parameter μ and the fractional Fourier parame-
ter ϕ. These two parameters have not been involved in any of the literature so far. In
the context of [10], the FOC generalizes the derivative operator Dμ by encompass-
ing real and complex values for the exponent μ, which is ordinarily integer valued.
Derivatives of noninteger order have been considered in physics, engineering, and in
the signal processing area [6, 11], following the work of Liouville and Riemann at
the beginning of the nineteenth century.

The idea of this study was motivated by the work of Pei et al. [18] and McBride
et al. [7]. The main differences between the proposed method and the work of Pei
et al. [18] are as follows. (i) Pei et al. used the Cauchy integral formula and gener-
alized it to define the fractional derivative of the functions, whereas the Riemann–
Liouville (RL) definition for the general fractional differintegral is used in the pro-
posed method. (ii) The aim of Pei et al. [18] was to obtain the fractional derivative us-
ing the FT, whereas in the proposed method the aim is to obtain the fractional deriva-
tive using the FrFT. Similarly, McBride et al. [7] derive the differentiation property in
the FrFT to integer order only, whereas the proposed method generalizes it to obtain
the differentiation property in the FrFT to noninteger orders. Therefore, the outcome
of this study, “establishing a closed-form expression for fractional differentiation in
the FrFT domain,” is novel and unique.
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The rest of this paper is organized as follows. Section 2 presents the proposed
method of computing the fractional derivative in the FrFT domain. Section 3 presents
an efficient calculation of the proposed algorithm along with a new fractional order
differentiating filter model in the FrFT domain. An application example along with
the simulation results have been presented in Sect. 4. Some concluding remarks are
given in Sect. 5.

2 Computation of Fractional Derivative in Fractional Fourier Transform

Fractional order calculus (FOC), which is an extension of noninteger order derivatives
and integrals, has received great attention in the last few decades, because of its ability
to model systems more accurately than integer order calculus [10, 14].

FOC is a generalization of integration and differentiation to a fractional, or nonin-
teger order fundamental operator lD

μ
t , where l and t are the lower/upper bounds of

integration and μ is the order of the operation.

lD
μ
t =

⎧
⎪⎪⎨

⎪⎪⎩

dμ

dtμ
R(μ) > 0

1 R(μ) = 0
∫ t

l
(dτ )(−μ)

R(μ) < 0

(1)

where R(μ) is the real part of μ. The most frequently used equivalent definitions for
the general fractional differintegral are the Riemann–Liouville (RL), the Grünwald–
Letnikov (GL), and the Caputo definitions [2, 10].

The FrFT is a generalization of the ordinary Fourier transform with a fractional
Fourier order parameter a, which corresponds to the ath fractional power of the
Fourier transform operator, F . The ath-order FrFT of x(t) is defined as

Tϕ

F
(
x(t)

) = X(uϕ) =
∫ ∞

−∞
x(t)Kϕ(t, uϕ) dt (2)

where 0 < |a| < 2, the transformation kernel,

Kϕ(t, uϕ) =
√

1 − i cotϕ

2π
exp

[

i

(
t2 + u2

ϕ

2

)

cotϕ − iuϕt cscϕ

]

(3)

with the transform angle ϕ = aπ/2 [12], and Tϕ

F denotes the CFrFT operator. The
FrFT has several applications in the areas of signal processing [1, 4, 7, 9, 12, 15,
16, 21]. The ath fractional Fourier domain makes an angle ϕ = aπ/2 with the time
domain in the time–frequency plane, as shown in Fig. 1.

2.1 Derivation of Closed-Form Analytical Expression for Computing Fractional
Derivative of a Signal in FrFT Domain

To derive the closed-form analytical expression of the fractional derivative of the sig-
nal in the FrFT domain, the inherent approach of the FOC has been utilized. Our FOC
approach is confined to the RL definition for the general fractional differintegral [14].
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Fig. 1 The ath fractional
Fourier domain

Let D
μ
+ and D

μ
− be the left and right RL fractional derivatives of order μ on the

real axis, defined by

D
μ
+x(t) = d

dt

{
I

1−μ
+ x(t)

}
(4)

where I
μ
+ is the RL fractional integral operator,

I
μ
+x(t) = 1

�(μ)

∫ t

−∞
(t − τ)μ−1x(τ) dτ = tμ−1

�(μ)
∗ x(t) (5)

Here, �(·) is the well-known Euler’s gamma function, and μ ∈ R (0 < μ < 1). The
operator “∗” represents the convolution operation between the two signals of interest,

here tμ−1

�(μ)
and x(t), respectively.

D
μ
−x(t) =

(

− d

dt

)
{
I

1−μ
− x(t)

}
(6)

where I
μ
− is the RL fractional integral operator,

I
μ
−x(t) = 1

�(μ)

∫ +∞

t

(t − τ)μ−1x(τ) dτ (7)

In this paper, by considering D
μ
+ the RL fractional derivative operator and 0 < μ < 1,

the following expression is obtained from (4) and (5):

D
μ
+x(t) = d

dt

{
t−μ

�(1 − μ)
∗ x(t)

}

(8)

Therefore, taking the FrFT of the fractional derivative of (8) results in the following
expression:

Tϕ

F
{
D

μ
+x(t)

} = Tϕ

F

[
d

dt

{
t−μ

�(1 − μ)
∗ x(t)

}]

(9)

By letting b(t) = t−μ

�(1−μ)
∗ x(t), (9) becomes

Tϕ

F
{
D

μ
+x(t)

} = Tϕ

F

[
db(t)

dt

]

(10)
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Now, according to the differentiation property of the FrFT [1],

Tϕ

F

[
db(t)

dt

]

=
[

juϕ sinϕ + cosϕ · d

duϕ

]

B(uϕ) (11)

where B(uϕ) = Tϕ

F (b(t)) is the FrFT of the signal b(t).
Therefore,

B(uϕ) = Tϕ

F
[
b(t)

] = Tϕ

F

[{
t−μ

�(1 − μ)
∗ x(t)

}]

(12)

Now, from the convolution property of the FrFT [15] and [21], the above expression
reduces to

B(uϕ) =
√

2π

1 − j cotϕ
· exp

[

−j

2
u2

ϕ cotϕ

]

· Tϕ

F
[
x(t)

] · Tϕ

F

[
t−μ

�(1 − μ)

]

Thus,

B(uϕ) =
√

2π

1 − j cotϕ
· exp

[

−j

2
u2

ϕ cotϕ

]

· X(uϕ) · Tϕ

F

[
t−μ

�(1 − μ)

]

(13)

where X(uϕ) is the FrFT of the signal x(t), i.e., X(uϕ) = Tϕ

F [x(t)].

∴ B(uϕ) = X(uϕ) ·
∫ ∞

−∞
t−μ

�(1 − μ)
· exp

[
j

2
t2 cotϕ − juϕt cscϕ

]

· dt (14)

From [8, Eq. (A.1.55)],
∫ ∞

−∞
tγ exp

[±jbt − c2t2]dt

= πj−γ

cγ+1

[
1F1(

γ+1
2 ; 1

2 ; −b2

4c2 )

�(
1−γ

2 )
± b

c
j

1F1(
γ+2

2 ; 3
2 ; −b2

4c2 )

�(
−γ
2 )

]

(15)

The expression on the right-hand side of (15) involves the function 1F1, which is
known as the Kummer confluent hypergeometric function (CHF) of the first kind [2],
which is an infinite power series. To compute the Kummer CHF using a computing
machine, the series must be truncated to some finite number of terms. So, if the series
truncation is used, a computation error must exist. Abramowitz and Stegun [2] pro-
vide the methodology for determining the truncation error of an infinite power series.
Figure 2 shows the variation of the relative error (in percentages) after truncating an
infinite power series for different CHF functions (for different a’s and b’s); clearly,
the truncation error decreases to zero pointwise, as the number of terms increases.

Solving (14) and (15) step by step, and letting γ = −μ, b = uϕ cscϕ, c2 =
−j
2 cotϕ, i.e., c = (1−j)

2
√

cotϕ and −b2

4c2 = −ju2
ϕ csc(2ϕ), (15) becomes

∫ ∞

−∞
t−μ exp

[

−juϕt cscϕ + j

2
t2 cotϕ

]

dt

= πjμ(1 + j)1−μ

(cotϕ)(1−μ)/2

[
1F1

( 1−μ
2 ; 1

2 ;−ju2
ϕ csc(2ϕ)

)

�
( 1+μ

2

)
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Fig. 2 Variation of the relative error (in percentages) with the number of terms, k of the fol-

lowing CHF functions: (a) 1F1(a;a;−x) = exp(−x), (b) 1F1( 1
2 ; 3

2 ;−x) = 1
2

√
π
x erf(

√
x),

(c) 1F1( 3
2 ; 5

2 ;−x) = 3
2 [ 1

2

√
π
x erf(

√
x) − e−x ], (d) 1F1(1; 3

2 ;−x) = 1
2

√
π
x erfi(

√
x)e−x ,

(e) 1F1 (2; 5
2 ;−x) = 3

√
π ·e−x ·(1+2x)·erfi

√
x

8x3/2 − 3
4x

, by letting x = 2

+ juϕ(1 + j)
√

2 csc(2ϕ)
1F1

( 2−μ
2 ; 3

2 ;−ju2
ϕ csc(2ϕ)

)

�
(

μ
2

)

]

(16)

Thus, it can be seen that the integral representation (16) is a generalized expression
in terms of the fractional order parameter μ, and hence the closed-form expression
for the integral representation (16) can be obtained by considering different values of
the parameter μ, respectively.

Now, from (14) and (16), the following expression results:

B(uϕ) = X(uϕ) · πjμ(1 + j)1−μ

(cotϕ)(1−μ)/2

[
1F1

( 1−μ
2 ; 1

2 ;−ju2
ϕ csc(2ϕ)

)

�
( 1+μ

2

)

+ juϕ(1 + j)
√

2 csc(2ϕ) · 1F1
( 2−μ

2 ; 3
2 ;−ju2

ϕ csc(2ϕ)
)

�
(

μ
2

)

]

(17)

Now, by letting K(μ,ϕ) = π(jμ)(1+j)1−μ

(cotϕ)(1−μ)/2 and M(ϕ) = j (1 + j)
√

2 csc(2ϕ), (17) be-
comes

B(uϕ) = X(uϕ) · K(μ,ϕ)

[
1F1

( 1−μ
2 ; 1

2 ;−ju2
ϕ csc(2ϕ)

)

�
( 1+μ

2

)

+ uϕ · M(ϕ) · 1F1
( 2−μ

2 ; 3
2 ;−ju2

ϕ csc(2ϕ)
)

�
(

μ
2

)

]

(18)

Now, from (10) and (11),
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Tϕ

F
{
D

μ
+x(t)

} =
(

juϕ sinϕ + cosϕ · d

duϕ

)

B(uϕ)

= juϕ sinϕ · B(uϕ) + cosϕ · dB(uϕ)

duϕ

(19)

Therefore, to solve (19), one has to determine dB(uϕ)

duϕ
. By knowing the fact that [2]

d

dz
1F1(a;b; z) =

(
a

b

)

1F1(a + 1;b + 1; z) (20)

and solving for dB(uϕ)

duϕ
, the following expression results:

dB(uϕ)

duϕ

= K(μ,ϕ)

�(
1+μ

2 )

[

1F1

(
1 − μ

2
; 1

2
;−ju2

ϕ csc(2ϕ)

)

· dX(uϕ)

duϕ

+ (1 − μ) · X(uϕ) · 1F1

(
3 − μ

2
; 3

2
;−ju2

ϕ csc(2ϕ)

)]

+ K(μ,ϕ) · M(ϕ)

�(
μ
2 )

[

uϕ · X(uϕ) ·
(

2 − μ

3

)

× 1F1

(
4 − μ

2
; 5

2
;−ju2

ϕ csc(2ϕ)

)

+ X(uϕ) · 1F1

(
2 − μ

2
; 3

2
;−ju2

ϕ csc(2ϕ)

)

+ uϕ · 1F1

(
2 − μ

2
; 3

2
;−ju2

ϕ csc(2ϕ)

)

· dX(uϕ)

duϕ

]

(21)

Now, by expressing the following CHFs by the corresponding functions as

1F1

(
1 − μ

2
; 1

2
;−ju2

ϕ csc(2ϕ)

)

= H1(μ,ϕ,uϕ) (22a)

1F1

(
2 − μ

2
; 3

2
;−ju2

ϕ csc(2ϕ)

)

= H2(μ,ϕ,uϕ) (22b)

1F1

(
3 − μ

2
; 3

2
;−ju2

ϕ csc(2ϕ)

)

= H3(μ,ϕ,uϕ) (22c)

1F1

(
4 − μ

2
; 5

2
;−ju2

ϕ csc(2ϕ)

)

= H4(μ,ϕ,uϕ) (22d)

Then, from (19)–(22d),

Tϕ

F
{
D

μ
+x(t)

}

= K(μ,ϕ) · M(ϕ)

{
1

M(ϕ)
· 1

�
(

(1+μ)
2

) · H1(μ,ϕ,uϕ)

×
[

juμ sinϕ + cosϕ · d

duϕ

]

+ uϕ · 1

�
(

μ
2

) · H2(μ,ϕ,uϕ) ·
[

juϕ sinϕ + cosϕ · d

duϕ

]
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+ 1

�
(

μ
2

) · cosϕ · H2(μ,ϕ,uϕ) + 1

M(ϕ)
· (1 − μ) · cosϕ·

�((1 + μ)/2)
· H3(μ,ϕ,uϕ)

+
(

2 − μ

3

)

· 1

�(μ/2)
· cosϕ · H4(μ,ϕ,uϕ) · uϕ

}

· X(uϕ) (23)

Thus, the above expression gives the fractional derivative of the input signal x(t)

for fractional orders varying from 0 to 1 and for different rotation angles (ϕ) in the
time–frequency plane of the FrFT.

3 Efficient Calculation of the Proposed Algorithm

In this section, we have derived an efficient algorithm to compute a discrete coun-
terpart of the proposed relation (23). There exist various fast discrete-time versions
of the continuous FrFT, namely, the direct form of DFrFT, improved sampling-type
DFrFT, linear combination-type DFrFT, eigenvectors decomposition-type DFrFT,
group theory-type DFrFT, and impulse train-type DFrFT [12].

The discrete FrFT algorithm proposed in [12] has a very important advantage that
it is efficient to calculate and implement. Because there are two chirp multiplications
and one FFT, the total number of multiplications required is {2P + (P/2) · log2 P },
where P = 2M + 1 is the length of the output. The DFrFT introduced in [12] has
the lowest complexity among all the types of DFrFT that still work similarly to the
continuous FrFT. Thus, utilizing the DFrFT proposed in [12], a discrete-time calcu-
lation of the fractional order derivative of a discrete-time signal can be realized. In
this method, the fractional order derivative of a continuous-time input signal x(t) is
evaluated in discrete time by using the following steps.

First, uniformly sample the input function x(t) and the output function Tϕ

F (x(t)) =
X(uϕ) by the interval �t , �uϕ respectively as

g(n) = x(n · �t) Gϕ(m) = X(m · �uϕ) (24)

where n = −N,−N + 1, . . . ,N − 1,N , and m = −M,−M + 1, . . . ,M − 1,M .
Additionally, the constraints M ≥ N (2N + 1, 2M + 1 are the number of points in

the time, frequency domain), and

�uϕ · �t = S · 2π · sinϕ/(2M + 1)

must also be satisfied, where |S| is some integer prime to 2M + 1.
For simplicity, choose S = sgn(sinϕ) = 1 and obtain the transformation matrix as

Rϕ(m,n) =
√

sgn(sinϕ) · (sinϕ − j cosϕ)

2M + 1
· e j

2 ·cotϕ·m2·(�uϕ)2 · e−j · sgn(sinϕ)·2π ·n·m
2M+1

· e j
2 ·cotϕ·n2·(�t)2

(25)

Considering only the case for sinϕ > 0, the following formula for the DFrFT is ob-
tained:

Gϕ(m) =
√

sinϕ − j cosϕ

2M + 1
· e j

2 ·cotϕ·m2·(�uϕ)2 ·
N∑

n=−N

e−j · 2π ·n·m
2M+1

· e j
2 ·cotϕ·n2·(�t)2 · g(n) (26)
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when ϕ ∈ 2Pπ + (0,π), P is an integer.
Now, the evaluation of the fractional derivative of the discrete-time signal in the

DFrFT domain is described in the following paragraph.
We consider here the GL definition [10, 14] of computing the fractional derivative,

based on the generalization of the backward difference as

Dμx(t) = dμx(t)

dtμ
= lim

�t→0

∞∑

k=0

(−1)kÃ
μ
k

(�t)μ
x(t − k · �t) (27)

where coefficient Ã
μ
k is given by

Ã
μ
k = �(μ + 1)

�(k + 1)�(μ − k + 1)
=

{
1 k = 0

μ(μ−1(μ−2)···(μ−k+1))
1·2·3···k k ≥ 1

(28)

The above notation �(·) is the gamma function. Based on this definition, it can be
shown that the fractional derivatives of exponential, trigonometric, and power func-
tions (assuming they are sufficiently large) are given by

Dμ
[
exp(βt)

] = βμ exp(βt) (29a)

Dμ
[
Â sin(ωt + θ)

] = Âωμ sin

(

ωt + θ + π

2
μ

)

(29b)

Dμ
[
Â cos(ωt + θ)

] = Âωμ cos

(

ωt + θ + π

2
μ

)

(29c)

Dμ
(
tγ

) = �(γ + 1)

�(γ − μ + 1)
· tγ−μ (29d)

Now, let us define the coefficient ã(k) as

ã(k) = (−1)kÃ
μ
k (30)

Then the fractional derivative in (27) can be rewritten as

Dμx(t) = lim
�t→0

∞∑

k=0

ã(k)

(�t)μ
x(t − k · �t) (31)

The coefficient sequence ã(k) for various orders of fractional order parameter μ

can be plotted as in Fig. 3. It can be seen from Fig. 3 that the sequence ã(k) is a
rapidly decaying sequence for various orders of μ.

Thus, by truncation, (31) can be rewritten as

Dμx(t) ≈ lim
�t→0

L∑

k=0

ã(k)

(�t)μ
x(t − k · �t) (32)

where L is the truncation length.
Furthermore, by removing the limit, (32) can be further approximated by

Dμx(t) ≈
L∑

k=0

ã(k)

(�t)μ
x(t − k · �t) (33)
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Fig. 3 The coefficient sequence ã(k) for varying fractional order parameter μ

Now, the operation Dμx(t) at t = n · �t is defined as

Dμx(t)|t=n·�t = Dμx(n · �t) ≈
L∑

k=0

ã(k)

(�t)μ
x(n · �t − k · �t) (34)

where the fractional order parameter is μ ∈ R (0 < μ < 1) and ã(k) is given by (30).
As the proposed algorithm attempts to determine the closed-form fractional order

differentiation in the FrFT domain, then taking the DFrFT of (34), according to [12],

Q
ϕ

F
[
Dμx(n · �t)

] ≈ Q
ϕ

F

[
L∑

k=0

ã(k)

(�t)μ
x(n − k)

]

(35)

i.e.,

Q
ϕ

F
[
Dμg(n)

] =
L∑

k=0

ã(k)

(�t)μ
· (Qϕ

F
(
x(n − k)

))
(36)

where g(n) is given by (24) and the notation Q
ϕ

F represents the DFrFT operator.
Thus,

Q
ϕ

F [Dμg(n)]

=
L∑

k=0

ã(k)

(�t)μ
· exp

[
j

2
(k · �t)2 · sinϕ · cosϕ − j (m · �uϕ) · (k · �t) · sinϕ

]

· Gϕ(m − k cosϕ) (37)
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Fig. 4 Fractional order differentiating filter in fractional Fourier domain

where Gϕ(m) is given by (26).
Thus, (37) represents the DFrFT of the fractional order derivative of the discrete-

time signal g(n), respectively.

3.1 Fractional Order Differentiating Filter Model in Fractional Fourier Domain

The filtering scheme in the ϕth FrFT domain is shown in Fig. 4. In this configuration,
first the ϕth domain of the FrFT of the input is obtained, and then the fractional order
impulse response filter Hμ(uϕ) is applied in this domain. The weighted convolution
theorem for the FrFT of [15] is used in the proposed filtering scheme. Finally, the
resulting waveform is transformed with order ‘−ϕ’ in order to obtain the output signal
in the time domain.

4 Application Example and Simulation Results

The proposed model describing the fractional order differentiation in the fractional
Fourier domain has been simulated on the platform of Wolfram Mathematica® soft-
ware (version 8.0) on a system having configuration Pentium 4, with an Intel® CPU
1.8 GHz processor having 1 GB RAM.

The proposed model, which is described in Fig. 4, is used to simulate the frac-
tional order differentiating filter in the fractional Fourier domain. The signal s(n) =
2e18jnπ/32 + e−8jnπ/32 is corrupted by the chirp noise Ω(n) = 0.3e0.06j (n−1)3−7jn,
to obtain the input signal to the filter, as shown in Fig. 5(a) and (b), the real and imag-
inary parts, respectively. The signal s(n) + Ω(n) is applied to the proposed model of
the filter shown in Fig. 4. The filtering is performed to compare the performance of
time-domain (ϕ = 0, μ = 0.35), frequency-domain (ϕ = 1, μ = 0.35), and fractional
Fourier domain filtering (ϕ = 0.05π , μ = 0.35), as shown in Fig. 5(c)–(h). The crite-
rion used for the optimal filtering is the root mean square error (RMSE) between the
original signal and the filtered signal.

Therefore, it can be seen from Fig. 5(g) and (h) that the fractional Fourier do-
main filtered signal matches maximally with the original signal as compared with
the time-domain and frequency-domain filtered signals. Finally, the RMSE between
the original and the filtered signals is observed for different values of the fractional
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Fig. 5 Fractional order filtering results: (a), (b) corrupted signal, s(n) + Ω(n) (real (Re) and imaginary
(Im) parts respectively) in time domain; (c), (d) time-domain filtered signal, ŝ(n) (real (Re) and imagi-
nary (Im) parts respectively); (e), (f) frequency-domain filtered signal, ŝ(n) (real (Re) and imaginary (Im)
parts respectively); (g), (h) fractional order FrFT-domain filtered signal ŝ(n) (real (Re) and imaginary (Im)
parts respectively), (i) RMSE vs. fractional order parameter, μ



Circuits Syst Signal Process (2013) 32:1875–1889 1887

Fig. 5 (Continued)

order parameter μ, which varies from 0 to 1 as shown in Fig. 5(i). This confirms
that the FrFT domain filtering produces minimum RMSE for optimum FrFT order
and fractional order parameter as compared with time-domain and frequency-domain
filtering.

If one intends to implement the resulting systems of Fig. 4, a hardware implemen-
tation of the discrete FrFT using a field programmable gate array (FPGA) [13] can
be utilized. Also, the DFrFT requires a computationally intensive trigonometric func-
tion, which can be accomplished using the well-known hardware efficient CORDIC
(Coordinate Rotation Digital Computer) processor. If the input samples are complex
values of the form (a + jb), then the response of the system can be calculated sepa-
rately for both the real and imaginary parts, as has been described in [13].

5 Conclusions

In this paper, a new closed-form analytical expression for fractional order differen-
tiation in the FrFT domain has been presented. This work is the generalization of
the differentiation property to fractional (noninteger) orders in the FrFT domain. It
motivates the variation of two parameters: the fractional order parameter (μ) and the
fractional Fourier parameter (ϕ), which has not been derived earlier. This closed-form
analytical expression is obtained with the help of the Kummer confluent hypergeo-
metric function.

The fractional order differentiation derived in this paper is a more generalized
definition, since it achieves the flexibility of different rotation angles ϕ in the time–
frequency plane of the FrFT with varying μ. Due to this variation of μ with ϕ in the
FrFT domain, potential signal processing applications can be achieved, e.g., in filter
design, radar system analysis, and edge detection in image processing, etc.
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The application example of designing an FrFT-based low-pass finite impulse re-
sponse fractional order differentiator (LP-FIR-FOD) has been simulated; the results
have demonstrated its validity. The proposed LP-FIR-FOD includes the following ad-
vantages. First it is the first attempt at combining FOC with the FrFT, and it provides
a new way of designing the digital fractional order differentiator. Second, it provides
the flexibility of two different varying parameters, which could be beneficial in signal
processing applications.

Thus, the freedom of utilizing a varying order of the derivative (fractional deriva-
tive) in the entire time–frequency plane of the FrFT domain can be utilized for dif-
ferent potential signal processing applications. Future works involve applying the
proposed LP-FIR-FOD in image processing and radar signal processing applications.
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