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Abstract In this paper, the problem of exponential H∞ output tracking control is
addressed for a class of switched neutral system with time-varying delay and non-
linear perturbations. The considered system consists of different neutral and discrete
delays. By resorting to the average dwell time approach, a new Lyapunov–Krasovskii
functional is proposed to establish sufficient conditions for the exponential stability
and H∞ performance of switched neutral systems. Then, the problem of exponential
H∞ output tracking control is investigated, an explicit expression for the desired ex-
ponential tracking controller is also given. Finally, a numerical example is provided
to demonstrate the potential effectiveness of the proposed method.

Keywords Switched neutral systems · Time-varying delay · Output tracking
control · Exponential H∞ performance · Average dwell time method

1 Introduction

Studies on dynamic systems with complicated switching law which are called
switched systems have arisen in various disciplines of science and engineering in
recent years [1, 2, 4, 6, 19, 27, 28]. Switched system usually consists of a family
of subsystems and a switching signal. Many real-world processes and systems can
be modeled as switched systems, such as power electronics, embedded systems, net-
worked control systems, chemical processes, computer-controlled systems, automo-
tive industry, etc.
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It is well known that time delay can be encountered in various industrial systems
and may be a main source of instability and poor performance of a control system.
Thus, the stability of time-delay systems has been widely considered by many re-
searchers [8, 23, 25, 26, 31]. Neutral system as a special class of time-delay systems
appears in many dynamic systems, which depends on the delays of state and state
derivative. Some practical examples of neutral systems include distributed networks,
heat exchanges, and processes including steam [20]. In view of the strong engineer-
ing background, switched neutral systems have attracted special attention during the
past decade. Some useful results have been reported in the literature (see, e.g. [3, 5,
7, 9, 21] and the references therein), primarily on the investigation of stability.

Tracking control, which can be divided into state tracking and output tracking, is
an important issue in control field and has wide applications in dynamic processes
in industry, economics, and biology. The main objective of output tracking control is
trying to minimize the error between the output of the plant and the output of a given
reference model via a designed controller [32]. The problem of H∞ output track-
ing control for neutral systems with time-varying delay and nonlinear perturbations
was investigated in [33, 34], and provided a less conservative result than one in the
reference [32]. The issue of robust output feedback tracking control for time-delay
nonlinear systems using neural network is studied in [12], where the reference signal
is a given continuous bounded signal.

On the other hand, with the great development of the switched system theory,
the tracking control problems of switched systems have received increasing atten-
tion in the last few years. In addition, the importance of the study of tracking control
for switched systems with time-delay arises from the extensive applications in robot
tracking control [22]. The issue of observer-based state tracking control and robust
state tracking control for switched linear systems with time-varying delay was in-
vestigated in [15, 18], respectively. Li et al. investigated the robust tracking control
problem for switched linear systems with time-varying delays and some sufficient
conditions for the solvability of the robust tacking control problem were developed
in [17]. In [16], the output tracking control problem for switched linear time-varying
delayed systems with stabilizable and unstabilizable subsystems is investigated and
some sufficient conditions for the solvability of the tracking control problem are de-
veloped. Hou et al. considered the problem of exponential l2 − l∞ output tracking
control for discrete-time switched system with time-varying delay in [11], where a
class of discrete-time state feedback tracking controllers was constructed. However,
the aforementioned papers on the tracking problem focus mainly on the switched
time-delay systems. It is well known that neutral systems play a very important role
in time-delay systems. To the best of the authors’ knowledge, the problem of track-
ing control of switched neutral systems with time delay has not been investigated,
and this constitutes the main motivation of the present study.

In this paper, we are interested in investigating the exponential H∞ output tracking
control for switched neutral system with time-varying delay and nonlinear perturba-
tions. By resorting to the average dwell time approach and Newton–Leibniz formula,
sufficient conditions for exponential stability and H∞ performance of switched sys-
tems with time delay are derived. Then, the problem of exponential H∞ output track-
ing control is investigated. Finally, a numerical example is provided to demonstrate
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the potential and effectiveness of the proposed method. Compared with the previ-
ous results, the proposed results have the following highlights: (1) a new Lyapunov
functional candidate is constructed to investigate exponential stability and H∞ per-
formance; (2) the nonlinear perturbation in this paper is quite general that include the
usual Lipschitz conditions as a special case; (3) the exponential H∞ performance is
firstly introduced to study the output tracking problem of switched neutral systems.

Notations Throughout this paper, the superscript “T ” denotes the transpose, and the
symmetric terms in a matrices are denoted by *. The notation X > 0 (X ≥,<,≤ 0)

means that X is a positive definite (positive semi-definite, negative definite, semi-
negative definite, respectively). Rn denotes the n dimensional Euclidean space.
‖x(t)‖ denotes the Euclidean norm. L2[0,∞) is the space of square integrable func-
tions on [0,∞). λmax(P ) and λmin(P ) denote the maximum and minimum eigen-
values of matrix P , respectively. I is an identity matrix with appropriate dimension.
Matrices, if not explicitly stated, are assumed to have compatible dimensions.

2 Problem Formulation and Preliminaries

Consider the following switched neutral systems with time-varying delay:

ẋ(t) − Cσ(t)ẋ(t − τ1)

= Aσ(t)x(t) + Bσ(t)x
(
t − d(t)

) + fσ(t)

(
x(t − τ2)

) + Dσ(t)u(t) + Eσ(t)w(t), (1)

z(t) = C1σ(t)x(t) + C2σ(t)x
(
t − d(t)

) + D1σ(t)u(t), (2)

x(t0 + θ) = ϕ(θ), θ ∈ [−H,0] (3)

where x(t) ∈ Rn, u(t) ∈ Rp , and z(t) ∈ Rq are the state vector, input and out-
put, respectively, w(t) ∈ Rl is the noise input which is assumed to belong to
L2[t0,∞), τ1, τ2 denotes the constant delay, d(t) denotes the time-varying state delay
satisfying

0 ≤ d(t) ≤ d, ḋ(t) ≤ h (4)

with d and h being positive constant numbers, H = max{τ1, τ2, d,h}, ϕ(θ) is
a continuous vector-valued initial function. The function σ(t) : [t0,∞) → N =
{1,2, . . . ,N} is the switching signal which is deterministic, piecewise constant and
right continuous, corresponding to it, the switching sequence σ(t) : {(t0, σ (t0)),

(t1, σ (t1)), . . . , (tk, σ (tk)) . . .}, σ (tk) ∈ N,k = 0,1, . . . , where t0 is the initial time,
and tk denotes the kth switching instant of the system. Moreover, σ(t) = i means
that the ith subsystem is activated. N denotes the number of the subsystems.
Ai,Bi,Ci,Di,Ei,C1i ,C2i ,D1i , i ∈ N , are known constant matrices with appropri-
ate dimensions. In addition, fi(·) : Rn → Rn is nonlinear function satisfying

(
fi(x) − Θ1ix

)T (
fi(x) − Θ2ix

) ≤ 0, x ∈ Rn (5)

where Θ1i ,Θ2i are known real constant matrices.
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Remark 1 The nonlinear function fi(x) satisfies the so-called sector condition in
the sense that fi(x) belongs to the sector [Θ1i ,Θ2i] (see Ref. [13]). Such a sector
description is quite general and includes the usual Lipschitz conditions as a special
case, and also covers several other classes of well-studied nonlinear systems (see the
reference [10, 14]).

The reference model is given as

ẋr (t) = Arxr(t) + Drr(t), (6)

zr(t) = Crxr(t), (7)

where zr(t) ∈ Rq,xr(t) ∈ Rn is the reference state and r(t) is energy bounded refer-
ence input belonging to L2[t0,∞),Ar is a Hurwitz matrix with appropriate dimen-
sions.

Here, we are interested in designing a state feedback controller described by the
following equation:

u(t) = K1σ(t)x(t) + K2σ(t)xr (t), (8)

where K1σ(t) and K2σ(t) are controller gain matrices. Applying this controller to
system (1)–(3), results in the following closed-loop system:

ẋ(t) − Cσ(t)ẋ(t − τ1)

= Âσ(t)x(t) + D̂σ(t)xr (t) + Bσ(t)x
(
t − d(t)

) + fσ(t)

(
x(t − τ2)

) + Eσ(t)w(t),

(9)

z(t) = Ĉ1σ(t)x(t) + D̂1σ(t)xr (t) + C2σ(t)x
(
t − d(t)

)
, (10)

where Âσ(t) = Aσ(t) + Dσ(t)K1σ(t), D̂σ (t) = Dσ(t)K2σ(t),

Ĉ1σ(t) = C1σ(t) + D1σ(t)K1σ(t), D̂1σ(t) = D1σ(t)K2σ(t).

Let ξ(t) = [xT (t) xT
r (t) ]T , v(t) = [wT (t) rT (t) ]T , e(t) = z(t) − zr(t), y(t) =

ξ̇ (t), we obtain the following augmented switched system:

ξ̇ (t) = Āσ(t)ξ(t) + B̄σ (t)ξ
(
t − d(t)

) + C̄σ (t)y(t − τ1) + Īσ (t)fσ(t)

(
x(t − τ2)

)

+ Ēσ (t)v(t), (11)

e(t) = C̄1σ(t)ξ(t) + C̄2σ(t)ξ
(
t − d(t)

)
, (12)

where

Āσ(t) =
[
Âσ(t) D̂σ (t)

0 Ar

]
, B̄σ (t) =

[
Bσ(t) 0

0 0

]
, C̄σ (t) =

[
Cσ(t) 0

0 0

]
,
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Ēσ (t) =
[
Eσ(t) 0

0 Dr

]
,

Īσ (t) =
[
I

0

]
, C̄1σ(t) = [

Ĉ1σ(t) −Cr + D̂1σ(t)

]
, C̄2σ(t) = [

C2σ(t) 0
]
.

Denote

Ãσ(t) =
[
Aσ(t) 0

0 Ar

]
, D̃σ(t) =

[
Dσ(t)

0

]
, Kσ(t) = [

K1σ(t) K2σ(t)

]
,

C̃1σ(t) = [
C1σ(t) −Cr

]

then we have Āσ(t) = Ãσ(t) + D̃σ(t)Kσ(t), C̄1σ(t) = C̃1σ(t) + D1σ(t)Kσ(t), and the
controller (8) can be rewritten as

u(t) = Kσ(t)ξ(t). (13)

Before moving on to the next section, we need the following definitions.

Definition 1 The system (1)–(3) with w(t) ≡ 0 is said to be exponentially stabiliz-
able under the controller u(t) and the switching signal σ(t), if its solution satisfies
‖x(t)‖ ≤ α‖x(t0)‖e−β(t−t0), where α ≥ 1, β > 0, t ≥ t0.

Definition 2 For any T2 > T1 > 0, let Nσ (T1, T2) denote the switching number of
σ(t) on an interval (T1, T2), if

Nσ (T1, T2) ≤ N0 + (T2 − T1)/τa (14)

holds for given N0 ≥ 0, τa > 0. Then the constant τa is called the average dwell time
and N0 is the chatter bound.

Remark 2 The concept of average dwell time was originally proposed for continuous-
time switched systems by Hespanha and Morse (see Ref. [19]), which has been shown
to be an effective tool for the stability analysis of switched systems. As commonly
used in the literature, we choose N0 = 0 in this paper.

Definition 3 Consider system (11)–(12), if the following conditions hold.

(1) The system (11)–(12) is exponentially stable when v(t) ≡ 0;
(2) Under zero initial conditions, i.e. x(t) = 0, xr(0) = 0, t ∈ [−H,0], the sys-

tem (11)–(12) satisfies
∫ ∞
t0

e−α(t−t0)eT (t)e(t) dt ≤ γ 2
∫ ∞
t0

vT (t)v(t) dt when
v(t) 	= 0.

Then system (11)–(12) is said to have exponential H∞ performance γ , where α,γ >

0 are positive constants.

Remark 3 The exponential H∞ performance index was introduced for switched sys-
tems in [29] and was extended in [24]. In fact, the concept of exponential H∞ per-
formance index in the form of

∑∞
s=k0

(1 − α)szT (s)z(s) ≤ ∑∞
s=k0

γ 2wT (s)w(s) is
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proposed for the discrete-time switched linear systems (see Definition 3 in [30]). In
this paper, we modify the definition to adapt the tracking problem in switched neutral
systems.

If there exists a state feedback controller (8) such that the resulting augmented
switched system (11)–(12) is exponentially stable with an exponential H∞ perfor-
mance γ , then the controller (8) is said to be an exponential H∞ output tracking
controller.

The objective of this paper is to design an exponential H∞ output tracking con-
troller (8) such that system (11)–(12) is exponentially stable with an exponential H∞
performance γ .

3 Main Results

3.1 Exponential Stability and H∞ Performance Analysis

This subsection focuses on the analysis of the exponential stability and H∞ output
tracking performance.

Theorem 1 Consider the augmented system (11)–(12) with v(t) = 0, if there ex-
ist positive definite matrices Pi,Qi,Ri, Si, Ti > 0, any matrices Ni,Mi and scalar
α > 0 such that the following matrix inequality holds:

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

φ11i φ12i PiC̄i Pi Īi
Θ̄T

1i+Θ̄T
2i

2 e−αdNi ĀT
i ĀT

i

∗ φ22i 0 0 0 e−αdMi B̄T
i B̄T

i

∗ ∗ −e−ατ1Si 0 0 0 C̄T
i C̄T

i

∗ ∗ ∗ −e−ατ2Ti 0 0 Ī T
i Ī T

i

∗ ∗ ∗ ∗ Ti − I 0 0 0

∗ ∗ ∗ ∗ ∗ −d−1e−αdQi 0 0

∗ ∗ ∗ ∗ ∗ ∗ −d−1Q−1
i 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −S−1
i

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

< 0

(15)

and the average dwell time satisfies

τa > τ ∗
a = lnμ

α
(16)

then the system is exponentially stable, where

φ11i = ĀT
i Pi + PiĀi + Ri + αPi + e−αd

(
NT

i + Ni

) − Θ̄T
1i Θ̄2i + Θ̄T

2i Θ̄1i

2
,

φ12i = PiB̄i + e−αd
(
MT

i − Ni

)
, φ22i = −e−αd(1 − h)Ri − e−αdMi − e−αdMT

i ,

Θ̄1i = [
Θ1i 0

]
, Θ̄2i = [

Θ2i 0
]
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and μ ≥ 1 satisfying

Pi ≤ μPj , Qi ≤ μQj , Ri ≤ μRj , Si ≤ μSj , Ti ≤ μTj , ∀i, j ∈ N.

(17)

Proof For the ith subsystem, we define a Lyapunov functional candidate of the form

Vi(t) = V1i (t) + V2i (t) + V3i (t) + V4i (t) + V5i (t)

with

V1i (t) = ξT (t)Piξ(t)

V2i (t) =
∫ t

t−d(t)

eα(s−t)ξT (s)Riξ(s) ds

V3i (t) =
∫ 0

−d

∫ t

t+θ

eα(s−t)ξ̇ T (s)Qi ξ̇ (s) ds dθ

V4i (t) =
∫ t

t−τ1

eα(s−t)yT (s)Siy(s) ds

V5i (t) =
∫ t

t−τ2

eα(s−t)f T
i

(
x(s)

)
Tifi

(
x(s)

)
ds

(18)

which is positive definite since Pi,Qi,Ri, Si, Ti are positive definite matrices.
Along the trajectories of system (11) and (12), we have

V̇1i (t) = 2ξ̇ T (t)Piξ(t)

= ξT (t)
(
ĀT

i Pi + PiĀi

)
ξ(t) + ξT (t)PiB̄iξ

(
t − d(t)

) + ξT
(
t − d(t)

)
B̄T

i Piξ(t)

+ ξT (t)PiC̄iy(t − τ1) + yT (t − τ1)C̄
T
i Piξ(t) + ξT (t)Pi Īifi

(
x(t − τ2)

)

+ f T
i

(
x(t − τ2)

)
Ī T
i Piξ(t) + ξT (t)PiĒiv(t) + vT (t)ĒT

i Piξ(t), (19)

V̇2i (t) = ξT (t)Riξ(t) − (
1 − ḋ(t)

)
e−αd(t)ξT

(
t − d(t)

)
Riξ

(
t − d(t)

)

− α

∫ t

t−d(t)

eα(s−t)ξT (s)Riξ(s) ds

≤ ξT (t)Riξ(t) − e−αd(1 − h)ξT
(
t − d(t)

)
Riξ

(
t − d(t)

)

− α

∫ t

t−d(t)

eα(s−t)ξT (s)Riξ(s) ds, (20)

V̇3i (t) ≤ dξ̇T (t)Qi ξ̇ (t) − e−αd

∫ t

t−d(t)

ξ̇ T (s)Qi ξ̇ (s) ds

− α

∫ 0

−d

∫ t

t+θ

eα(s−t)ξ̇ T (s)Qi ξ̇ (s) ds dθ, (21)

V̇4i (t) = yT (t)Siy(t) − e−ατ1yT (t − τ1)Siy(t − τ1)

− α

∫ t

t−τ1

eα(s−t)yT (s)Siy(s) ds, (22)
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V̇5i (t) = f T
i

(
x(t)

)
Tifi

(
x(t)

) − e−ατ2f T
i

(
x(t − τ2)

)
Tifi

(
x(t − τ2)

)

− α

∫ t

t−τ2

eα(s−t)f T
i

(
x(s)

)
Tifi

(
x(s)

)
ds. (23)

It follows from the Newton–Leibniz formula that

ξ(t) − ξ
(
t − d(t)

) =
∫ t

t−d(t)

ξ̇ (s) ds. (24)

Then for any matrices Ni,Mi we have

2e−αd

[
ξ(t)

ξ(t − d(t))

]T [
Ni

Mi

][
ξ(t) − ξ

(
t − d(t)

) −
∫ t

t−d(t)

ξ̇ (s) ds

]
= 0. (25)

The inequality (5) can be written as

[
ξ(t)

fi(x(t))

]T
⎡

⎣
Θ̄T

1i Θ̄2i+Θ̄T
2i Θ̄1i

2 − Θ̄T
1i+Θ̄T

2i

2

− Θ̄1i+Θ̄2i

2 I

⎤

⎦
[

ξ(t)

fi(x(t))

]
≤ 0. (26)

Then combining (19)–(26) with v(t) = 0, we have

V̇i(t) + αVi(t)

≤ ϕT (t)
(
Πi + Γ T

i (dQi + Si)Γi + de−αdψiQ
−1
i ψT

i

)
ϕ(t)

− e−αd

∫ t

t−d(t)

[
ψT

i ϕ(t) + Qiξ̇(s)
]T

Q−1
i

[
ψT

i ϕ(t) + Qiξ̇(s)
]
ds, (27)

where

ϕ(t) = [
ξT (t) ξT

(
t − d(t)

)
yT (t − τ1) f T

i

(
x(t − τ2)

)
f T

i (x(t))
]T

,

Γi = [
Āi B̄i C̄i Īi 0

]
, ψi = [

NT
i MT

i 0 0 0
]T

,

and

Πi =

⎡

⎢⎢
⎢⎢⎢
⎣

φ11i φ12i PiC̄i Pi Īi
Θ̄T

1i+Θ̄T
2i

2

∗ φ22i 0 0 0
∗ ∗ −e−ατ1Si 0 0
∗ ∗ ∗ −e−ατ2Ti 0
∗ ∗ ∗ ∗ Ti − I

⎤

⎥⎥
⎥⎥⎥
⎦

.

Note that

e−αd

∫ t

t−d(t)

[
ψT

i ϕ(t) + Qiξ̇(s)
]T

Q−1
i

[
ψT

i ϕ(t) + Qiξ̇(s)
]
ds > 0. (28)
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By the Schur complement, (15) implies

Πi + Γ T
i (dQi + Si)Γi + de−αdψiQ

−1
i ψT

i < 0. (29)

Thus, it follows from (27)–(29) that

V̇i(t) + αVi(t) < 0. (30)

According to (17) and (18), we have

Vi(t) ≤ μVj (t) = μVj

(
t−

)
. (31)

From (30)–(31) and k = Nσ (t0, t) ≤ (t − t0)/τa , for any t ∈ [tk, tk+1), we have

V (t) ≤ e−α(t−tk)Vσ(tk)(tk) ≤ μe−α(t−tk)Vσ(t−k )(t
−
k ) ≤ μe−α(t−tk−1)Vσ(tk−1)(tk−1)

≤ · · · ≤ μke−α(t−t0)Vσ(t0)(t0) ≤ e
−(α− lnμ

τa
)(t−t0)Vσ(t0)(t0). (32)

Moreover, we obtain

a
∥∥ξ(t)

∥∥2 ≤ b
∥∥ξ(t0)

∥∥2
cl
e
−(α− lnμ

τa
)(t−t0). (33)

Here

a = min
i∈N

λmin(Pi),

b = max
i∈N

λmax(Pi) + d max
i∈N

λmax(Ri) + d2

2
max
i∈N

λmax(Qi) + τ1 max
i∈N

λmax(Si)

+ τ2 max
i∈N

λmax(Ti),

and

∥∥ξ(t0)
∥∥

cl
= sup

−max(τ1,τ2,d)<t≤0

{∥∥ξ(t)
∥∥,

∥∥ξ̇ (t)
∥∥,

∥∥fi

(
x(t − τ2)

)∥∥}
.

Therefore

∥∥ξ(t)
∥∥ ≤

√
b

a
e
− 1

2 (α− lnμ
τa

)(t−t0)
∥∥ξ(t0)

∥∥
cl
. (34)

By Definition 1, we know that system (11) and (12) is exponentially stable. This
completes the proof. �

Now we are in a position to present the following theorem on the exponential H∞
output tracking performance analysis.
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Theorem 2 Consider the augmented system (11)–(12), if there exist positive definite
matrices Pi,Qi,Ri, Si, Ti > 0, any matrices Ni,Mi and scalar α > 0 such that the
following matrix inequality holds:

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

φ11i φ12i Pi C̄i Pi Īi
Θ̄T

1i+Θ̄T
2i

2 PiĒi C̄T
1i e−αdNi ĀT

i ĀT
i

∗ φ22i 0 0 0 0 C̄T
2i e−αdMi B̄T

i B̄T
i

∗ ∗ −e−ατ1 Si 0 0 0 0 0 C̄T
i C̄T

i

∗ ∗ ∗ −e−ατ2 Ti 0 0 0 0 Ī T
i Ī T

i

∗ ∗ ∗ ∗ Ti − I 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −γ 2I 0 0 ĒT
i ĒT

i

∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d−1e−αdQi 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −d−1Q−1
i 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S−1
i

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

< 0

(35)

and the average dwell time satisfies (16), then the system (11)–(12) is expo-
nentially stable with an exponential H∞ output tracking performance γ . Here
φ11i , φ12i , φ22i , Θ̄1i , Θ̄2i are given in (17).

Proof From Theorem 1, we know that system (11)–(12) is exponentially stable with
v(t) = 0. In the sequel, we shall prove that the exponential H∞ disturbance attenua-
tion performance of system (11)–(12) is guaranteed for all nonzero v(t) ∈ L2[t0,∞)

under the zero initial condition.
By (19)–(26), and using the same method in Theorem 1, we can obtain

V̇i (t) + αVi(t) + eT (t)e(t) − γ 2vT (t)v(t) ≤ 0 (36)

when t ∈ [ tk tk+1 ), the following matrix inequalities hold:

Vi(t) ≤ e−α(t−tk)Vi(tk) −
∫ t

tk

e−α(t−s)�(s) ds. (37)

Let �(s) = eT (s)e(s) − γ 2vT (s)v(s), from (18), (31) and (37), for t ∈ [ tk tk+1 ),
we have

V (t) ≤ e−α(t−tk)Vσ(tk)(tk) −
∫ t

tk

e−α(t−s)�(s) ds

≤ μe−α(t−tk)Vσ(t−k )

(
t−k

) −
∫ t

tk

e−α(t−s)�(s) ds

≤ μe−α(t−tk)

[
e−α(tk−tk−1)Vσ(tk−1)(tk−1) −

∫ tk

tk−1

e−α(tk−s)�(s) ds

]
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−
∫ t

tk

e−α(t−s)�(s) ds

= μe−α(t−tk−1)Vσ(tk−1)(tk−1) − μ

∫ tk

tk−1

e−α(t−s)�(s) ds −
∫ t

tk

e−α(t−s)�(s) ds

≤ · · ·

≤ μke−α(t−t0)Vσ(t0)(t0) − μk

∫ t1

t0

e−α(t−s)�(s) ds − μk−1
∫ t2

t1

e−α(t−s)�(s) ds

− · · · − μ

∫ tk

tk−1

e−α(t−s)�(s) ds −
∫ t

tk

e−α(t−s)�(s) ds

= μNσ (t0,t)e−α(t−t0)Vσ(t0)(t0) − μNσ (t0,t)

∫ t1

t0

e−α(t−s)�(s) ds

− μNσ (t1,t)

∫ t2

t1

e−α(t−s)�(s) ds − · · · − μ

∫ tk

tk−1

e−α(t−s)�(s) ds

−
∫ t

tk

e−α(t−s)�(s) ds

≤ μNσ (t0,t)e−α(t−t0)Vσ(t0)(t0) −
∫ t

t0

e−α(t−s)μNσ (s,t)�(s) ds. (38)

Under zero initial conditions i.e. V (t0) = 0, (38) becomes

0 ≤ −
∫ t

t0

e−α(t−s)+Nσ (s,t) lnμ�(s) ds. (39)

Multiplying both sides of (39) by e−Nσ (t0,t) lnμ yields

∫ t

t0

e−α(t−s)−Nσ (t0,s) lnμeT (s)e(s) ds

≤
∫ t

t0

e−α(t−s)−Nσ (t0,s) lnμγ 2vT (s)v(s) ds. (40)

Note that Nσ (t0, s) ≤ (s − t0)/τa , and τa > lnμ/α, we have

Nσ (t0, s) lnμ ≤ α(s − t0). (41)

Therefore it follows from (40) and (41) that

∫ t

t0

e−α(t−t0)eT (s)e(s) ds ≤
∫ t

t0

e−α(t−s)γ 2vT (s)v(s) ds. (42)
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Integrating both sides of (42) from t = t0 to ∞ leads to

∫ ∞

t0

e−α(s−t0)eT (s)e(s) ds ≤ γ 2
∫ ∞

t0

vT (s)v(s) ds. (43)

This means that system (11) and (12) achieves exponential H∞ output tracking per-
formance γ . This completes the proof. �

Remark 4 When μ = 1 in (16), we have τ ∗
a = 0, which implies that switching signals

can be arbitrary.

Remark 5 Compared with the existing results, the proposed sufficient conditions are
more general due to that the proposed Lyapunov–Krasovskii functional candidate
includes the time-varying delay term d(t).

3.2 Exponential H∞ Output Tracking Controller Design

In this subsection, we will solve the exponential H∞ output tracking controller design
problem.

Theorem 3 Consider system (1)–(3), there exists a state feedback controller of the
form (13), such that the augmented closed-loop system (11)–(12) achieves the expo-
nential H∞ output tracking performance γ , if there exist matrices positive definite
P̄i > 0, Q̄i > 0, R̄i > 0, S̄i > 0, Ti > 0, any matrices N̄i, M̄i ,Xi , and positive scalars
α,γ > 0 satisfying

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ̃11i Φ̃12i C̄i P̄i Īi Φ̃15i Ēi Φ̃17i N̄i Φ̃19i Φ̃110i Φ̃111i Φ̃112i

∗ Φ̃22i 0 0 0 0 P̄i C̄
T
2i

M̄i P̄i B̄
T
i

P̄i B̄
T
i

0 0

∗ ∗ Φ̃33i 0 0 0 0 0 P̄i C̄
T
i

P̄i C̄
T
i

0 0

∗ ∗ ∗ −e−ατ2 Ti 0 0 0 0 Ī T
i

Ī T
i

0 0

∗ ∗ ∗ ∗ Ti − I 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −γ 2I 0 0 ĒT
i

ĒT
i

0 0

∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̃88ii
0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −d−1Q̄i 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S̄i 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2I

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0,

(44)

where

Φ̃11i = P̄i Ã
T
i + Ãi P̄i + R̄i + αP̄i + N̄i + N̄T

i + XT
i D̃T

i + D̃iXi,

Φ̃12i = B̄i P̄i + M̄T
i − N̄i ,
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Φ̃15i = P̄i

Θ̄T
1i + Θ̄T

2i

2
, Φ̃17i = P̄i C̃

T
1i + XT

i DT
1i ,

Φ̃19i = Φ̃110i = P̄iÃ
T
i + XT

i D̃T
i , Φ̃111i = P̄iΘ̄

T
1i ,

Φ̃112i = P̄iΘ̄
T
2i , Φ̃22i = −(1 − h)e−αdR̄i − M̄i − M̄T

i ,

Φ̃33i = e−ατ1(S̄i − 2P̄i), Φ̃88i = d−1e−αd(Q̄i − 2P̄i),

and the average dwell time of the system satisfies (16), μ ≥ 1 satisfying

P̄i ≤ μP̄j , Q̄i ≤ μQ̄j , R̄i ≤ μR̄j , S̄i ≤ μS̄j , Ti ≤ μTj , ∀i, j ∈ N.

(45)

Moreover, the gain matrices of a desired controller of the form (13) are given by

Ki = XiP̄
−1
i . (46)

Proof Performing a congruence transformation to (35) by
diag{P −1

i , P −1
i , P −1

i , I, I, I, I,P −1
i , I, I }, denoting Xi = KiP̄i , together with the

change of matrix variables defined by

P̄i = P −1
i , S̄i = S−1

i , Q̄i = Q−1
i ,

R̄i = P −1
i RiP

−1
i , N̄i = e−αdP −1

i NiP
−1
i , M̄i = e−αdP −1

i MiP
−1
i

and by the Schur complement, we find that (47) holds:
⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ̄11i Φ̃12i C̄i P̄i Īi Φ̃15i Ēi Φ̃17i N̄i Φ̃19i Φ̃110i

∗ Φ̃22i 0 0 0 0 P̄i C̄
T
2i M̄i P̄i B̄

T
i P̄i B̄

T
i

∗ ∗ −e−ατ1 P̄i S̄
−1
i P̄i 0 0 0 0 0 P̄i C̄

T
i P̄i C̄

T
i

∗ ∗ ∗ −e−ατ2 Ti 0 0 0 0 Ī T
i Ī T

i

∗ ∗ ∗ ∗ Ti − I 0 0 0 ĒT
i ĒT

i

∗ ∗ ∗ ∗ ∗ −γ 2I 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d−1e−αd P̄i Q̄
−1
i P̄i 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −d−1Q̄i 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S̄i

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0,

(47)

where Φ̄11i = P̄i Ã
T
i + Ãi P̄i + R̄i + αP̄i + N̄i + N̄T

i + XT
i D̃T

i + D̃iXi −
P̄i

Θ̄T
1i Θ̄2i+Θ̄T

2i Θ̄1i

2 P̄i .

Noticing that S̄i , Q̄i > 0, we have (S̄i − P̄i)S̄
−1
i (S̄i − P̄i) ≥ 0, (Qi − P̄i)Q̄

−1
i (Q̄i −

P̄i) ≥ 0 and (Θ̄1i + Θ̄2i )
T (Θ̄1i + Θ̄2i ) ≥ 0, which are equivalent to

−P̄i S̄
−1
i P̄i ≤ S̄i − 2P̄i , (48)

−P̄iQ̄
−1
i P̄i ≤ Q̄i − 2P̄i , (49)
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−(
Θ̄T

1i Θ̄2i + Θ̄T
2i Θ̄1i

) ≤ Θ̄T
1i Θ̄1i + Θ̄T

2i Θ̄2i . (50)

By combining (47)–(50), we readily obtain Theorem 3. This completes the proof of
Theorem 3. �

Remark 6 From Theorem 3, it is easy to see that a smaller α will be favorable to
the solvability of inequalities (44). On the contrary, a larger α is more desirable to
relax τa . Considering these, we can first select a smaller α to guarantee the feasible
solution of inequalities (44), and then increase α to obtain the suitable α and τa .

4 Numerical Example

In this section an example is given to illustrate the effectiveness of the proposed
approach. Consider switched system (1)–(3) and reference system (6)–(7) with pa-
rameters as follows.

Subsystem 1:

A1 =
[−1.5 0.2

0.3 −1.5

]
, B1 =

[−0.2 0.2
0 −0.1

]
, C1 =

[−0.2 0.1
0.1 −0.1

]
,

D1 =
[

0
−0.1

]
,

E1 =
[

0.1 0
0 0.1

]
, C11 = [

0.15 0
]
, C21 = [

0 0.15
]
, D11 = −0.1.

Subsystem 2:

A2 =
[−1.2 0.3

0.2 −1.7

]
, B2 =

[−0.2 0.1
0 −0.1

]
, C2 =

[−0.1 0.2
0.1 −0.2

]
,

D2 =
[−0.1

0

]
,

E2 =
[

0.1 0
0 0.1

]
, C12 = [

0.1 0
]
, C22 = [

0 0.2
]
, D12 = −0.1.

Reference system:

Ar =
[−2 −0.2

0.3 −1

]
, Dr =

[
0.1 0
0 0.1

]
, Cr = [

0.5 0.5
]
.

It is assumed that α = 0.5, τ1 = 0.3, τ2 = 0.2, γ = 1, d(t) = 0.1 + 0.1 sin(t),
from (4) we can get d = 0.2, h = 0.1. The nonlinear functions f1(x) = f2(x) =
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[f T
a (x) f T

b (x) ]T with

fa(x) = − tanh(x1) + 0.5x1 + 0.1x2, fb(x) = 0.1x1 − tanh(x2) + 0.5x2

It is easy to verify that

Θ11 = Θ12 =
[−0.5 0.1

0.1 −0.5

]
, Θ21 = Θ22 =

[
0.5 0.1
0.1 0.5

]
.

Solving the matrix inequalities in Theorem 3, we obtain

K1 = [
2.7538 −0.7641 −2.0955 −2.6662

]
,

K2 = [
0.5400 3.6895 −2.8241 −3.0730

]
.

Then, according to (17), we can get μ = 4, then τ ∗
a = 2.7726. In addition, the ini-

tial value of system (1)–(3) is assumed to be x(0) = [0.5 −0.5 ]T , and the initial
condition of reference model (6)–(7) is assumed to be xr(0) = [0.1 −0.2 ]T .

In the sequel, two kinds of reference signal r(t) are utilized to demonstrate the
tracking results.

Case I: Sinusoidal reference signal
Let

r(t) =
{[

2 sin(0.2πt) 2 sin(0.2πt)
]T

, 10 ≤ t ≤ 25
[

0 0
]T

, others

w(t) =
{[

0.2e−t 0.2e−t
]T

, 10 ≤ t ≤ 25
[

0 0
]T

, others

Obviously, we have v(t) ∈ L2[0,∞). The switching signal σ(t) with average dwell
time τa = 3 is shown in Fig. 1. The curves of output z(t) and zr (t) are shown in
Fig. 2 under the sinusoidal signal. Figure 3 shows the error between the output of the
system and the reference signal.

Case II: Step reference signal
Let

r(t) =
{[

0.5 0.5
]T

, 10 ≤ t ≤ 25
[

0 0
]T

, others

w(t) =
{[

0.2e−t 0.2e−t
]T

, 10 ≤ t ≤ 25
[

0 0
]T

, others

The curves of output z(t) and zr (t) are shown in Fig. 4. Figure 5 shows the error
between the output of the system and the reference signal.

It can be observed from Figs. 1–5 that the designed controller can guarantee the
exponential stability and H∞ output tracking performance of the closed-loop system.
This shows the effectiveness of the proposed design method.
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Fig. 1 Switching signal

Fig. 2 Output z(t) and zr (t) under case I

5 Conclusions

In this paper, the problem of exponential H∞ output tracking control of switched neu-
tral system with time-varying delay and nonlinear perturbations has been addressed.
A new exponential stability criterion has been obtained. Furthermore, the desired ex-
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Fig. 3 Tracking error under case I

Fig. 4 Output z(t) and zr (t) under case II

ponential H∞ output tracking controller has been designed. A numerical example
was provided to show the effectiveness of the obtained results.
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Fig. 5 Tracking error under case II

References

1. L.I. Allerhand, U. Shaked, Robust stability and stabilization of linear switched systems with dwell
time. IEEE Trans. Autom. Control 56(2), 381–386 (2011)

2. M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems.
IEEE Trans. Autom. Control 43(4), 475–482 (1998)

3. L. Crocco, Aspects of combustion stability in liquid propellant rocket motors, part I: fundamentals
low frequency instability with monopropellants. J. Am. Rocket Soc. 21, 163–178 (1951)

4. D. Du, B. Jiang, P. Shi, S. Zhou, H∞ filtering of discrete-time switched systems with state delays via
switched Lyapunov function approach. IEEE Trans. Autom. Control 52(8), 1520–1525 (2007)

5. K.K. Fan, C.H. Lien, J.G. Hsieh, Asymptotic stability for a class of neutral systems with discrete and
distributed time delays. J. Optim. Theory Appl. 114(3), 705–716 (2002)

6. N.H. El Farral, P. Mhaskar, P.D. Christofides, Output feedback control of switched nonlinear systems
using multiple Lyapunov functions. Syst. Control Lett. 54(1), 1163–1182 (2005)

7. Y.A. Fiagbedzi, A.E. Pearson, A multistage reduction technique for feedback stabilizing distributed
time-lag systems. Automatica 23(3), 311–326 (1987)

8. Q.L. Han, On stability of linear neutral systems with mixed time delays: a discretized Lyapunov
functional approach. Automatica 41(7), 1209–1218 (2005)

9. Q.L. Han, A descriptor system approach to robust stability of uncertain neutral systems with discrete
and distributed delays. Automatica 40(10), 1791–1796 (2004)

10. Q.L. Han, Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica
41(12), 2171–2176 (2005)

11. L. Hou, G. Zong, Y. Wu, Y. Cao, Exponential l2 − l∞ output tracking control for discrete-
time switched system with time-varying delay. Int. J. Robust Nonlinear Control (2011).
doi:10.1002/rnc.1743

12. C. Hua, X. Guan, P. Shi, Robust output feedback tracking control for time-delay nonlinear systems
using neural network. IEEE Trans. Neural Netw. 17(2), 495–505 (2007)

13. H.K. Khalil, Nonlinear Systems (Upper Saddle River, Prentice-Hall, 1996)
14. J. Lam, H. Gao, S. Xu, C. Wang, H∞ and L2/L∞ model reduction for system input with sector

nonlinearities. J. Optim. Theory Appl. 125(1), 137–155 (2005)
15. Q.K. Li, G.M. Dimirovski, J. Zhao, Robust tracking control for switched linear systems with time-

varying delays, in Proceedings of the American Control Conference, Westin Seattle Hotel, Seattle,
WA, USA (2008), pp. 1576–1581

http://dx.doi.org/10.1002/rnc.1743


Circuits Syst Signal Process (2013) 32:103–121 121

16. Q.K. Li, G.M. Dimirovski, J. Zhao, Tracking control for switched time-varying delays systems with
stabilizable and unstabilizable subsystems. Nonlinear Anal. Hybrid Syst. 3(2), 133–142 (2009)

17. Q.K. Li, J. Zhao, G.M. Dimirovski, Robust tracking control for switched linear systems with time-
varying delays. IET Control Theory Appl. 2(6), 449–457 (2008)

18. Q.K. Li, J. Zhao, X.J. Liu, G.M. Dimirovski, Observer-based tracking control for switched linear
systems with time-varying delay. Int. J. Robust Nonlinear Control 21(3), 309–327 (2011)

19. D. Liberzon, Switching in Systems and Control (Birkhäuser, Basel, 2003)
20. C.H. Lien, K.W. Yu, Non-fragile H∞ control for uncertain neutral systems with time-varying delays

via the LMI optimization approach. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 37(2), 493–499
(2007)

21. C.H. Lien, K.W. Yu, J.G. Hsieh, Stability conditions for a class of neutral systems with multiple time
delays. J. Math. Anal. Appl. 245(1), 20–27 (2000)

22. Z.H. Qu, J. Dorsey, Robust tracking control of robots by a linear feedback law. IEEE Trans. Autom.
Control 36(9), 1081–1084 (1991)

23. J.P. Richard, Time-delay systems: an overview of some recent advances and open problems. Auto-
matica 39(10), 1667–1694 (2003)

24. X.M. Sun, J. Zhao, D.J. Hill, Stability and L2-gain analysis for switched delay systems: a delay-
dependent method. Automatica 42(5), 1769–1774 (2006)

25. Z. Wang, W.C.H. Daniel, Filtering on nonlinear time-delay stochastic systems. Automatica 39(1),
101–109 (2003)

26. S. Xu, T. Chen, Robust H∞ control for uncertain discrete-time systems with time-varying delays via
exponential output feedback controllers. Syst. Control Lett. 51(3–4), 171–183 (2004)

27. L. Yu, S. Fei, X. Li, Robust adaptive neural tracking control for a class of switched affine nonlinear
systems. Neurocomputing 73(10–12), 2274–2279 (2010)

28. L. Yu, S. Fei, H. Zu, X. Li, Direct adaptive neural control with sliding mode method for a class of
uncertain switched nonlinear systems. Int. J. Innov. Comput., Inf. Control 6(12), 5609–5618 (2010)

29. G.S. Zhai, B. Hu, K. Yasuda, A.N. Michel, Disturbance attenuation properties of time-controlled
switched systems. J. Franklin Inst. 338(7), 765–779 (2001)

30. L.X. Zhang, E.K. Boukas, P. Shi, Exponential H∞ filtering for uncertain discrete-time switched linear
systems with average dwell time: a μ-dependent approach. Int. J. Robust Nonlinear Control 18(11),
1188–1207 (2008)

31. X.M. Zhang, Q.L. Han, Stability analysis and H∞ filtering for delay differential systems of neutral
type. IET Control Theory Appl. 1(3), 749–755 (2007)

32. D. Zhang, L. Yu, H∞ output tracking control for neural systems with time-varying delay and nonlin-
ear perturbations. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3284–3292 (2010)

33. X.Q. Zhao, Y.Z. Liu, G.X. Zhong, M. Zhao, A less conservative result of H∞ output tracking control
for neutral systems with time-varying delay and nonlinear perturbations, in Proceedings of the Chinese
Control and Decision Conference, Mianyang, 23–25 (2011), pp. 509–514

34. G.X. Zhong, Z.D. Xu, H.M. Wang, H∞ output tracking control for neutral systems with time-varying
delay and nonlinear perturbations: an LMI approach, in Proceedings of the Chinese Control and De-
cision Conference, Mianyang, 23–25 (2011), pp. 544–549


	Exponential Hinfty Output Tracking Control for Switched Neutral System with Time-Varying Delay and Nonlinear Perturbations
	Abstract
	Introduction
	Notations

	Problem Formulation and Preliminaries
	Main Results
	Exponential Stability and Hinfty Performance Analysis
	Exponential Hinfty Output Tracking Controller Design

	Numerical Example
	Conclusions
	Acknowledgements
	References


