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Abstract In this paper, the problem of robust H∞ control for a class of uncer-
tain neutral stochastic systems with mixed delays is investigated. The parameter
uncertainties are assumed to be norm-bounded. A delay-dependent sufficient con-
dition is derived in terms of the nonlinear matrix inequality by constructing proper
Lyapunov–Krasovskii functional, using matrix inequality techniques and introducing
free weighting matrices. The new result obtained in this paper can be tested numer-
ically by using the so-called cone complementarity linearization (CCL) algorithm.
Two examples provided in the literature show the effectiveness of the proposed ap-
proach.

Keywords Neutral stochastic system with mixed delays · Robust H∞ control ·
Nonlinear matrix inequality · Cone complementarity linearization (CCL)

1 Introduction

Dynamical systems modeled by neutral functional differential equations are gener-
ally called neutral systems in the literature. Neutral systems are frequently encoun-
tered in many practical situations such as chemical reactors, water pipes, population
ecology and so on [12]. It is well known that time-delay and stochastic perturba-
tions are often a source of instability and/or poor performance of many systems (see
[6, 8] and the references therein). Also, in practice, the systems almost present some
uncertainties because it is very difficult to obtain an exact mathematical model due
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to environmental noise, uncertain or slowly varying parameters, etc. Therefore, the
problems of analysis and control for uncertain neutral stochastic systems with delays
have attracted considerable attention (see [2, 3, 6–9, 11] and the references therein)
in recent decade. It should be emphasized that the achieved results mainly focus on
uncertain neutral stochastic systems with discrete and neutral delays, while few re-
sults concerning robust H∞ control problem for uncertain neutral stochastic systems
with discrete, distributed, and neutral delays can be found. In general, the problems
of robust H∞ control are solved by constructing Lyapunov–Krasovskii functional
and applying the linear matrix inequality (LMI) technique, and hence the achieved
results are described by LMIs which can be solved by the LMI Control Toolbox of
MATLAB. However, in order to obtain LMIs criteria, some nonlinear items in the
infinitesimal operators of Lyapunov–Krasovskii functionals have to be transformed
into linear ones, which may bring certain conservativeness.

Motivated by the above causes, in this paper we consider the problem of robust
H∞ control for a class of uncertain neutral stochastic systems modeled in [6]. By
constructing a new Lyapunov–Krasovskii functional, using matrix inequality tech-
niques and introducing free-weighting matrices, a novel delay-dependent sufficient
condition is derived in terms of the nonlinear matrix inequality, which can be tested
effectively by using the so-called CCL algorithm. Two examples are given to show
the effectiveness of our results as compared to the results obtained by the method
in [6].

Notation: R
n denotes the n-dimensional Euclidean space. AT and A−1 represent

the transpose and inverse of a matrix A, respectively. For real symmetric matrices X

and Y , the notation X ≥ Y (respectively, X > Y ) means that the matrix X−Y is posi-
tive semi-definite (respectively, positive definite). I is the identity matrix of appropri-
ate dimensions. We denote by 0m×n the m × n zero matrix. ρ(·) denotes the spectral
radius of matrix. In a symmetric matrix, ∗ denotes the entries implied by symmetry.
L2[0,∞) is the space of square-integrable functions over [0,∞) with the norm ‖ ·‖2.
‖ · ‖ will refer to the Euclidean vector norm. (Ω, F , P ) is a probability space, where
Ω is the sample space, F is the σ -algebra of subsets of the sample space, and P is
the probability measure on F . The notation E stands for the mathematical expectation
operator. We denote by L2[Ω,R

k) the space of square-integrable R
k-valued vector

functions on the probability space (Ω, F , P ). We also denote by L2[[0,∞),R
k) the

space of nonanticipatory square-integrable stochastic processes f (·) = [f (t)]t∈[0,∞)

in R
k with respect to (Ft )t∈[0,∞) satisfying

‖f ‖2
E2

= E

[∫ ∞

0

∥∥f (t)
∥∥2 dt

]
=

∫ ∞

0
E

∥∥f (t)
∥∥2 dt < ∞.

2 Problem Formulation

Consider the following uncertain neutral stochastic system with mixed delays:

d
[
x(t) − Dx(t − τ1)

]

=
[
A(t)x(t) + A1(t)x(t − τ1) + A2(t)

∫ t

t−τ2

x(s)ds + B1(t)u(t) + Ev(t)

]
dt
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+
[
F1x(t) + F2x(t − τ1) + F3

∫ t

t−τ2

x(s)ds

]
dω(t), (1a)

y(t) = Cx(t) + B2u(t), t ≥ 0, (1b)

x(t) = φ(t), t ∈ [−max{2τ1, τ2},0
]
, (1c)

where x(t) is the n-dimensional state vector, u(t) is the m-dimensional control input
vector, y(t) is the q-dimensional controlled output vector, v(t) is the p-dimensional
disturbance input vector which belongs to L2[0,∞), φ(s) is an R

n-valued continuous
initial function specified on [−max{2τ1, τ2},0], τ1 and τ2 are positive scalars repre-
senting the system delays, ω(t) is a scalar Brownian motion defined on a complete
probability space (Ω, F , P ), C, D, B2, E, F1, F2, and F3 are known real constant
matrices of appropriate dimensions, and A(t), A1(t), A2(t), and B1(t) are matrix
functions with time-varying uncertainties, that is,

A(t) = A + �A(t),A1(t) = A1 + �A1(t),

A2(t) = A2 + �A2(t),B1(t) = B1 + �B1(t),
(2)

and A, A1, A2, and B1 are known real constant matrices of appropriate dimensions.
Throughout this paper, we make the following assumptions.

Assumption 1 ρ(D) < 1.

Assumption 2 The time-varying uncertainties �A(t), �A1(t), �A2(t), and �B1(t)

are assumed to be of the form
[
�A(t) �A1(t) �A2(t) �B1(t)

] = MF(t)[S S1 S2 S3], (3)

where M , S, S1, S2, and S3 are known real constant matrices of appropriate dimen-
sions, and F(t) is a time-varying uncertain matrix satisfying

FT (t)F (t) ≤ I ∀t ≥ 0. (4)

Remark 1 Assumption 1 guarantees that the zero solution of the homogeneous dif-
ference equation Dxt := x(t) − Dx(t − τ1) = 0 is asymptotically stable.

When the state feedback controller

u(t) = Kx(t), (5)

where K is a constant gain to be designed, is applied to system (1a)–(1c), the resultant
closed-loop system is as follows:

d
[
x(t) − Dx(t − τ1)

]

=
[(

A(t) + B1(t)K
)
x(t) + A1(t)x(t − τ1) + A2(t)

∫ t

t−τ2

x(s)ds + Ev(t)

]
dt
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+
[
F1x(t) + F2x(t − τ1) + F3

∫ t

t−τ2

x(s)ds

]
dω(t), (6a)

y(t) = (C + B2K)x(t), t ≥ 0, (6b)

x(t) = φ(t), t ∈ [−max{2τ1, τ2},0
]
. (6c)

Next, we will give the concepts of mean-square asymptotic stability and robustly
stochastic stabilization with disturbance attenuation level γ for system (1a)–(1c).

Definition 1 For system (1a) with u(t) = 0 and v(t) = 0, the equilibrium point 0 is
said to be mean-square asymptotically stable if limt→∞ E‖x(t)‖2 = 0 for any t ≥ 0
and all admissible uncertainties satisfying (3) and (4).

Definition 2 For a given positive constant γ , system (1a)–(1c) is said to be ro-
bustly stochastically stabilizable with disturbance attenuation level γ if there exists
a state feedback controller (5) such that, for all admissible uncertainties satisfying
(3) and (4), the closed-loop system (6a)–(6c) with v(t) = 0 is mean-square asymp-
totically stable and, under the zero-initial condition, the inequality ‖y‖E2 < γ ‖v‖2
holds for any nonzero disturbance input.

The aim of this paper is to design a state feedback controller of the form (5)
which robustly stochastically stabilizes system (1a)–(1c) with disturbance attenua-
tion level γ .

The following lemmas will be useful to realize our aim.

Lemma 1 [10] Let D,S, and WT = W > 0 be real matrices of appropriate dimen-
sions. Then for any nonzero vectors x and y of appropriate dimensions, we have

2xT DSy ≤ xT DWDT x + yT ST W−1Sy.

Lemma 2 (Jensen Inequality) [5] Let x(t) be a vector-valued function which is inte-
grable on the interval [a, b]. Then

(b − a)

∫ b

a

xT (s)Rx(s)ds ≥
∫ b

a

xT (s)dsR

∫ b

a

x(s)ds

for any matrix R = RT > 0.

Lemma 3 [1] Let U,W and XT = X be real matrices of appropriate dimensions.
Set S = {V : V T V ≤ I }. Then

X + UV W + WT V T UT < 0 ∀V ∈ S

if and only if there exists a scalar ε > 0 such that

X + ε−1UUT + εWT W < 0.
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3 Main Results

In this section, we will investigate a new delay-dependent sufficient condition for
the solvability of the robust H∞ control problem for a class of uncertain neutral
stochastic systems with mixed delays. We have the following theorem.

Theorem 1 For given γ > 0, τ1 > 0, and τ2 > 0, the uncertain neutral stochastic
system (1a)–(1c) is robustly stochastically stabilizable with disturbance attenuation
level γ if there exist real matrices P̂ T = P̂ > 0, RT = R > 0, QT

i = Qi > 0, WT
i =

Wi > 0 (i = 1,2), K̂ and L̂, and a scalar ε > 0 such that

⎡
⎢⎢⎢⎢⎢⎢⎣

V11 V12 V13 V14 ST

∗ V22 0 0 0

∗ ∗ V33 0 0

∗ ∗ ∗ V44 0

∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (7)

where

V11 = εeT
1 MMT e1 − eT

2 P̂ (I + D)−T Q1(I + D)−1P̂ e2 − γ 2eT
5 e5 − eT

4 W2e4

+ AT e1 + eT
1 A + (e1 − e2 + e3)

T L̂ + L̂T (e1 − e2 + e3) − eT
3 P̂Q2P̂ e3,

V12 = [
AT + εeT

1 MMT AT + εeT
1 MMT

]
,

V13 = [
F T F T L̂T L̂T

]
,

V14 = [
eT

1 P̂DT eT
1 (P̂CT + K̂BT

2 ) eT
1 P̂ τ2e

T
1 P̂ eT

2 P̂ (I + D)−T DT
]
,

V22 =
[

εMMT − P̂ εMMT

∗ εMMT − (τ1R)−1

]
,

V33 = diag
(−(τ1W1)

−1,−P̂ ,−P̂W1P̂ ,−τ−1
1 P̂RP̂

)
,

V44 = diag
(−Q−1

2 ,−I,−Q−1
1 ,−W−1

2 ,−P̂
)
,

S = [
SP̂ + S3K̂

T S1(I + D)−1P̂ 0 S2 0
]
,

A = [
AP̂ + B1K̂

T A1(I + D)−1P̂ 0 A2 E
]
,

F = [
F1P̂ F2(I + D)−1P̂ 0 F3 0

]
,

ei = [
0n×(i−1)n In 0n×(5−i)n

]
, i = 1,2,3,4,5.

In this case, a desired state feedback gain can be obtained as K = K̂T P̂ −1.
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Proof By the Schur complementary lemma, inequality (7) is equivalent to

[
V11 V12

V T
12 V22

]
−

[
V13

0

]
V −1

33

[
V13

0

]T

−
[

V14

0

]
V −1

44

[
V14

0

]T

+ ε−1

[
ST

0

][
ST

0

]T

< 0. (8)

Pre- and post-multiplying by diag(P , I, I ) with

P = diag
(
P̂ −1, P̂ −1, P̂ −1, I, I

)
on the both sides of (8), one can easily derive that

Π + εM̂T M̂ + ε−1ŜŜT < 0, (9)

where

M̂ = [
MT Pe1 MT MT

]
, P = P̂ −1, Ŝ = [

SP 0 0
]T

,

Π =

⎡
⎢⎢⎣

Π1 + Π2 + eT
1 P Â + ÂT P e1 ÂT ÂT

Â −P̂ 0

Â 0 −τ−1
1 R−1

⎤
⎥⎥⎦ ,

Π1 = −eT
3 Q2e3 − eT

4 W2e4 + LT (e1 − e2 + e3) + (e1 − e2 + e3)
T L

+ F̂ T (P + τ1W1)F̂ + eT
2 (I + D)−T

(
DT PD − Q1

)
(I + D)−1e2

+ eT
1

[
DT Q2D + Q1 + τ 2

2 W2
]
e1 + LT

(
W−1

1 + τ1R
−1)L,

Π2 = eT
1 (C + B2K)T (C + B2K)e1 − γ 2eT

5 e5,

L = P L̂P , Â = AP , F̂ = F P , K = K̂T P .

The combination of Lemma 3 and (9) gives that

Π + ŜF T (t)M̂ + M̂T F (t)ŜT < 0

for any uncertainty F(t) satisfying (4). This, together with the Schur complementary
lemma, implies that

Π1 + Π2 + eT
1 P Â(t) + ÂT (t)P e1 + ÂT (t)(P + τ1R)Â(t) < 0, (10)

where

Â(t) = Â + MF(t)SP .

For convenience, let

ξ(t) =
[
xT (t) xT (t − τ1)(I + D)T xT (t − 2τ1)D

T
∫ t

t−τ2
xT (s)ds vT (t)

]T

.

(11)
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Then the closed-loop system (6a)–(6c) becomes

dDxt = g1(t)dt + g2(t)dω(t), (12)

where

g1(t) = Â(t)ξ(t), g2(t) = F̂ ξ(t). (13)

Define a Lyapunov–Krasovskii functional candidate for the closed-loop system
(6a)–(6c) as

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t), (14)

where

V1(t) = (Dxt )
T P Dxt ,

V2(t) =
∫ t

t−τ1

xT (s)Q1x(s)ds +
∫ t

t−2τ1

xT (s)DT Q2Dx(s)ds,

V3(t) =
∫ 0

−τ1

∫ t

t+θ

gT
1 (s)Rg1(s)ds dθ,

V4(t) =
∫ 0

−τ1

∫ t

t+θ

gT
2 (s)W1g2(s)ds dθ,

V5(t) = τ2

∫ 0

−τ2

∫ t

t+θ

xT (s)W2x(s)ds dθ.

Using Itô’s formula, we get from Lemmas 1 and 2 that

LV1(t) = ξT (t)
[(

eT
1 − eT

2 (I + D)−T DT
)
P Â(t) + F̂ T P F̂

+ ÂT (t)P
(
e1 − D(I + D)−1e2

)]
ξ(t)

≤ ξT (t)
[
eT

1 P Â(t) + eT
2 (I + D)−T DT PD(I + D)−1e2

+ ÂT (t)P e1 + ÂT (t)P Â(t) + F̂ T P F̂
]
ξ(t), (15)

LV2(t) = ξT (t)
[
eT

1

(
Q1 + DT Q2D

)
e1

− eT
2 (I + D)−T Q1(I + D)−1e2 − eT

3 Q2e3
]
ξ(t), (16)

LV3(t) = τ1ξ
T (t)ÂT (t)RÂ(t)ξ(t) −

∫ t

t−τ1

gT
1 (s)Rg1(s)ds, (17)

LV4(t) = τ1ξ
T (t)F̂ T W1F̂ ξ(t) −

∫ t

t−τ1

gT
2 (s)W1g2(s)ds, (18)

LV5(t) ≤ ξT (t)
[
τ 2

2 eT
1 W2e1 − eT

4 W2e4
]
ξ(t). (19)
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By the Newton–Leibniz formula, it is easy to achieve from (12) that

2ξT (t)LT

[
x(t) − (I + D)x(t − τ1) + Dx(t − 2τ1)

−
∫ t

t−τ1

g1(s)ds −
∫ t

t−τ1

g2(s)dω(s)

]
= 0.

Using Lemma 1, we have that

−2ξT (t)LT

∫ t

t−τ1

g1(s)ds

≤ τ1ξ
T (t)LT R−1Lξ(t) + τ−1

1

∫ t

t−τ1

gT
1 (s)dsR

∫ t

t−τ1

g1(s)ds

and

−2ξT (t)LT

∫ t

t−τ1

g2(s)dω(s)

≤ ξT (t)LT W−1
1 Lξ(t) +

∫ t

t−τ1

gT
2 (s)dω(s)W1

∫ t

t−τ1

g2(s)dω(s).

Therefore,

ξT (t)
[
LT

(
τ1R

−1 + W−1
1

)
L + LT (e1 − e2 + e3) + (e1 − e2 + e3)

T L
]
ξ(t)

+ τ−1
1

∫ t

t−τ1

gT
1 (s)dsR

∫ t

t−τ1

g1(s)ds

+
∫ t

t−τ1

gT
2 (s)dω(s)W1

∫ t

t−τ1

g2(s)dω(s)

≥ 0. (20)

This, together with (15)–(19), implies that

ELV (t) ≤ E
{
ξT (t)

[
Π1 + eT

1 PA(t) + AT (t)P e1 + AT (t)(P + τ1R)A(t)
]
ξ(t)

}
.

(21)
When v(t) = 0, it follows from (10), (11), and (21) that

ELV (t) < −λE
∥∥ξ(t)

∥∥2
(∀t ≥ 0),

where λ is some positive scalar, which implies that

−EV (0) ≤ EV (t) − EV (0) =
∫ t

0
ELV (s)ds

≤ −λ

∫ t

0
E

∥∥ξ(s)
∥∥2 ds ≤ −λ

∫ t

0
E

∥∥x(s)
∥∥2 ds,
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i.e.,
∫ t

0 E‖x(s)‖2 ds ≤ 1
λ
EV (0). Since EV (0) is a finite number, it follows that

limt→∞ ‖x(t)‖ = 0, that is, the closed-loop system (6a)–(6c) is asymptotically mean-
square stable for all admissible uncertainties satisfying (3) and (4).

Next, for any nonzero v(t), under the zero initial condition we consider the index

J (t) = E

∫ t

0

[
yT (s)y(s) − γ 2vT (s)v(s)

]
ds.

Clearly,

J (t) ≤
∫ t

0
E

[
yT (s)y(s) − γ 2vT (s)v(s) + LV (s)

]
ds.

This, together with

yT (s)y(s) = xT (s)
(
CT + KT BT

2

)
(C + B2K)x(s),

implies that

J (t) ≤ E

∫ t

0
ξT (s)

[
Π1 + Π2 + eT

1 P Â(s) + ÂT (s)P e1

+ ÂT (s)(P + τ1R)Â(s)
]
ξ(s)ds.

Hence, from (10) we have J (t) < 0 for any t > 0. Therefore, under the zero initial
condition, ‖y(t)‖E2 < γ ‖v(t)‖2 is satisfied for any nonzero disturbance input and all
admissible uncertainties satisfying (3) and (4). This completes the proof. �

Remark 2 Comparing with the corresponding results in [6, 7], we construct a new
Lyapunov–Krasovskii functional (for example, the item V3(t) is introduced) in the
proof of Theorem 1, which may reduce the conservativeness of results. This will be
tested by numerical examples in Sect. 5. Moreover, a CCL algorithm will be offered
in Sect. 4 below to solve the nonlinear inequality proposed in Theorem 1, which
avoids transforming some nonlinear items into linear ones. This may reduce the con-
servativeness of results but may increase the computational complexity.

4 A CCL Algorithm to Design State Feedback Gains

Due to the existence of the terms like P̂RP̂ , inequality (7) in Theorem 1 is not an
LMI, and hence no state feedback gain K can be obtained directly by using the LMI
Control Toolbox. In order to solve the nonlinear inequality (7), in this section we will
design a CCL algorithm.

Motivated by the idea of the so-called CCL algorithm [4], we require to intro-
duce the matrix variables P > 0, R̂ > 0, Q̂i > 0, Ŵi > 0 (i = 1,2), Xj > 0, and
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X̂j > 0 (j = 1,2,3,4) satisfying

[
(I + D)−T Q1(I + D)−1 P

P X̂1

]
≥ 0,

[
Q2 P

P X̂2

]
≥ 0,

[
R P

P X̂3

]
≥ 0,

[
W1 P

P X̂4

]
≥ 0, P P̂ = I, RR̂ = I, QiQ̂i = I,

WiŴi = I (i = 1,2), Xj X̂j = I (j = 1,2,3,4).

(22)

Obviously, inequality (7) is feasible if (22) and

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V̂11 V12 V13 V14 ST

∗ V̂22 0 0 0

∗ ∗ V̂33 0 0

∗ ∗ ∗ V̂44 0

∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (23)

are satisfied, where V1i (i = 2,3,4) and S are defined as in Theorem 1, and

V̂11 = eT
1 A + AT e1 + εeT

1 MMT e1 − eT
2 X1e2 − eT

3 X2e3

− eT
4 W2e4 − γ 2eT

5 e5 + (e1 − e2 + e3)
T L̂ + L̂T (e1 − e2 + e3),

V̂22 =
[

εMMT − P̂ εMMT

∗ εMMT − τ−1
1 R̂

]
,

V̂33 = diag
(−τ−1

1 Ŵ1,−P̂ ,−X4,−τ−1
1 X3

)
,

V̂44 = diag(−Q̂2,−I,−Q̂1,−Ŵ2,−P̂ ).

Based on the preparation above, now we can give the following CCL algorithm to
compute the maximum of τ2 for given τ1 > 0 and γ > 0 under the premise that the
LMI (7) is feasible.

Algorithm 1 (Compute the Maximum of τ2 for Given τ1 > 0 and γ > 0)

Step 1 Choose a sufficiently small τ2 such that there exists a feasible solution to (23)
and

R > 0, R̂ > 0, P > 0, P̂ > 0, Qi > 0, Q̂i > 0, Wi > 0, Ŵi > 0, Xj > 0,

[
(I + D)−T Q1(I + D)−1 P

P X̂1

]
≥ 0,

[
Q2 P

P X̂2

]
≥ 0,
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[
R P

P X̂3

]
≥ 0,

[
P I

I P̂

]
≥ 0,

[
R I

I R̂

]
≥ 0, (24)

[
Qi I

I Q̂i

]
≥ 0,

[
Wi I

I Ŵi

]
≥ 0,

[
W1 P

P X̂4

]
≥ 0,

[
Xj I

I X̂j

]
≥ 0, X̂j > 0, ε > 0, i = 1,2, j = 1,2,3,4.

Set τmax = τ2.

Step 2 Find a feasible set of R0, R̂0, P0, P̂0, Qi0, Q̂i0, Wi0, Ŵi0 (i = 1,2), Xj0, X̂j0

(j = 1,2,3,4), L̂0, ε0, and K̂0 satisfying (23) and (24). Set k = 0.

Step 3 Solve the following LMI problem for the variables R, R̂,P, P̂ ,Qi, Q̂i ,
Wi, Ŵi (i = 1,2),Xj , X̂j (j = 1,2,3,4), L̂, ε, and K̂ :

min
subject to (23) and (24)

trΨ,

where

Ψ = RkR̂ + RR̂k + PkP̂ + P P̂k +
2∑

i=1

(QikQ̂i + QiQ̂ik + WikŴi + WiŴik)

+
4∑

j=1

(XjkX̂j + XjX̂jk).

Set Rk+1 = R, R̂k+1 = R̂, Pk+1 = P, P̂k+1 = P̂ , Qik+1 = Qi, Q̂ik+1 = Q̂i,

Wik+1 = Wi, Ŵik+1 = Ŵi, Xjk+1 = Xj , X̂jk+1 = X̂j (i = 1,2, j = 1,2,3,4).

Step 4 If the following LMI (25) is feasible for the variables K̂ , ε, Qi , Wi (i = 1,2),
L̂, and the matrices P̂ and R obtained in Step 3, then set τmax = τ2, increase τ2 by
a small amount, and return to Step 2. If LMI in (25) is infeasible within a specified
number kmax of iteration, then stop; otherwise, set k = k + 1 and go to Step 3.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V11 V12 V̌13 V̌14 ST

∗ V22 0 0 0

∗ ∗ V̌33 0 0

∗ ∗ ∗ V̌44 0

∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (25)

where

V̌13 = [
F T W1 F T L̂T L̂T

]
,

V̌14 = [
eT

1 P̂DT Q2 eT
1 (P̂CT + K̂BT

2 ) eT
1 P̂Q1 τ2e

T
1 P̂W2 eT

2 P̂ (I + D)−T DT
]
,
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V̌33 = diag
(−τ−1

1 W1,−P̂ ,−P̂W1P̂ ,−τ−1
1 P̂RP̂

)
,

V̌44 = diag(−Q2,−I,−Q1,−W2,−P̂ ),

and V11, V12, V22, and S are defined as in Theorem 1.

5 Numerical Examples

In this section, we offer the following two examples to present that the theoretical
results proposed in the paper may be less conservative than those in [6].

Example 1 [6] Consider system (1a)–(1c) with the following parameters:

A =
[−0.2 0.1

0.2 −0.5

]
, A1 =

[
0.1 0

0.1 −0.1

]
, A2 =

[
0.1 −0.2

0 0.1

]
,

S =
[

0

0.1

]T

, D =
[

0.2 −0.3

0 0.3

]
, B1 =

[
0.3 0.2

0 0.5

]
,

B2 =
[

0.2 0

0.1 0.3

]
, S1 =

[
0.1

−0.1

]T

, C =
[

0.2 0.1

0.3 0.3

]
,

F1 =
[

0.1 0.2

0 0.1

]
, F2 =

[−0.2 0

−0.1 0.2

]
, S2 =

[
0.2

0

]T

,

F3 =
[

0.1 0

0 0.1

]
, E =

[−0.1

0.1

]
, M =

[−0.1

0.1

]
, S3 =

[
0.3

−0.1

]T

.

Case 1: τ1 = τ2. When γ = 0.5, the maximum allowable upper bounds of τ2 and
corresponding state feedback gains K obtained from [6, Theorems 2] and Theorem 1
(i.e., Algorithm 1) of this paper are listed in Table 1. When F(t) ≡ 1, v(t) ≡ 0,
τ1 = τ2 = 3.35, and the initial values x(t) = [10e

t
2 20e

t
2 ]T for t ∈ [−6.7, 0], Fig. 1

illustrates the mean-square asymptotical stability of the closed-loop system (6a)–(6c)
for a given scalar Brownian motion ω(t).

Case 2: τ1 �= τ2. By using Theorem 1 (i.e., Algorithm 1), when γ = 0.5, Table 2
shows the maximum allowable upper bounds of τ2 for different prescribed values
of τ1 and kmax. When τ1 = 0.1 and τ2 = 3.53, a state feedback gain obtained from
Theorem 1 is given by

K =
[−1.6823 0.1892

−0.3642 −0.9437

]
.
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Fig. 1 State responses when F(t) ≡ 1, v(t) ≡ 0, and τ1 = τ2 = 3.35

Table 1 The max τ2 and state
feedback gains K (Example 1) Methods max τ2 K

[6, Theorem 2] 0.47

[
0.2393 0.8688

−0.8628 −0.2357

]

Theorem 1 (kmax = 10) 2.82

[
−1.3856 0.5104

−0.2434 −0.4874

]

Theorem 1 (kmax = 40) 3.35

[
−1.5108 0.2858

−0.2306 −0.8137

]

Table 2 The max τ2 for
different τ1 and kmax
(Example 1)

τ1 0.1 0.5 0.9 1.3 1.7

kmax = 10 3.16 3.01 2.96 2.93 2.89

kmax = 20 3.40 3.31 3.27 3.25 3.23

kmax = 30 3.48 3.40 3.36 3.34 3.32

kmax = 40 3.53 3.45 3.41 3.39 3.37

Besides, Fig. 2 presents an illustrative simulation of the mean-square asymptotical
stability of the closed-loop system (6a)–(6c) for a given scalar Brownian Motion
ω(t) when F(t) ≡ 1, v(t) ≡ 0 and the initial values x(t) = [10e

t
2 20e

t
2 ]T for t ∈

[−3.53, 0].
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Fig. 2 State responses when F(t) ≡ 1, v(t) ≡ 0, τ1 = 0.1, and τ2 = 3.53

Remark 3 Example 1 shows that Theorem 1 in this paper can provide less conserva-
tive results than [6, Theorem 2]. On the other hand, this reduced conservatism is at
the price of some additional computation, for example, for Case 1 of Example 1, we
can easily calculate that the running time is approximately 3313 seconds when Theo-
rem 1 is used (kmax = 10), but the corresponding running time is only approximately
13 seconds when [6, Theorem 2] is used.

Example 2 [6] Consider system (1a)–(1c) with the following parameters:

A =
⎡
⎢⎣

−0.8 0.1 0.2

0.2 −0.5 0.3

0.1 0.1 −0.6

⎤
⎥⎦ , A1 =

⎡
⎢⎣

0.1 0 0.1

0.1 −0.1 −0.1

0.1 −0.1 0.1

⎤
⎥⎦ ,

A2 =
⎡
⎢⎣

0.1 −0.2 −0.1

0 0.1 0

0.1 0.2 −0.2

⎤
⎥⎦ , D =

⎡
⎢⎣

0.2 −0.3 −0.1

0 0.3 −0.2

0.1 −0.1 0.2

⎤
⎥⎦ ,

B1 =
⎡
⎢⎣

0.3 0.2 0.2

0 0.5 0.1

0.2 0.2 0.1

⎤
⎥⎦ , B2 =

⎡
⎢⎣

0.2 0 0

0.1 0.3 0

0.1 0.1 −0.1

⎤
⎥⎦ ,

C =
⎡
⎢⎣

0.2 0.1 0

0.3 0.3 0.1

−0.1 −0.2 0.1

⎤
⎥⎦ , F1 =

⎡
⎢⎣

0.1 0.2 0.1

0 0.1 0

0.1 0.1 −0.1

⎤
⎥⎦ ,
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Table 3 The max τ2
(Example 2) Methods max τ2

[6, Theorem 2] 0.42

Theorem 1 1.71 (kmax = 10)

1.89 (kmax = 20)

1.96 (kmax = 30)

2.01 (kmax = 40)

Table 4 The max τ2 for
different τ1 (Example 2) τ1 0.1 0.5 1 1.5

τ2 1.86 1.76 1.73 1.72

F2 =
⎡
⎢⎣

−0.2 0 0.1

−0.1 0.2 0.1

0.1 0.1 −0.1

⎤
⎥⎦ , F3 =

⎡
⎢⎣

0.1 0 0

0 0.1 0

0 0 0.1

⎤
⎥⎦ ,

E =
⎡
⎢⎣

−0.1

0.1

0.2

⎤
⎥⎦ , M =

⎡
⎢⎣

−0.1

0.1

0.1

⎤
⎥⎦ , S =

⎡
⎢⎣

0

0.1

0

⎤
⎥⎦

T

,

S1 =
⎡
⎢⎣

0.1

−0.1

0

⎤
⎥⎦

T

, S2 =
⎡
⎢⎣

0.2

0

−0.1

⎤
⎥⎦

T

, S3 =
⎡
⎢⎣

0.3

−0.1

0

⎤
⎥⎦

T

.

Case 1: τ1 = τ2. When γ = 0.5, the maximum allowable upper bounds of τ2 obtained
from [6, Theorems 2] and Theorem 1 (i.e., Algorithm 1) of this paper are listed in
Table 3.

Case 2: τ1 �= τ2. By using Theorem 1 (i.e., Algorithm 1), when γ = 0.5 and
kmax = 10, Table 4 shows the maximum allowable upper bounds of τ2 for different
prescribed values of τ1.

The above two examples show that the method proposed in this paper may be less
conservative than one reported in [6] when τ1 = τ2, while for the case τ1 �= τ2, the
method proposed in [6] is not available.

6 Conclusions

In this paper, the problem of robust H∞ control for a class of uncertain neutral
stochastic systems with mixed delays is investigated. A less conservative result was
presented in terms of a nonlinear matrix inequality. To solve the H∞ control problem,
a CCL algorithm has been designed, and thereby, a desired state feedback controller
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can be constructed. The numerical examples show that the method proposed in this
paper maybe less conservative than one reported in [6].
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