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Abstract In this paper, a fault estimation problem for a class of nonlinear systems
subject to multiplicative faults and unknown disturbances is investigated. Multiplica-
tive faults usually mixed with system states and inputs can cause additional com-
plexity in the design of fault estimator due to parameter changes within process. Es-
pecially for the nonlinear system corrupted with unknown disturbances, it is not an
easy work to distinguish the real fault factor from the mixed term. Under the nonlin-
ear Lipschitz condition, the proposed robust adaptive fault estimation approach not
only estimates the multiplicative faults and system states simultaneously, but also ex-
tracts the real effect of the faults. Meanwhile, the effect of disturbances is restricted
to an L2 gain performance criteria which can be formulated into the basic feasibility
problem of a linear matrix inequality (LMI). In order to reduce the conservatism of
the proposed method, a relaxing Lipschitz matrix is introduced. Finally, an illustrative
example is applied to verify the efficiency of the proposed robust adaptive estimation
scheme.

Keywords Multiplicative fault · Lipschitz nonlinear systems · Adaptive estimator ·
Fault estimation

1 Introduction

Issues and concerns about the system or process safety and reliability necessitate and
foster the development of fault detection and diagnosis for dynamical systems, which
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has been regarded as one of the most important aspects in seeking effective solution
to guarantee reliable operation of practical control systems at the possible occurrence
of system failures or malfunctions. During the past two decades, significant research
results in the area of fault detection and accommodation can be found in some excel-
lent books [1, 3, 4] and survey papers [10, 21].

In order to avoid performance deterioration or system damage, faults have to be
found as soon as possible and schemes have to be made to stop propagation of bad
effects. Traditional approaches for fault detection and identification are mainly fo-
cused on linear systems, which are widely described and well documented in many
research articles [5, 7]. However, the majority practical control system are nonlinear
in nature. Therefore, nonlinear properties cannot be neglected for the purpose of fault
diagnosis and identification. Due to this reason, an active research about nonlinear
system fault detection and identification have been brought more and more attention
[2, 15, 19].

As one of the most important tasks in a fault detection and identification scheme,
fault estimation is for determining the extent of the faults, such as magnitude or fre-
quency of the faults. Accurate fault estimation can help reconstruct the fault sig-
nals so that their effects can be accommodated in the corresponding control recon-
figuration. Nevertheless, it is not an easy task, especially for the nonlinear system
with unknown disturbance. In [13], the authors transformed a nonlinear system with
uncertainties into two subsystems under some geometric conditions, and then es-
tablished an adaptive observer to obtain the estimations of both states and actua-
tor/sensor faults. Yan and Edwards [20] utilized sliding mode observer to realize fault
reconstruction. Gao and Ding [8] developed a fault estimator based on a descriptor
system formulation for the sensor fault estimation problem. It can simultaneously
estimate the states and the sensor fault signal superimposed on the output. Hou [9]
provided an effective method to estimate amplitude and frequency of a sinusoidal sig-
nal. There are some other methods utilized to tackle fault estimation problems; see,
for instance, [18].

As we known, faults can be classified into additive and multiplicative faults ac-
cording to their effects on the system outputs and the system dynamics. Although
component faults and some of actuator/sensor faults appear in the form of multi-
plicative fault that correspond to parameter changes in the system model, most of
the literature about fault estimation paid attention to the effects of additive faults that
result in changes only in the mean value of the system output signal. On the other
hand, some studies about multiplicative fault estimation are scattered over some pa-
pers [6, 10, 17] and book chapters [4, 11]. As the name suggests, it is relatively harder
to separate the effects of the faults from the input and states because they are mixed
together in a multiplicative form. Therefore, the analysis and design for multiplica-
tive fault estimation is not as straightforward as that for additive faults. Though it is
more difficult, the estimation of the real effect of multiplicative faults is given more
and more attention. In the recent article [22], a good fault detection and isolation
scheme was presented for the system appearing an unknown fault function which
was restricted to a finite set of fault types, and each type was described by the prod-
uct of an unknown parameter vector characterizing the time varying magnitude of
the fault with a known smooth vector representing the functional structure of the
fault.
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Taking into account the above mentioned conditions, in this article, we focus on a
Lipschitz nonlinear system subject to multiplicative faults and unknown disturbances.
The motivation of our work is to establish a robust adaptive fault estimation scheme
which is robust with respect to the disturbance and sensitive to the faults, to detect
and estimate multiplicative faults, and get the real effect of faults. Based on Lyapunov
stability theory and by relaxing a less conservative Lipschitz condition, an estimator
is developed to estimate both the system states and real fault factors simultaneously.
The effect of unknown disturbances is reduced according to an L2 gain performance
criterion. Compared to most of the existing work on fault estimation, the proposed
scheme is simple to compute, easy to implement, and capable of estimating the actual
size of the faulty parameters in the model. Furthermore, an illustrative example is
adopted in the simulation study to demonstrate the effectiveness of the proposed fault
estimation scheme.

In the remainder of this paper, firstly we provide the Lipschitz nonlinear sys-
tem with multiplicative faults and unknown disturbances in Sect. 2. A robust adap-
tive observer based fault estimator is presented in Sect. 3, and the proof for the
convergence of the estimator is included. In Sect. 4, a one-link manipulator exam-
ple is chosen to demonstrate the proposed robust adaptive fault estimation algo-
rithm.

2 Problem Statement

In this paper, we focus on a class of nonlinear multi-input–multi-output dynamical
systems described by

ẋ(t) = Ax(t) + φ(x,u, t) + Bu(t) + d(t), (1)

y(t) = Cx(t), (2)

where x(t) ∈ R
n, y(t) ∈ R

m, and u(t) ∈ R
p are the state vector, the output vector, and

the input vector, respectively. d(t) represents the system disturbance and the L2 norm
of the unknown input d(t) is bounded. A, B , and C are the known system matrices
of appropriate dimensions. φ(x,u, t) is a Lipschitz nonlinear vector function with a
Lipschitz constant δ, i.e.,

∥
∥φ(x,u, t) − φ(x̂, u, t)

∥
∥

2 ≤ δ
∥
∥x(t) − x̂(t)

∥
∥

2. (3)

It should be noted that Eq. (1) is a general form since most nonlinear func-
tions can be expanded at the equilibrium point. For instance, the nonlinear system
ẋ = f (x,u, t) is differentiated with respect to x and u, and (xe, ue) is the equi-
librium point. Applying the Taylor expansion, we can get A = ∂f (x,u,t)

∂x
|x=xe,u=ue ,

B = ∂f (x,u,t)
∂u

|u=ue,x=xe , and φ(x,u, t) can be assumed to be the remaining term.
Further, many nonlinear functions can be assumed as Lipschitz, at least locally. For
example, the sinusoidal function sin(x) appearing in many robotic control systems
is globally Lipschitz. And the term x2 can be regarded as locally Lipschitz within a
finite range of x.
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Multiplicative Fault Model With the assumption that the nonlinear system (1)–(2)
is subject to component faults which are parameter changes within the process, the
post-fault system is modeled as

ẋ(t) = Ax(t) + φ(x,u, t) + Bu(t) + d(t) +
l

∑

i=1

θi(t)gi(x,u, t), t ≥ tf , (4)

y(t) = Cx(t), (5)

where θi(t) ∈ R, i = 1, . . . , l, are unknown time functions which are assumed to be
zero before the fault occurrence, and non-zero after the fault occurrence. gi(x,u, t),
i = 1, . . . , l, are known functions related to system states and inputs, which also sat-
isfy Lipschitz condition with a Lipschitz constant δi . For simplicity, the time t is
dropped from the notation in the following equations.

Assumption 1 The multiplicative fault factors θi , i = 1, . . . , l, are unknown and
bounded by a constant, i.e., ‖θi‖ ≤ αi , The constant αi is known.

In Eq. (4), the term
∑l

i=1 θi(t)gi(x,u, t) is generated by the multiplicative faults.
This representation characterizes a general class of multiplicative faults where θi

represents the magnitude of the time-varying or constant fault and gi characterizes
the functional structure of the ith fault. Multiplicative faults encountered in a lin-
ear system were modeled in the excellent book [4], which can be transformed into
this kind of representation. For example, the linear system ẋ = (A + Af )x is sub-
ject to multiplicative faults in the form Af = ∑l

i=1 AiθAi
, so we can get the struc-

ture function gi = Aix. In practice, component faults in the process and some of
faults in the sensors and actuators are in the form of multiplicative faults, which
changes system parameters and usually mixes with system states and inputs. Hence
such faults result in performance degradation or even instability of the system. Let
f = ∑l

i=1 θi(t)gi(x,u, t), we can rewrite Eq. (4) as

ẋ = Ax + Bu + φ(x,u, t) + d(t) + f. (6)

It is clear that f is a term induced by the component faults θi , i = 1, . . . , l. When
the system is in normal operation, f = 0. The form in Eq. (6) has been adopted to
treat the additive fault estimation, where the size of f can be estimated. However, it
is clear that in modeling the system component faults, the term f is also a function
of the system state and input. f alone cannot reflect the real fault sources or size.
Therefore, it is necessary for us to estimate the real fault factors θi , i = 1, . . . , l,
instead of the additive fault vector f .

Relaxing Lipschitz Condition The Lipschitz condition (3) can be given in a relaxing
matrix form which is defined as

∥
∥φ(x,u, t) − φ(x̂, u, t)

∥
∥

2 ≤ ∥
∥H

(

x(t) − x̂(t)
)∥
∥

2. (7)

The matrix H could be a sparsely populated matrix. There is an example to illustrate
that ‖H(x(t) − x̂(t))‖2 is much smaller than δ‖x(t) − x̂(t)‖2 for the same nonlinear
function in [16]. The relaxing Lipschitz condition (7) is much less conservative.
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Design Objective The objective of this paper work is to design an adaptive estima-
tor with an effective algorithm for nonlinear system (1)–(2) subject to multiplicative
faults to estimate the real effect factor θi , i = 1, . . . , l, in the post-fault system (4)–(5),
and make the estimation accurate and insensitive to the unknown disturbances.

In order to design an estimator satisfying the above objective, it is assumed that the
system states and inputs are all bounded before and after the occurrence of a fault,
and the Lipschitz nonlinear functions φ(x,u, t) and gi(x,u, t) satisfy the relaxing
Lipschitz condition with matrices H and Gi . It should be noted that the feedback
control system is capable of making the system bounded even in the presence of a
fault. The proposed fault estimation design is independent on the structure of the
feedback controller.

3 Robust Adaptive Fault Estimation

In this section, an adaptive observer is applied to reconstruct multiplicative fault sig-
nals which are mixed with system states and inputs. The designed adaptive observer
here for the nonlinear system (1)–(2) can be shown to be as follows:

˙̂x = Ax̂ + Bu + φ(x̂, u) +
l

∑

i=1

θ̂igi(x̂, u) + L(y − ŷ), (8)

ŷ = Cx̂, (9)

˙̂
θi = σig

T
i (x̂, u)D(y − ŷ), i = 1, . . . , l, (10)

where σi > 0, i = 1, . . . , l are constants, x̂, ŷ, and θ̂i denote the estimated state,
output, and fault variables, respectively. L and D are the design gain matrices. Let
ex = x− x̂ and ey = y− ŷ represent the state and output estimation error; eθi

= θi − θ̂i

denotes fault error. Then we obtain the following estimation error dynamic equations

ėx = (A − LC)ex + φ(x,u) − φ(x̂, u) +
l

∑

i=1

(

θigi(x,u) − θ̂igi(x̂, u)
) + d, (11)

ey = Cex, (12)

ėθi
= −σig

T
i (x̂, u)Dey(t). (13)

The main problem encountered here is that the system is subject to unknown dis-
turbance and the real fault effect factor θi which is combined with the system state x

and input u. We must design an appropriate estimator which can estimate the fault θi

effectively and be less sensitive to the disturbance.
At first, let us introduce a lemma and a definition which are useful for the analysis

of this multiplicative fault estimation problem.

Lemma 1 (Barbălat’s Lemma [12]) If limt→∞
∫ t

0 f (τ) dτ exists and is finite, and
f (t) is a uniformly continuous function, then limt→∞ f (τ) = 0.
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Definition 1 (Persistence of Excitation [12]) A piecewise continuous signal vector
φ : R

+ �−→ R
n is called Persistence of Excitation in R

n with a level of excitation
α0 > 0 if there exist constants α1, T0 > 0 such that

α1I ≥ 1

T0

∫ t+T0

t

φ(τ )φT (τ ) ≥ α0I, ∀t ≥ 0.

In the analysis of the estimation error functions (11)–(13), a sufficient condition
for asymptotic stability of the observer is presented and proved in the following the-
orem.

Theorem 1 Suppose the pair (A,C) is observable, and the matrix C is of full row
rank. Assume that gi(x,u, t), i = 1, . . . , l, are persistence of excitation. If there is a
positive definite matrix P = P T > 0 and a matrix D such that

Π =
[
Λ + CT C P

P −γ 2I

]

< 0, (14)

Λ = (A − LC)T P + P(A − LC) + HT H +
l

∑

i=1

GT
i αiαiGi + (l + 1)PP, (15)

DC = P, (16)

then the observer-based estimator (8)–(10) ensures that

1. The estimated x and θ̂i asymptotically converge to the nonlinear system state x

and the multiplicative fault θi respectively under the zero disturbance case.
2. When the unknown disturbance exists, the output error satisfies ‖ey‖2

2 < γ 2‖d‖2
2.

Proof The proof consists of two parts: the internal stability analysis and computing
the robust performance index.

1. Internal stability analysis.
Choose V (t) = eT

x (t)P ex(t) + ∑l
i=1 σ−1

i eT
θi
(t)eθi

(t) as the Lyapunov function
and calculate the derivative of the Lyapunov function V (t). We get

V̇ = eT
x

(

(A − LC)T P + P(A − LC)
)

ex + 2eT
x P

(

φ(x,u) − φ(x̂, u)
)

+
l

∑

i=1

2eT
x P

(

θigi(x,u) − θ̂igi(x̂, u)
) +

l
∑

i=1

2σ−1
i eθi

˙̂
θi + 2eT

x Pd

= eT
x

(

(A − LC)T P + P(A − LC)
)

ex + 2eT
x P

(

φ(x,u) − φ(x̂, u)
)

+
l

∑

i=1

2eT
x P

(

θigi(x,u) − θigi(x̂, u)
) + 2eT

x Pd.

According to Lipschitz condition, we have

2eT
x P

(

φ(x,u) − φ(x̂, u)
) ≤ 2

∥
∥eT

x P
∥
∥
∥
∥φ(x,u) − φ(x̂, u)

∥
∥

≤ eT
x PPeT

x + eT
x HT HeT

x ,
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2eT
x P

(

θigi(x,u) − θigi(x̂, u)
) ≤ 2

∥
∥eT

x P
∥
∥
∥
∥θigi(x,u) − θigi(x̂, u)

∥
∥

≤ eT
x PPeT

x + eT
x GT

i αiαiGie
T
x .

Then the derivative of the Lyapunov function satisfies the following inequality:

V̇ ≤ eT
x (Λ)ex + 2eT

x Pd. (17)

In the zero disturbance case, one has

V̇ ≤ −λmin(−Λ)‖ex‖2. (18)

Based on Schur Complement Lemma, the matrix Λ is a negative definite matrix.
Inequality (18) indicates ex ∈ L2. Because ex ∈ L∞, ėx is uniformly bounded.
Based on Barbǎlat’s Lemma, we have ex → 0 as t → 0. And due to persistent
excitation condition of gi(x,u), the estimator (8)–(10) ensures that eθi

→ 0 as
t → 0.

2. Robust Performance Index.
Defining

J = V̇ + eT
y ey − γ 2dT d

and using Eq. (17), we can derive that

J ≤ eT
x Λex + 2eT

x Pd + eT
x CT Cex − γ 2dT d

≤ eT Πe,

where

e = [

eT
x dT

]T
.

It follows that

J ≤ −λmin(−Π)‖e‖2.

Under the zero initial condition, we have
∫ T

0

(

eT
y ey − γ 2dT d

)

dt =
∫ T

0
J dt − V (T ) < 0,

which implies
∫ T

0
eT
y ey dt ≤ γ 2

∫ T

0
dT d dt

This completes the proof of the theorem. �

Remark 1 Based on Schur Complement Lemma, and letting Y = PL, Π < 0 in
Eq. (14) can be rewritten as the following matrix inequality:

⎡

⎢
⎢
⎣

Ξ P CT P

P − 1
l+1I 0 0

C 0 −I 0
P 0 0 −γ 2I

⎤

⎥
⎥
⎦

< 0,
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Ξ = AT P + PA − CT Y − YC + HT H +
l

∑

i=1

GT
i αiαiGi.

The matrix D can be derived from

D = PCT
(

CCT
)−1

.

Remark 2 A good estimator is designed to make the whole system sensitive to the
multiplicative fault and insensitive to the disturbance. Hence, we can reduce the effect
of disturbance d to the formula (14) with a smaller γ using Matlab LMI toolbox.

4 An Illustrative Example

In this section, we consider a one-link manipulator with revolute joints actuated by
a DC motor, which is an excellent example used to verify design schemes in many
works [14, 16, 22]. The corresponding state-space model with no faults and distur-
bance is

q̇m = ωm,

ω̇m = k

Jm

(q1 − qm) − B

Jm

ωm + kτ

Jm

u,

q̇1 = ω1,

ω̇1 = − k

J1
(q1 − qm) − mgh

J1
sin(q1),

where q1 and qm are the angular position of the link and motor, respectively, ω1 is
the angular velocity of the link, and ωm is the angular velocity of the motor. J1 and
Jm are the inertia of the link and motor. The control u is the torque of the motor. The
nonlinear system with multiplicative fault and disturbance is shown in the following:

ẋ = Ax + Bu + φ(x) + d +
l

∑

i=1

θigi(x,u),

y = Cx,

with

A =

⎡

⎢
⎢
⎣

0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 0

⎤

⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎣

0
21.6

0
0

⎤

⎥
⎥
⎦

,

φ =

⎡

⎢
⎢
⎣

0
0
0

−3.33 sin(x3)

⎤

⎥
⎥
⎦

, C =
[

1 0 0 0
0 1 0 0

]

.
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The unknown disturbance is d = [0 d1 0 d2]T , where the L2 norms of d1 and d2
are assumed to be bounded. Two types of component faults are considered here.

Case 1: An abnormal friction appears in the motor which leads to parameter
changes in the system state matrix. Suppose that the viscous friction constant B

increases by 20 % at t = 5 seconds. In this case, θ1 ∈ [0,1] represents the real
multiplicative fault parameter. When θ1 = 0, the system is in the normal opera-
tion. θ1 = 0.2 at t = 5 seconds. And the viscous friction fault structure function
g1 = [0 − 1.25x2 0 0]T .

Case 2: The actuator occurs multiplicative fault which is in the form of u =
(1 + θ2)ū. θ2 ∈ [−1,0] represents the magnitude of the fault. When θ2 = 0, the ac-
tuator is in the normal operation, while θ2 = −1 represents the complete fault of the
actuator. And the fault structure function is g2 = [0 21.6u 0 0]T . Here we suppose
that the actuator efficiency decreases by 30 % at t = 15 seconds.

The nonlinear term φ is a Lipschitz nonlinear function with a global Lipschitz
constant δ = 3.33. And the relaxing Lipschitz matrix is

H =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 −3.33 0 0

⎤

⎥
⎥
⎦

.

Based on multiplicative fault estimation strategy we proposed in Sect. 3, the robust
adaptive multiplicative fault estimator is established. The simulation of the robust
adaptive fault estimation is performed in Simulink. A sinusoidal wave input of this
system is given by u = sin(t). The initial condition is x(0) = 0. According to The-
orem 1, the observer gain is obtained with a robust performance γ 2 = 0.3 shown
here

L =

⎡

⎢
⎢
⎢
⎣

5.9554 −46.0479

0.5437 30.1714

20.7891 70.8924

24.3609 72.2822

⎤

⎥
⎥
⎥
⎦

.

Figure 1 shows the output estimation error for the system subject to an extra ab-
normal friction fault. Figure 2 illustrates the estimated multiplicative fault θ1. The
fault is accurately estimated compared to the desired trajectory. Figures 3 and 4 de-
pict the output estimation error and the estimation of multiplicative fault θ2 when the
actuator efficiency degradation occurs in the system. Again the fault is successfully
estimated. From these simulation results, we can see that the proposed robust adap-
tive estimation scheme not only guarantees the state estimation and multiplicative
fault estimation accurately, but also makes the estimator insensitive to the unknown
disturbances.

5 Conclusion

In this paper, a robust adaptive fault estimation scheme has been proposed for a kind
of Lipschitz nonlinear system subject to multiplicative faults and unknown distur-
bances. Multiplicative faults are parameter changes within the process which make
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Fig. 1 Output estimation error
under the abnormal friction fault

Fig. 2 The estimation of
viscous friction
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Fig. 3 Output estimation error
under actuator fault

Fig. 4 The estimation of
actuator fault
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the design for fault estimation more complicated. The estimator is designed in the
context of a trade-off between robustness to disturbances and sensitivity to faults.
According to Lyapunov stability theory, the estimator can estimate the real fault fac-
tors accurately, and simultaneously estimate the system states. The conservatism for
the whole fault estimation scheme is reduced by using a relaxing Lipschitz matrix.
The proposed adaptive fault estimation algorithms have been verified by a one-link
manipulator control system.
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