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Abstract The objectives of this work are (i) to verify experimentally the theoretical
claim that neither Riemann–Liouville nor Caputo fractional derivative can be used to
predict the time response of fractional order systems without proper correction for
the system’s past history in terms of an initialization function and (ii) to study quan-
titatively how the error incurred due to ignoring initialization depends on the nature
of the past history and the system parameters. The entire analysis is restricted to a
special class of single input single output linear time invariant fractional order sys-
tem which can be realized by a simple electrical circuit consisting of a resistance and
a fractance in series. This work involves two different realizations of fractances or
constant phase elements whose characteristic parameters are first determined based
on their respective impedance frequency responses and then used to simulate the time
responses of the circuit with the input same as the one used for experimentation using
a numerical method for two cases: (i) taking past history into account and (ii) with-
out taking past history into account. Thereafter, an integral square error criterion is
presented and variation of the same is studied with respect to system parameters and
nature of the history function to have a relative idea of how much partial past history
in the absence of a complete one should suffice in practical applications.
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1 Introduction

The birth of fractional calculus is attributed to some intuitions of L’Hospital and
Leibnitz in the year 1695 about the generalization of the order of derivative of
a function from the domain of integers to that of real numbers. Having grown
up as a purely mathematical discipline with its inherent complexities in the eigh-
teenth and nineteenth centuries with contributions from mathematicians like Euler,
Laplace, Fourier, Abel, Liouville, Riemann, Grunwald, Letnikov and others [22, 28],
fractional calculus started finding widespread applications in engineering and ap-
plied sciences only in the twentieth century [10]. Among the applications, a ma-
jor thrust is on the use of differential equations involving fractional derivatives and
integrals to model a number of physical phenomena; examples include viscoelas-
ticity [30, 36], diffusion [5, 12, 25], transmission lines [17], chaos [16, 18], biolog-
ical cells, tissues, diseases and medication [3, 11, 14, 24], and many others. Sys-
tems modeled as such belong to the general category of ‘Fractional Order Systems’
(FOSs). In control theory, the idea of using fractional order controllers in feedback
loops emerged as Bode’s ideal transfer function [6], followed by several related
works [4, 8, 9, 15, 23, 31].

Modeling as fractional order proves to be useful particularly for systems where
memory or hereditary properties play a significant role. This is due to the fact that
an integer order derivative at a given instant is a local operator which considers the
nature of the function only at that instant and its neighborhood, whereas a fractional
derivative takes into account the past history of the function from some earlier point
in time, called the ‘lower terminal’ up to the instant at which the derivative is to be
computed. Therefore, if we have a Fractional Differential Equation (FDE) involving
one or more fractional derivatives of the output of an FOS, say y(t), an appropriate
choice of such a lower terminal becomes important. There are two choices: (i) time
t = p such that y(t) = 0 for all t ≤ p where ‘p’ can be termed as the ‘Process
Starting Time (PST)’, (ii) time t = q ≥ p so that y(t) = 0 in [p,q) is not neces-
sary, and we are interested in analyzing the system behavior by computing fractional
derivative(s) of y(t) for t > q where ‘q’ can be termed as the ‘Computation Start-
ing Time (CST)’. In general, we may want to look into the system dynamics long
after the system has been put to action, which means that PST ‘p’ and CST ‘q’ may
be widely apart. At the same time, we note that taking ‘q’ as the lower terminal
indicates that history of y(t) during the time interval [p,q) is not taken into consid-
eration.

Now the question is: In order to predict accurately y(t) for time t > q , is it at
all required to capture the history of y(t) during the interval [p,q) and if so, how
should one go for the same? As far as integer order systems are concerned, we have
‘initial condition(s)’ as an essential component. For an integer order system of order
n, where the input and output are related by an nth order differential equation in time
domain, a total of n initial conditions at time ‘q’, or in particular, values of the output
and its first (n − 1) derivatives at t = q is sufficient. However, as stated earlier, all
those (n − 1) integer derivatives are local operators which depend on the output in
only a small neighborhood of t = q . But for fractional order systems, the scenario is
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quite different, because any fractional derivative of the output y(t) evaluated at t = q

will consider the entire history of y(t) in [p,q).
Therefore, for an FOS with q > p one may tend to ignore y(t) in [p,q) and

compute the fractional derivative(s) of y(t) using any one of the two most common
definitions of fractional derivatives, viz. either the Riemann–Liouville or the Caputo
definition with t = q as the lower terminal. It was first claimed in the work of Hart-
ley and Lorenzo [19] that in such a situation a correction term is to be added with
the uninitialized derivative which takes ‘q’ as the lower terminal so that the com-
puted response matches the actual one. Opposed to the initial conditions which are
some numbers in case of integer order systems, this correction term is a function of
time and involves an integral known as the ‘Initialization Function’ which takes into
account the history of y(t) in [p,q). Thus came into existence the concept of ini-
tialization. Several issues pertaining to the initialization problem in the above men-
tioned approach have been addressed by Hartley and Lorenzo [1, 13, 19–21]. Other
approaches to capture such history effects have been studied by Ortigueira [29] and
Sabatier et al. [35].

Major contributions of this paper can be summarized as follows. First, obtaining
closed form analytical solutions of FDEs, especially when initialization is augmented,
is an involved task in terms of mathematical complexity. In this work, we have pro-
posed an extension of a numerical method discussed in Podlubny [33] to include
initialization and the solutions thus yielded are shown to be close approximations to
the analytical ones derived in Hartley and Lorenzo [21] for the type of FDE consid-
ered for experimental verification. Moreover, the final numerical expression for the
solution is shown to have clear physical interpretations and can easily be extended for
other types of FDEs, e.g., FDEs containing more than one fractional derivative term.
Second, experimental evidence to justify the need of an initialization function so far
has been found only for a heat conduction problem [13]. In this work, we have con-
centrated on electrical circuits and used two different realizations of constant phase
elements (CPEs)—one being a single component CPE which is a capacitive type
probe coated with a thin film of polymethyl-methacrylate (PMMA), dipped into a
polarizable solution; and the other being a domino ladder network which is an array
of standard resistors and capacitors. For both the realizations, experimental results are
shown to coincide with theory. Third, a system following fractional order dynamics
may, in general, have infinite history and satisfying the theory demands an external
storage element with infinite memory. Therefore, for practical applications, it is nec-
essary to check how much of the past should be looked into so as to keep the error
between the modeled and actual response within certain bounds. As a first attempt,
the current work provides an error criterion to quantify how prominent the effect of
initialization is and also analyzes how it depends on system parameters and the nature
of past history.

The work is presented in several sections. Section 2 briefly discusses the concept
of initialization, formulates the problem and suggests an intuitive approach. Section 3
establishes the method to be used for all subsequent simulations. Comparisons be-
tween experimental and simulation results are covered in Section 4. In Section 5, we
study an integral square error criterion related to approximation of the initialization
function. Achievements and future scope of work are summarized in Section 6.
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2 Mathematical Preliminaries and the Problem Statement

We start with the definitions of fractional derivatives and their relationships which
will be used extensively throughout this work. Detailed derivations can be found
in [32, 33].

(i.a) Riemann–Liouville (RL) integral of order ‘α’ (or derivative of order ‘−α’) of a
function y(t) is defined as:

RL
q d−α

t y(t) � 1

Γ (α)

∫ t

q

(t − τ)α−1y(τ) dτ, (1)

where α is any positive real number and Γ (z) = ∫ ∞
0 xz−1e−x dx is the gamma

function.
(i.b) Riemann–Liouville (RL) derivative of order ‘α’ of a function y(t) is defined as:

RL
q dα

t y(t) � 1

Γ (n − α)

dn

dtn

∫ t

q

(t − τ)n−α−1y(τ) dτ, (2)

where n − 1 ≤ α < n; α being any positive real number, n is an integer.
(ii) The Caputo derivative of order ‘α’ of a function y(t) is defined as:

C
q dα

t y(t) � 1

Γ (m − α)

∫ t

q

(t −τ)m−α−1y(m)(τ ) dτ with m−1 ≤ α < m, (3)

where m is a positive integer and y(m) is the conventional mth order derivative
of y.

(iii) The Grunwald–Letnikov (GL) derivative of order ‘α’ of a function y(t) is de-
fined as:

GL
q dα

t y(t) � lim
h→0

1

hα

t−q
h∑

j=0

(−1)j
α(α − 1) · · · (α − j + 1)

j ! y(t − jh), (4)

where α is any real number. This definition unifies derivatives and integrals;
with α positive signifying derivatives and α negative signifying integrals.

The RL and GL derivatives defined by (2) and (4), respectively, are equivalent [33]
if y(t) is continuous in [q, t].

For 0 < α < 1, RL and Caputo derivatives defined by (2) and (3), respectively, are
related as [32]:

RL
q dα

t y(t) = C
q dα

t y(t) + (t − q)−α

Γ (1 − α)
y(q). (5)

We note that in both RL (equivalently, GL) and Caputo definitions, there is a term
‘q’ such that the behavior of y(t) is considered only from t = q onwards. In fractional
calculus this ‘q’ is called the ‘Lower Terminal’. From a physical point of view, ‘q’
can be termed as Computation Starting Time (CST) such that variation of the system
variable y(t) after t = q is of interest. The concept of initialization (Lorenzo and
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Hartley [19]) follows from the claim that ideally the lower terminal should be chosen
as the Process Starting Time (PST) ‘p’ such that we have y(t) = 0 for all t ≤ p. If
the CST q > p happens to be chosen as the lower terminal, then for the RL fractional
integral as defined by (1), we should have

qD−α
t y(t) � RL

q d−α
t y(t) + ψ(y,−α,p,q, t) = RL

pd−α
t y(t). (6)

Here ‘D’ stands for the initialized derivative (of order ‘−α’ in this case) and ψ is
the correction term to be added with the uninitialized derivative (of order ‘−α’) with
lower terminal ‘q’ such that ‘p’ becomes the effective lower terminal.

Using definition (1) of RL integral, we get

1

Γ (α)

∫ t

q

(t − τ)α−1y(τ) dτ + ψ(y,−α,p,q, t) = 1

Γ (α)

∫ t

p

(t − τ)α−1y(τ) dτ.

Simplifying, we get

ψ(y,−α,p,q, t) = 1

Γ (α)

∫ q

p

(t − τ)α−1y(τ) dτ. (7)

The factor ψ is known as the “Initialization Function”. It is a time varying quantity
which takes into account the entire past history of the system output y(t) from PST
‘p’ to CST ‘q’.

For the RL derivative defined by (2) with 0 < α < 1, correction should be as fol-
lows (Hartley and Lorenzo, [19]):

qDα
t y(t) = RL

q dα
t y(t) + d

dt
ψ

(
y,−(1 − α),p, q, t

) = RL
pdα

t y(t), (8)

where ψ is as defined by (7).
For the Caputo fractional derivative defined by (3) with 0 < α < 1, we have (Achar

et al., [1]):

qDα
t y(t) = C

q dα
t y(t)+ (t − q)−αf (q)

Γ (1 − α)
+ d

dt
ψ(y,−(1−α),p, q, t) = C

pdα
t y(t). (9)

Here we note that

qDα
t y(t) = RL

pdα
t y(t) = C

pdα
t y(t). (10)

This is because ‘p’ is the instant before which the system was throughout at rest,
and thus, by (5), RL and Caputo derivatives become identical. Therefore, after ini-
tialization RL and Caputo derivatives yield the same result though uninitialized RL
and Caputo derivatives in general yield different results.

Now, the problem can be formulated as follows:
Let us consider a linear time invariant FOS of order ‘α’ with a single input u(t) and

a single output y(t) modeled by the FDE; where ‘d’ represents fractional derivative,
in general.

qdα
t y(t) + ky(t) = u(t) 0 ≤ α ≤ 1 and k is a positive constant, (11)
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with y(t) = 0 for all t ≤ p and y(q) = y0 is a constant; where q > p.
At the extremities, i.e., α = 0 and α = 1, we can use the theory of integer order

calculus to find the response of the system.
For 0 < α < 1, the objective is to find out which one among the following three

should be used in place of ‘d’ to make model (11) the most accurate one:

(i) The uninitialized RL derivative defined by (2);
(ii) The uninitialized Caputo derivative defined by (3);

(iii) The initialized derivative defined by (8).

One way to accomplish the task is to first find out the solution of the FDE (11)
for all the three cases (i), (ii), (iii) by some suitable method and then perform an
experiment with a set up which realizes an FOS of this type to ascertain which of the
three solutions yields the closest response to the experimental one.

3 Solution of FDE with and without Initialization

Considering initialization as explained in case (iii) above, we are to solve:

qDα
t y(t) + ky(t) = u(t) 0 ≤ α ≤ 1 and k is a positive constant. (12)

Using the definition of initialized derivative as per (8), we have

RL
q dα

t y(t) + 1

Γ (1 − α)

d

dt

∫ q

p

(t − τ)−αy(τ) dτ + ky(t) = u(t). (12.a)

The Leibnitz Rule for differentiation of integral is:

d

dt

∫ b(t)

a(t)

y(t, τ ) dτ =
∫ b(t)

a(t)

∂y(t, τ )

∂t
dτ + y(t, b)

db

dt
− y(t, a)

da

dt
.

We note here that the last two terms on the right hand side (RHS) will not appear if
limits of integration are constants. Therefore, applying this rule to the differentiation
of integral on the left hand side (LHS) of FDE (12.a), we get

RL
q dα

t y(t) + −α

Γ (1 − α)

∫ q

p

(t − τ)−α−1y(τ) dτ + ky(t) = u(t). (13)

The uninitialized RL derivative, i.e., the first term in the LHS of (13) is equivalent to
the GL derivative defined by (4), which can be numerically approximated as [33]:

RL
q dα

t y(t = mh) = GL
q dα

t y(t = mh)

≈ 1

hα

m−Q∑
j=0

(−1)j
α(α − 1) · · · (α − j + 1)

j ! y
(
(m − j)h

)
, (14)

where q = Qh; with h as the time step used for discretization.
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Again, the integral present in second term on the left hand side (LHS) of (13) can
be approximated as the discrete sum:

∫ q

p

(t − τ)−α−1y(τ) dτ ≈
Q−1∑
l=P

h(mh − lh)−α−1y(lh), (15)

where p = Ph is the Process Starting Time (PST).
Applying approximations (14) and (15) to FDE (13), we get

1

hα

m−Q∑
j=0

wjy
(
(m−j)h

)+ −α

Γ (1 − α)

Q−1∑
l=P

h(mh− lh)−α−1y(nh)+ky(mh) = u(mh),

(16)
where w0 = 1, wj = (1 − α+1

j
)wj−1 for j = 1,2,3, . . . .

On simplification, we obtain

y(mh) = 1

k + h−α
u(mh) + −h−α

k + h−α

m−Q∑
j=1

wjy
(
(m − j)h

)

+ α/Γ (1 − α)

k + h−α

Q−1∑
l=P

h(mh − lh)−α−1y(lh). (17)

A close scrutiny of (17) reveals that the output y at any instant depends explicitly
on three factors: the present input u; weighted past outputs from CST prior to the
current instant and weighted past outputs from PST prior to CST. It follows that if
we are to solve an FDE which is a generalization of (12) with the LHS being a linear
combination of a number of fractional derivatives, for each of the derivative orders
there will be one term coming for outputs from PST to CST and another term for
outputs from CST to current instant.

We also note here that the third term on the right hand side (RHS) of (17) is intro-
duced because of including initialization; and therefore should be omitted if initial-
ization is ignored. Thus, considering uninitialized RL derivative in (11), the solution
can be directly written as:

y(mh) = 1

k + h−α
u(mh) + −h−α

k + h−α

m−Q∑
j=1

wjy
(
(m − j)h

)
, (18)

where the weights wj are the same as defined by (16).
If we consider uninitialized Caputo derivative in (11), using relation (5) between

the RL and Caputo derivatives, the solution can be found as:

y(mh) = 1

k + h−α
u(mh) + −h−α

k + h−α

m−Q∑
j=1

wjy
(
(m − j)h

) +
(mh−Qh)−α

Γ (1−α)

k + h−α
y(Qh).

(19)
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We note that (18) and (19) are derived from (17) which is the solution of FDE
(12) which includes initialization. In order to verify that the numerical solution given
by (17) is correct, let us compare it with the analytical solution of the same FDE
(12) with the following modifications corresponding to ‘constant history function’
(Hartley and Lorenzo [21]) case with the following: k = 1 (i.e., time constant of 1 s
for α = 1); p = −a; q = 0 (i.e., computation starts from time 0, past history is of
duration ‘a’); y(t) = 1 for −a ≤ t ≤ 0 (i.e., output was of constant magnitude 1
during the history period); u(t) = 0 for t ≥ 0 (i.e., response due to initialization only
is desired).

The corresponding analytical solution is given by [21]:

(A) For small values of time ‘t’:

y(t) = Λα,α−1(−1, t) −
∞∑

n=0

Λα,−n−1(−1, t)

an+αΓ (1 − n − α)
, (20)

where Λx,y(z,w) = ∑∞
n=0

znw(n+1)x−1−y

Γ ((n+1)x−y)
and Γ (·) stands for the gamma function.

(B) For large values of time ‘t’:

y(t) = Λα,α−1(−1, t) − Λα,α−1(−1, t + a)U(t) +
∞∑

n=0

an+1−αΛα,n(−1, t)

Γ (n + 2 − α)
,

(21)
where U(·) is the unit step function, and Λ(·) and Γ (·) are as defined earlier.

The analytical solutions given by (20) and (21) are not very straightforward and,
at the same time, the discrimination between ‘small’ and ‘large’ values of time is
not very clear. On the other hand, the numerical solution given by (17) is easy to
comprehend and also free from any such ambiguity in notion of time.

The simulation results for α = 0.25, 0.50, 0.75 with history duration ‘a’ = 1, 10,
100, and 1000 seconds are presented in Figs. 1, 2 and 3. The numerical solution

Fig. 1 Comparison of numerical and analytical responses for α = 0.25
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Fig. 2 Comparison of numerical and analytical responses for α = 0.50

Fig. 3 Comparison of numerical and analytical responses for α = 0.75

assumes a time step of 0.1 s for each case. As far as analytical solutions are concerned,
small time solution given by (20) have been plotted for cases with a = 10, 100, and
1000 seconds for all 3 values of α. For a = 1 s, the small time solution has been
plotted up to t = 1 s, after which the large time solution given by (21) has been
plotted for all the three values of α.

Moreover, numerical responses for the extreme cases, i.e., α = 0 and α = 1 yielded
by (17) are also plotted in Fig. 4. It is expected that, for α = 0, since the system is a
memoryless one, the output will die down immediately to zero as the input is zero;
and for α = 1, since the system is a conventional first order system, the output will
decay exponentially to zero with a time constant of 1 s; therefore, expected value of
output after 1 s is about 0.37 and that after 4 s is about 0.02. Also, outputs for different
durations of past history should be identical.
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Fig. 4 Numerical responses closely match expected ones for α = 0 and α = 1

Fig. 5 The experimental circuit

We observe that the numerical solutions for α = 0.25, 0.50, 0.75 match exactly
with the analytical ones [21] after a small initial deviation for some time. Moreover,
the solutions yielded by the numerical method have been found to match very closely
with standard solutions for the extreme cases α = 0 and α = 1. We would therefore
like to proceed with this method towards the experimental verification mentioned in
the earlier section, using (17) as a closely accurate numerical solution to FDE (11)
with initialization.

4 Experimental Verification

So far experimental evidence on the effect of initialization has been furnished for a
heat conduction process which follows the dynamics of the type of (11) with α = 0.5
(half order) (Gambone et al. [13]). For a parallel verification with values of α other
than 0.5 as well, we can realize an FOS of this type by a simple electrical circuit as
shown in Fig. 5.

The fractance has the time domain characteristics: i(t) = 1
Aqdα

t vout(t).
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Here ‘A’ is a characteristic constant of the fractance, ‘d’ is the fractional derivative
in general (of order ‘α’) as in (11).

Therefore, the dynamics of the circuit shown in Fig. 5 is given by:

qdα
t vout(t) + A

R
vout(t) = A

R
vin(t). (22)

Equation (22) is of the same form as (11) with y(t) = vout(t), k = A
R

, and u(t) =
A
R

vin(t), and the job is therefore to determine by experiment and simulation whether
the uninitialized RL derivative defined by (2), uninitialized Caputo derivative defined
by (3), or the initialized derivative defined by (8) should be used in place of the gen-
eral fractional derivative operator ‘d’. For a particular fractance, the parameters ‘A’
and ‘α’ can be easily obtained from its impedance frequency response as follows.

Ideally, impedance transfer function of a fractance is:

V (s)

I (s)
= Z(s) = A

sα
. (23)

Therefore, frequency response of impedance is given by:

Z(jω) = A

(jω)α
. (24)

Thus the phase response is ∠Z(jω) = −π
2 α radians. For a particular fractance, the

phase angle is ideally constant at all frequencies; hence a fractance is also called
a ‘Constant Phase Element (CPE)’. The value of phase angle gives the parame-
ter ‘α’. The magnitude response 20 log |z(jω)| = 20 log(A)− 20α log(ω) has a slope
of −20α dB/decade. Once ‘α’ is known, ‘A’ can be found out.

There exist several possible ways to realize a CPE to a close approximation, in
the sense that they do exhibit more or less flat phase response but only in limited
frequency ranges [26]. The current work deals with the following two realizations.

4.1 Case I: Experiment with Single Component CPEs

Fabrication and performance study of a single component CPE was reported
in [7, 26]. It is a copper plated epoxy glass with a PMMA coating and dipped into
a polarizable medium. Two such single component fractances, say F1 and F2, were
taken for experimentation. Their impedance characteristics as measured with an LCR
meter and the corresponding CPE models are shown in Figs. 6 and 7, respectively.
For each case, the magnitude response, within a certain frequency range, has a slope
other than the conventional +/−20 dB/decade or their multiples, and in the same
frequency range the phase response is more or less flat, however, at an angle different
from +/−90◦ or its multiples. Thus modeling with an integer order transfer function
is not convenient; however, allowing the exponent of the Laplace variable ‘s’ to be a
fraction yields quite accurate models.

From experimental results, F1 in the range [10 kHz, 100 kHz] can be modeled as:

Z1(s) = A1

sα1
= 2.0421 × 104

s0.2213
. (25)
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Fig. 6 Impedance characteristics of fractance F1 from 10 kHz to 100 kHz

Fig. 7 Impedance characteristics of fractance F2 from 5 kHz to 50 kHz

On the other hand, F2 in the range [5 kHz, 50 kHz] can be modeled as:

Z2(s) = A2

sα2
= 9.2194 × 103

s0.1456
. (26)

The experimental input as shown in Fig. 8 is given from a microcontroller. The
fundamental frequency of the input pulse is chosen to be 10 kHz so that the CPE
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Fig. 8 The experimental input

Fig. 9 Determination of simulation time step for fractance F1

models (25) and (26) for the fractances F1 and F2, respectively, can be used for
simulation. The OFF time duration is chosen sufficiently (9 times) larger than ON
time duration due to the fact that under such a condition, the output is found to die
down to and stay at zero for quite some time, as a result of which we can effectively
select the PST and CST for simulation as follows:

PST ‘p’: Instant when the input goes ON, so output starts becoming non-zero.
CST ‘q’: Any instant occurring later than ‘p’; here we choose to work with two

values of ‘q’, viz. q1 = instant when input goes OFF so that the full ON period of
input (10 μs) becomes the history period for simulation; q2 = q1 − 5 μs so that half
the ON period of input becomes the history period for simulation.

The series resistor R (as shown in Fig. 5) is kept at 1 k
 such that rise and fall of
the output voltage waveform should not become too fast to be captured. Now, choice
of suitable time step for simulation for fractance F1 is to be determined.

As seen in Fig. 9, steep rise or fall in experimental output occurs within ∼0.7 μs;
thus for simulation, a time step ∼0.7 μs should be fine. Hence h = 0.04 μs as used
by the Digital Storage Oscilloscope to store the data is a good choice. With this time
step, experimental and simulated responses for fractance F1 are depicted in Figs. 10
and 11, respectively.
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Fig. 10 Responses for F1 when history period is the whole ON time of input

A brief explanation of Fig. 10 is as follows: For simulation, we are interested in
predicting the output only after the CST (∼20 μs in the time scale) and hence output
before CST, which is not of interest, is deliberately kept at zero for all the simulations.
In this case, the whole of ON time of input (∼10 μs to ∼20 μs) is the history period.
Neglecting the values of the experimental output during this history period, the simu-
lated output following uninitialized RL derivative as per (18) decays immediately to
zero while the simulated output following uninitialized Caputo derivative as per (19)
indicates a much slower decay. Initially both of them deviate from the experimental
output, following which simulated RL output gets closer to the experimental one. On
the other hand, the simulated output which includes initialization (i.e., experimental
output data from ∼10 μs to ∼20 μs) as per (17) remains close to experiment through-
out after the CST. This provides evidence in support of including the past history in
the form of initialization function as mentioned in Section 2.

We repeat the simulations for fractance F1 with a different CST (∼15 μs in the
time scale) such that half of the input ON time (∼10 μs to ∼15 μs) becomes the
history period, as shown in Fig. 11. The simulated uninitialized RL response which
ignores the output data from ∼10 μs to ∼15 μs displays a deviation from the ex-
perimental output initially for a while, after which the former catches up with the
latter. On the other hand, the initialized response once again remains closer to the
experiment throughout after the CST (i.e., 15 μs onwards).

At the same time, it can also be seen that (a) for both the cases, the uninitialized
RL response, after some initial deviation, eventually gets closer the experimental one,
but (b) it does so in less time for the second case. A careful review of (17) and (18) re-
veals that the amount of instantaneous correction to the uninitialized response needed
to get the initialized one is influenced by two factors: (i) it is less for an instant away
from CST than one close to CST, which explains observation (a), and (ii) for the same
instant it is more when the history output stays non-zero for a longer duration in the
vicinity of CST, which explains observation (b). Thus both the need for a correction
term for history effects and the suitability of the one involving the initialization func-
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Fig. 11 Responses for F1 when history period is half of the ON time of input

Fig. 12 Responses for F2 when history period is whole of the ON time of input

tion are established. Similar are the results for both choices of CST for fractance F2
as well. Observations with full ON time of input as the history period are presented
in Fig. 12.

4.2 Case II: Experiment with a Domino Ladder Network

A domino ladder network is an array of resistors and capacitors with values so chosen
that the resulting circuit exhibits constant phase behavior. In comparison to PMMA
coated single component CPEs, it offers more design flexibility in the sense that the
resistors and capacitors can be staged in pre-determined geometric common ratios
in order to approximate a desired phase angle; however, the overall circuit becomes
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Fig. 13 The domino ladder network to realize a constant phase element

Fig. 14 Experimental and modeled frequency response of the ladder circuit

bulky and somewhat inconvenient to use. A detailed study of domino ladders can be
found in [26, 27]. In the current work, we used a ladder circuit as shown in Fig. 13.

From frequency response, the ladder can be modeled in the range [100 Hz, 10 kHz]
as:

Z(s) = 6.0071 × 105

s0.1988
. (27)

Experimental and modeled frequency responses are shown in Fig. 14.
In this case, a rectangular periodic input of amplitude 5 V, fundamental frequency

1 kHz, and duty cycle of about 16 % are provided from a signal generator; and a
100 k
 resistor is put in series, justifications for all the choices being similar to the
single component case.

Similar to the previous cases, analysis of experimental input and output waveforms
lead to the conclusion that for simulation, a time step of the order of 1 μs would be
sufficient. Simulated responses with this time step and history period equal to the
whole of the input ON time, along with the experimental curves, are shown in Fig. 15.
The procedure was repeated for cases where: (i) duration of history period is half the
input ON time, (ii) value of the series resistor is different (e.g., 300 k
), (iii) input is
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Fig. 15 Responses for domino ladder CPE with series resistor 100 k
 and input as in Fig. 15, when
history period is the whole of the ON time of the input

of same duty cycle but different fundamental frequency (e.g., 500 Hz). Observations
are similar for all these combinations and all of them resemble the curves obtained
for single component CPEs. The need for taking initialization into account is thus
established for this type of CPE as well.

5 Quantitative Analysis in Terms of Integral Square Error

In practice, the entire past history may not be available, so for the type of FOS de-
scribed by FDE (11) with PST ‘p’ and CST ‘q’, the objective now is to determine
whether there exists a H > q − p such that knowledge of y(t) in [q − H,q) instead
of in [p,q) can be used to construct the correction term without causing much error.
Let yinit(t) := initialized response = solution (17) of FDE (12) with initialized deriva-
tive as per (8); and yun(t) := uninitialized response = solution (18) of FDE (11) with
uninitialized RL derivative as per (2).

A measure of the error between the initialized response and the uninitialized one
can be Integral Square Error (ISE) which may be defined for the duration [q, q + T ]
as:

ISE(T ) =
∫ q+T

q

[
yinit(t) − yun(t)

]2
dt. (28)

For convenience, let p = −a and q = 0 such that duration of full history period is ‘a’
and

ISE(T ) =
∫ T

0

[
yinit(t) − yun(t)

]2
dt. (29)
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(a)

(b)

Fig. 16 Types of history functions

Let a = 1000 s, T = 10 s (meaning that the system has a long history period relative
to the duration for which effect of history is studied) and let us determine ISE for the
following cases:

(A) α = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9;
(B) k = 0.01, 0.1, 1, 10, 100;
(C) The history functions [i.e., y(t) for −a ≤ t < 0] as plotted in Figs. 16(a) and

16(b). All of them have value unity at t = 0.

Some key observations are provided below.

(a) Dependence of ISE on Type of History Function:

Though (i) and (iv) in Table 1 are different types of history functions, they lead to
comparable ISE values, i.e., more or less similar effect as far as ignoring the history
function is considered. We note that the exponential decay term had a time constant
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Table 1 ISE for T = 10 s for
different history functions for
α = 0.3, k = 1, a = 1000 s

Type of history function Value of ISE for T = 10 seconds

(i) Constant 8.0635

(ii) Linear 6.7531

(iii) Quadratic 6.0636

(iv) Constant + exponential decay 7.9437

(v) Low frequency sinusoid 4.8466

(vi) High frequency sinusoid 1.5822

Table 2 ISE for T = 10 s for Constant Past History with ‘α’ and ‘k’ varying, a = 1000 s

‘α’ (down)/‘k’ (across) 0.01 0.1 1 10 100

0.05 5.7729 4.7924 1.3438 0.0413 0.0005

0.1 17.6679 14.4219 3.7357 0.1071 0.0012

0.2 42.2984 33.2464 7.2888 0.1838 0.0021

0.3 58.2389 43.8439 8.0635 0.1820 0.0020

0.4 64.0026 45.9013 7.0351 0.1449 0.0016

0.5 61.3046 41.6518 5.2969 0.1018 0.0011

0.6 52.0786 33.3295 3.5109 0.0644 0.0007

0.7 38.1509 22.8661 1.9978 0.0357 0.0004

0.8 21.8441 12.1915 0.8876 0.0157 0.0002

0.9 6.9736 3.6044 0.2204 0.0039 0.0000

of (a/10), so the corresponding history function was almost constant at unity for
the last 60 % duration of the history period. Moreover, in that duration, the rest of
the history functions in descending order of average values are linear, quadratic, low
frequency sinusoid and high frequency sinusoid, and the values of ISE follow exactly
the same order. This is seen for other values of α and k as well.

Thus, for the general case with PST ‘p’ and CST ‘q’, within [p,q), we should
indeed be able to find a H < q − p such that the average value of the history in
[q − H,q) decides how prominent the effect of initialization is going to be. The
constant history function with the greatest average value in [q − H,q) represents the
worst case leading to maximum error.

(b) Dependence of ISE on System Parameters ‘α’ and ‘k’:

Table 2 shows the ISE values for different ‘α’ and ‘k’ for Constant Past History
which corresponds to maximum ISE. Observations are similar in nature for the other
types of history functions.

It is thus observed that irrespective of the type of history function and the value
of k, the error due to neglecting initialization reaches a maximum roughly in the range
of α from 0.2 to 0.4. However, the maximum error decreases by order of magnitude
as k increases; which indicates that for a larger k; the effect of initialization will
die down at a quicker pace with time. Therefore, we can intuitively argue that we
should consider history of y(t) for the interval [q −H,q) where H should be 0 at the
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extremes α = 0 and α = 1 and maximum for α ∼ 0.2 to 0.4 and also that H should
decrease as k increases.

6 Conclusions

In this work we have established the need for a suitable correction term to take into
account the past history for a class of fractional order systems by experimenting with
a simple electrical circuit and using a simple but accurate method for all simulations.
The appropriateness of the initialization function as a possible means to construct the
necessary correction term is also validated. Our experimentation entails two different
realizations of constant phase element systems and the results are found to be valid for
both the cases. We have also highlighted the fact that though a complete knowledge
of the past history of the system is theoretically necessary, one can still perform a
reasonably good analysis by considering only a partial knowledge of history, how
much one should look into the past depends on parameters of the system and also
on the nature of the history function. The parameter α ranging from 0.2 to 0.4 and a
low value of k results in a more prominent effect of initialization and therefore the
duration of history to be considered for accurate results is greater. If the exact nature
of history function is not known, a worst case analysis can be performed by assuming
the same to be constant at its maximum expected value.

Initialization is theoretically a fundamental phenomenon which is associated with
all systems modeled as fractional order. However, for the theory to be univer-
sally accepted, experimental verification needs to be done for classes of FOS with
α > 1 as well. Moreover, an FOS as a part of a closed loop control system re-
quires the issue of initialization to be handled so as to get an idea of how the loop
stability and performance is likely to be affected. Nowadays fractional order con-
trollers [15, 20, 23, 32, 34] are becoming popular because of extra freedom regard-
ing fractional exponents which is not the case with integer order controllers. Apart
from the fractional exponent, this initialization is another aid which can be used, par-
ticularly when the initialization of another fractional order plant in the loop is to be
canceled [20]. Further, for a regulator problem pertaining to a FOS belonging to the
class considered in this work, the control input to maintain the output once it reaches
the set point, depends upon the initialization [2]. In-depth research is needed to ad-
dress these issues.
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