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Abstract This paper presents a novel hierarchical least squares algorithm for a class
of non-uniformly sampled systems. Based on the hierarchical identification principle,
the identification model with a high dimensional parameter vector is decomposed into
a group of submodels with lower dimensional parameter vectors. By using the least
squares method to identify the submodels and taking a coordinated measure to ad-
dress the associated items between the submodels, all the system parameters can be
estimated. The proposed algorithm can save the computation cost. The performance
analysis indicates that parameter estimates converge to their true values. The simula-
tion tests confirm the convergence results.

Keywords Hierarchical identification · Parameter estimation · Non-uniformly
sampling · Multirate systems · State-space models

1 Introduction

Conventional discrete-time control systems are mainly developed for single-rate sys-
tems in which all input and output variables are sampled at a single (uniform) rate [2].
Identification techniques for single-rate systems have been well investigated [1, 16,
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25, 26]. However, the single-rate sampling scheme sometimes may not be applica-
ble in practical industrial processes, because the involved physical variables might
be sampled at different sampling rates; see some examples in [13, 20]. Such systems
with more than one sampling rate are called multirate systems. Recently, multirate
systems have been a hot topic in control and identification fields, and many related
achievements have been reported [3, 4, 15, 18, 23, 33, 39].

Most of the sampling schemes for multirate systems in the literature are uniform
sampling, that is, the sampling interval for all variables are fixed. However, a more
general class of multirate systems feature the following characteristics: The involved
variables are measured at non-uniform intervals, e.g., in the cases when manual sam-
pling or laboratory analysis is required. Systems whose sampling intervals for the
input and/or output channels are non-equidistant in time are termed as non-uniformly
sampled multirate systems [8, 21, 24, 28]. The systems with irregular missing sam-
ples can be characterized under the framework of the non-uniformly sampled system
model [10, 14, 17, 31, 32, 38, 40, 41, 43, 45]. In this paper, we consider a class
of periodically non-uniformly sampled systems which are special cases of the gen-
eral non-uniformly sampled systems. It has been shown that the periodically non-
uniform sampling has some promising properties, such as preserving controllability
and observability [8, 28] and being capable of uniquely recovering the continuous-
time system [8]. The related identification and control problems have been inves-
tigated for periodically non-uniformly sampled systems [8, 9, 21, 22, 24, 27, 28].
Specifically, some interesting identification methods have been proposed for the non-
uniformly sampled systems, for example, the subspace methods [21, 27], the aux-
iliary model-based least squares method [24], the multi-innovation gradient method
[37] and the partially coupled least squares method [9]. In this work, the main objec-
tive is to propose a computationally efficient identification algorithm for periodically
non-uniformly sampled systems based on a hierarchical identification principle.

It is known that multirate and non-uniformly sampled systems involve more pa-
rameters than single-rate systems, which will unavoidably result in heavy compu-
tational costs of the identification algorithms. This motivates us to develop compu-
tationally efficient algorithms for online identification, which is of both theoretical
merit and practical needs. The decomposition technique is useful in many areas such
as the image procession [34–36]. Based on the decomposition technique, the hier-
archical identification principle is very effective in reducing the complexity of the
identification algorithm for large-scale systems [5]. The key is to decompose a system
into subsystems and to address the associated items [6, 11]. For system identification
models with different structures, the ways of doing decomposition are different. The
multivariable system in [5] was decomposed into two subsystems, one with a param-
eter vector and the other with a parameter matrix. The dual-rate state-space model
in [6] was also decomposed into two subsystems according to the lifted state-space
structure. In this paper, we propose to decompose the system identification model into
N (2 � N � dim(θ)) submodels, where dim(θ) represents the dimension of the pa-
rameter vector θ . Based on such a decomposition, the proposed algorithm can greatly
reduce the computational complexity.

The rest of the paper is organized as follows. Section 2 derives the identification
model of the non-uniformly sampled systems and describes the problem formulation.
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Section 3 gives the recursive least squares algorithm for the non-uniformly sampled
systems for comparisons. Section 4 presents a hierarchical least squares algorithm
and compares the computational load with the recursive least squares algorithm. Sec-
tion 5 analyzes the performance of the proposed algorithm. Section 6 provides an
illustration example. Finally, we offer some concluding remarks in Sect. 7.

2 Model description and problem formulation

Consider the systems with a periodically non-uniform updating and uniform sam-
pling scheme, which can refer to the Fig. 3 in [24]. For such a non-uniformly
sampled system, the control input is non-uniformly updated r times with intervals
τi (i = 1,2, . . . , r) at the time instants t = kT + ti i = 0,1,2, . . . , r − 1. Here,
ti := ti−1 + τi = τ1 + τ2 + · · · + τi , t0 = 0 and T := τ1 + τ2 + · · · + τr = tr is known
as the frame period; the output is sampled uniformly with the frame period T . In
the following, we establish the discrete-time state-space model and the input–output
representation of the non-uniformly sampled systems from its continuous-time state-
space model.

Consider a continuous-time process with the controllable and observable state-
space representation: {

ẋ(t) = Acx(t) + Bcu(t),

y(t) = Cx(t) + Du(t),
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R the control input, y(t) ∈ R the output,

Ac, Bc , C are constant matrices of appropriate dimensions and D is a constant. Be-
cause of the non-uniform zero-order hold at the input port, the input u(t) is a square
wave signal with the following expression:

u(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(kT ) kT � t < kT + t1,

u(kT + t1) kT + t1 � t < kT + t2,
...

u(kT + tr−1) kT + tr−1 � t < (k + 1)T .

(2)

The output y(t) is sampled by a sampler with the frame period T , yielding a discrete-
time signal y(kT ).

The solution for the state equation in (1) is given by

x(t) = eAc(t−t0)x(t0) +
∫ t

t0

eAc(t−τ)Bcu(τ )dτ. (3)

For a non-pathological frame period T , by letting t0 = kT and t = kT + T in (3) and
using (2) to discretize the state-space model in (1), we have [8, 24],⎧⎪⎪⎨

⎪⎪⎩
x(kT + T ) = Ax(kT ) +

r∑
i=1

Biu(kT + ti−1),

y(kT ) = Cx(kT ) + Du(kT ),

(4)
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where

A := eAcT ∈ R
n×n, B i := eAc(T −ti )

∫ τi

0
eAct dt Bc ∈ R

n.

Transforming the state-space model in (4) into an input–output representation and
taking into account the disturbance v(kT ), we have

α(z)y(kT ) =
r∑

i=1

bi(z)u(kT + ti−1) + v(kT ), (5)

where {v(kT )} is a white noise sequence with zero mean, a(z) and bi(z) are polyno-
mials, in the unit backward shift operator z−1, related to A, Bi , C and D and have
the form of [24]

a(z) := 1 + a1z
−1 + a2z

−2 + · · · + anz
−n, ai ∈ R

1,

b1(z) := b10 + b11z
−1 + b12z

−2 + · · · + b1nz
−n, b1j ∈ R

1,

bi(z) := bi1z
−1 + bi2z

−2 + · · · + binz
−n, bij ∈ R

1, i = 2,3, . . . , r.

Remark 1 Equation (5) is the input–output representation for the non-uniformly sam-
pled systems. In the following, we will develop the identification algorithm for the
model in (5). {u(kT + ti ), y(kT ): i = 0,1,2, . . . , r −1; k = 1,2, . . .} are the available
input–output data. ai and bij are the parameters to be identified. In [24], an auxiliary
model-based least squares method has been developed for the non-uniformly sampled
systems with an output error model. In this paper, we aim to develop a new method
to reduce the computational burden of the least squares algorithm.

Remark 2 The expression in (5) can be viewed as a multiple-input single-output sys-
tem model with r fictitious inputs u(kT + ti ), i = 0,1,2, . . . , r − 1. When r = 1, it
becomes a discrete-time model for single-rate systems. It can be seen from (5) that the
number of parameters for the non-uniformly sampled model is (r + 1)n + 1, which
is much larger than 2n + 1 of the single-rate model. Thus the computational burden
of the corresponding identification algorithm for the non-uniformly sampled model
is heavier than that for the single-rate model.

3 The recursive least squares algorithm

In order to show the advantages of the proposed algorithm in this paper, we recall the
well-established recursive least squares (RLS) algorithm in this section.

Let the superscript T denote the vector transpose and define the parameter vector
θ and the information vector ϕ(kT ) as

θ := [a1, a2, . . . , an, b10, b11, b12, . . . , b1n, b21, b22, . . . , b2n, . . . ,

br1, br2, . . . , brn]T ∈ R
n0 , n0 := (r + 1)n + 1,

ϕ(kT ) := [−y(kT − T ),−y(kT − 2T ), . . . ,−y(kT − nT ),u(kT ),u(kT − T ),

u(kT − 2T ), . . . , u(kT − nT ),u(kT + t1 − T ),u(kT + t1 − 2T ), . . . ,
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u(kT + t1 − nT ), . . . , u(kT + tr−1 − T ),u(kT + tr−1 − 2T ), . . . ,

u(kT + tr−1 − nT )
]T ∈ R

n0 .

Equation (5) can be written in a vector form

y(kT ) = ϕT(kT )θ + v(kT ). (6)

The estimate θ̂(kT ) of the parameter vector θ in (6) can be obtained from the follow-
ing RLS algorithm:

θ̂(kT ) = θ̂(kT − T ) + P 0(kT )ϕ(kT )
[
y(kT ) − ϕT(kT )θ̂(kT − T )

]
, (7)

P −1
0 (kT ) = P −1

0 (kT − T ) + ϕ(kT )ϕT(kT ), P 0(0) = p0I , (8)

where P 0(kT ) ∈ R
n0×n0 is the covariance matrix and I is an identity matrix of ap-

propriate sizes.

Remark 3 It is known that the RLS algorithm has the advantage of fast convergence
rate, but its computational burden is relatively heavy. From (7)–(8), we can see that
the RLS algorithm for non-uniformly sampled systems requires calculating the co-
variance matrix P 0(kT ) of a large size n0 × n0 at each recursion step. Since the
number n0 = (r + 1)n is larger than the parameter number 2n + 1 of single-rate sys-
tems, the RLS algorithm in (7)–(8) tolerates a heavier computational burden than the
RLS algorithm for single-rate systems. This motivates us to present a highly compu-
tationally efficient algorithm to estimate the parameter vector θ in (6).

4 The hierarchical estimation algorithm

The hierarchical identification principle is an effective way of handling large-scale
systems by reducing the computational load [5–7, 11]. Here, we use the hierarchical
identification principle to derive the hierarchical least squares (HLS) algorithm for
the system in (5).

Decompose the information vector ϕ(kT ) into N sub-information vectors and the
parameter vector θ into N sub-parameter vectors with dimension ni , i.e.,

ϕ(kT ) =

⎡
⎢⎢⎢⎣

ϕ1(kT )

ϕ2(kT )
...

ϕN(kT )

⎤
⎥⎥⎥⎦ ∈ R

n0, ϕi (kT ) ∈ R
ni ,

θ =

⎡
⎢⎢⎢⎣

θ1
θ2
...

θN

⎤
⎥⎥⎥⎦ ∈ R

n0, θ i ∈ R
ni , n1 + n2 + · · · + nN = n0.
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Then the overall identification model in (6) can be written as

y(kT ) = ϕT
i (kT )θ i +

N∑
j=1,j �=i

ϕT
j (kT )θ j + v(kT ). (9)

Let θ̂ i (kT ) be the estimate of θ i at time t = kT . According to the least squares
principle, the estimation algorithm for θ i in (9) can be expressed as

θ̂ i (kT ) = θ̂ i (kT − T ) + P i (kT )ϕi (kT )

×
[
y(kT ) − ϕT

i (kT )θ̂ i (kT − T ) −
N∑

j �=i

ϕT
j (kT )θ j

]
, (10)

P −1
i (kT ) = P −1

i (kT − T ) + ϕi (kT )ϕT
i (kT ), (11)

where P i (kT ) is the covariance matrix of the ith subsystem.

Remark 4 Because the expression on the right-hand side of (10) contains the un-
known parameter vectors θ j , j = 1,2, . . . , i − 1, i + 1, . . . ,N , using the hierarchical
identification principle and replacing these unknown vectors θ j (j �= i) in (10) with
their estimates θ̂ j (kT − T ) at the preceding time t = kT − T yields

θ̂ i (kT ) = θ̂ i (kT − T ) + P i (kT )ϕi (kT )

×
[
y(kT ) −

N∑
j �=i

ϕT
j (kT )θ̂ j (kT − T ) − ϕT

i (kT )θ̂ i (kT − T )

]

= θ̂ i (kT − T ) + P i (kT )ϕi (kT )
[
y(kT ) − ϕT(kT )θ̂(kT − T )

]
. (12)

Equations (12) and (11) form the decomposition-based least squares (HLS) identifi-
cation algorithm.

To initialize the algorithm, we take P i (0) = p0Ini
, with p0 being normally

a large positive number (e.g., p0 = 106) and θ̂ i (0) = 1ni
/p0, with 1ni

being an
ni -dimensional column vector whose elements are all 1.

Remark 5 The diagram of the HLS algorithm is shown in Fig. 1. From the HLS
algorithm in (11)–(12) and Fig. 1, we can see that the parameter estimate θ̂ i (kT ) at
time t = kT depends not only on θ̂ i (kT − T ) at the preceding time t = kT − T , but
also on the estimates θ̂ j (kT − T ) (j = 1,2, . . . , i − 1, i + 1, . . . ,N) of all the other
submodels at time t = kT − T .

Remark 6 The proposed HLS algorithm in (11)–(12) has less computational burden
than the RLS algorithm in (7)–(8). The computational burden of the two algorithms
are compared in Table 1, where the numbers of multiplications and additions are for
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Fig. 1 The diagram of the HLS
algorithm

Table 1 Comparisons of
computational efficiency Algorithms Number of multiplications Number of additions

RLS 2n2
0 + 4n0 2n2

0 + 2n0

{96} {84}
HLS

∑N
i=1[2n2

i
+ 4ni ]

∑N
i=1[2n2

i
+ 2ni ]

{60} {48}

each step. Taking a non-uniformly sampled system with n0 = 6 and N = 2 as an
example, i.e., n1 = n2 = 3, the times of multiplication and addition are shown in the
braces.

Remark 7 From Table 1, we can see that the computation cost of the HLS algorithm
in (11)–(12) is lower than that of the RLS algorithm, and the computational cost of
the HLS algorithm depends on the choice of the number N . The larger N , the lower
the computation cost. When N = n0, i.e., ni = 1, we get the least computational
cost.

5 Main convergence results

In this section, we establish the main convergence results of the HLS algorithm
for non-uniformly sampled systems, using the martingale convergence theorem
(Lemma D.5.3 in [16]). Two problems are addressed: (1) Do the parameter estimates
given by the HLS algorithm converge to the true parameters? (2) How fast does the
algorithm converge?

Let us introduce some notations. The symbols λmax[X] and λmin[X] represent the
maximum and minimum eigenvalues of the positive definite matrix X, respectively;
‖X‖2 := tr[XXT]. The relation f (k) = O(g(k)) means that there exist positive con-
stants δ1 and k0 such that |f (k)| � δ1g(k) for g(k) � 0 and k � k0.
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Assume that {v(kT ), FkT } is a martingale difference sequence defined on a prob-
ability space {Ω, F ,P }, where {FkT } is the σ algebra sequence generated by the
observations up to and including time t = kT [16]. The noise sequence {v(kT )} sat-
isfies the following assumptions:

(A1) E
[
v(kT ) | FkT −T

] = 0, a.s.;
(A2) E

[
v2(kT ) | FkT −T

] = σ 2 < ∞, a.s.

Lemma 1 For the algorithm in (11)–(12), the following inequalities hold:

∞∑
j=1

ϕT
i (jT )P i (jT )ϕi (jT )

[ln |P −1
i (jT )|]c < ∞, a.s., c > 1.

The proof can be done in a similar way to that of Lemma 1 in [24].

Theorem 1 For the system in (6) and the HLS algorithm in (11)–(12), if

γ (kT ) :=
(

1 −
N∑

i=1

ϕT
i (kT )P i (kT )ϕi (kT )

)
ỹ2(kT ) + 2

N∑
i �=j

ỹi (kT )ỹj (kT ) � 0,

then we take θ̂(kT ) = θ̂(kT − T ). Define

R(kT ) :=
N∑

i=1

[
ln

∣∣P −1
i (kT )

∣∣]c
and assume that (A1) and (A2) hold, then for any c > 1, we have

∥∥θ̂ i (kT ) − θ i

∥∥2 = O

(
R(kT )

λmin[P −1
i (kT )]

)
, i = 1,2, . . . ,N, a.s.

Proof Define the parameter estimation error vector θ̃(kT ) and a nonnegative definite
functions Qi(kT ) as

θ̃ i (kT ) := θ̂ i (kT ) − θ i , (13)

Qi(kT ) := θ̃
T
i (kT )P −1

i (kT )θ̃ i (kT ), i = 1,2, . . . ,N, (14)

and

ỹi (kT ) := ϕT
i (kT )θ̃ i (kT − T ),

ỹ(kT ) := ϕT(kT )θ̃(kT − T ) =
N∑

i=1

ỹi (kT ).

Define the innovation

e(kT ) := y(kT ) − ϕT(kT )θ̂(kT − T ). (15)
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Using (9), we have

e(kT ) = −ϕT(kT )θ̃(kT − T ) + v(kT ) = −ỹ(kT ) + v(kT ). (16)

Inserting (12) into (14) gives

Qi(kT ) = [
θ̃ i (kT − T ) + P i (kT )ϕi (kT )e(kT )

]T
P −1

i (kT )

× [
θ̃ i (kT − T ) + P i (kT )ϕi (kT )e(kT )

]
= θ̃

T
i (kT − T )P i (kT )θ̃ i (kT − T ) + 2θ̃

T
i (kT − T )ϕi (kT )e(kT )

+ ϕT
i (kT )P i (kT )ϕi (kT )e2(kT )

= θ̃
T
i (kT − T )

[
P −1

i (kT − T ) + ϕi (kT )ϕT
i (kT )

]
θ̃ i (kT − T )

+ 2θ̃
T
i (kT − T )ϕi (kT )e(kT )

+ ϕT
i (kT )P i (kT )ϕi (kT )e2(kT )

= Qi(kT − T ) + ỹ2
i (kT ) + 2ỹi (kT )e(kT )

+ ϕT
i (kT )P i (kT )ϕi (kT )e2(kT ). (17)

Define the stochastic Lyapunov function

Q(kT ) :=
N∑

i=1

Qi(kT ).

Using (17) and (16), we have

Q(kT ) =
N∑

i=1

Qi(kT − T ) +
N∑

i=1

ỹ2
i (kT ) + 2

N∑
i=1

ỹi (kT )e(kT )

+
N∑

i=1

ϕT
i (kT )P i (kT )ϕi (kT )e2(kT )

= Q(kT − T ) +
N∑

i=1

ỹ2
i (kT ) + 2ỹ(kT )

[−ỹ(kT ) + v(kT )
]

+
N∑

i=1

ϕT
i (kT )P i (kT )ϕi (kT )

[−ỹ(kT ) + v(kT )
]2

= Q(kT − T ) +
N∑

i=1

ỹ2
i (kT ) − 2

N∑
i=1

ỹ2
i (kT )
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− 4
N∑

i �=j

ỹi(kT )ỹj (kT ) + 2ỹ(kT )v(kT )

+
N∑

i=1

ϕT
i (kT )P i (kT )ϕi (kT )

{[
ỹ(kT )

]2 − 2ỹ(kT )v(kT ) + v2(kT )
}

= Q(kT − T ) −
[

1 −
N∑

i=1

ϕT
i (kT )P i (kT )ϕi (kT )

]
ỹ2(kT )

− 2
N∑

i �=j

ỹi(kT )ỹj (kT ) + 2

[
1 −

N∑
i=1

ϕT
i (kT )P i (kT )ϕi (kT )

]
ỹ(kT )v(kT )

+
N∑

i=1

ϕT
i (kT )P i (kT )ϕi (kT )v2(kT )

� Q(kT − T ) − γ (kT )

+ 2

[
1 −

N∑
i=1

ϕT
i (kT )P i (kT )ϕi (kT )

]
N∑

i=1

ỹi (kT )v(kT )

+
N∑

i=1

ϕT
i (kT )P i (kT )ϕi (kT )v2(kT ). (18)

Since {v(kT )} is a white noise sequence, taking the conditional expectation of both
sides of (18) with respect to FkT −T and using (A1)–(A2) give

E
[
Q(kT ) | FkT −T

] = Q(kT − T ) − γ (kT ) +
N∑

i=1

ϕT
i (kT )P i (kT )ϕi (kT )σ 2.

If γ (kT ) � 0, we have

E
[
Q(kT ) | FkT −T

]
� Q(kT − T ) +

N∑
i=1

ϕT
i (kT )P i (kT )ϕi (kT )σ 2; (19)

otherwise, we have θ̂(kT ) := θ̂(kT −T ) and Q(kT ) := Q(kT −T ). Thus, we always
have

E
[
Q(kT ) | FkT −T

] = Q(kT − T ) +
N∑

i=1

ϕT
i (kT )P i (kT )ϕi (kT )σ 2. (20)

Define

Z(kT ) := Q(kT )

R(kT )
.
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Using (20), we have

Z(kT ) � Q(kT − T )∑N
i=1[ln |P −1

i (kT )|]c +
∑N

i=1 ϕT
i (kT )P i (kT )ϕi (kT )∑N

i=1[ln |P −1
i (kT )|]c σ 2

� Z(kT − T ) +
N∑

i=1

ϕT
i (kT )P i (kT )ϕi (kT )

[ln |P −1
i (kT )|]c σ 2. (21)

According to Lemma 1, the summation of the last term of the right-hand side of
(21) for k from 1 to ∞ is finite. Applying the martingale convergence theorem
(Lemma D.5.3 in [16]) to (21), we conclude that Z(kT ) converges a.s. to a finite
random variable, say Z0, i.e.,

Z(kT ) = Q(kT )

R(kT )
→ Z0 < ∞.

Thus we have

Q(kT ) = O
(
R(kT )

)
, Qi(kT ) = O

(
R(kT )

)
.

From the definition of Qi(kT ), we have

∥∥θ̃ i (kT )
∥∥2 �

θ̃
T
i (kT )P −1

i (kT )θ̃ i (kT )

λmin[P i (kT )]

= Qi(kT )

λmin[P i (kT )] = O

(
R(kT )

λmin[P i (kT )]
)

, i = 1,2, . . . ,N, a.s.

This proves Theorem 1. �

Corollary 1 For the system in (6) and the HLS algorithm in (11)–(12), assume that
the conditions of Theorem 1 hold and that there exist positive constants c1, c2, c0, and
k0 such that for k � k0, the following general persistent excitation condition holds:

(A3) c1Ini
� 1

k

k∑
j=1

ϕi (jT )ϕT
i (jT ) � c2k

c0Ini
, i = 1,2, . . . ,N, a.s.

Then the parameter estimation errors converge to zero like ‖θ̃ i (kT )‖2 → 0, a.s.,
i = 1,2, . . . ,N .

Proof From the definitions of P i (kT ) and the condition (A3), we have

c1kIni
� P −1

i (kT ) � c2k
c0+1Ini

+ 1

p0
Ini

,

λmin
[
P −1

i (kT )
]
� c1k,

ln
∣∣P −1

i (kT )
∣∣ � ni ln

[
c2k

c0+1 + 1

p0

]
.
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Using Theorem 1, we have

∥∥θ̂ i (kT ) − θ i

∥∥2 = O

(
R(kT )

λmin[P i (kT )]
)

= O

(
1

c1k

N∑
i=1

nc
i

[
ln

(
c2k

c0+1 + 1/p0
)]c)

= O

(
N [lnk]c

k

)
→ 0, i = 1,2, . . . ,N, a.s.

The proof is completed. �

Remark 8 Corollary 1 shows that the estimation errors ‖θ̃ i (kT )‖2 converge to zero
at the rate of N [ln k]c/k as k approaches infinity. This implies that the convergence
rate depends on the number N and that the larger N , the slower the convergence rate.
Therefore, the HLS algorithm in (11)–(12) reduces the computational load at the cost
of slowing down the convergence rate. In order to guarantee a certain convergence
rate, the number N should not be too large.

6 Example

Consider a stable continuous-time process with the following state-space representa-
tion:

Sc :

⎧⎪⎨
⎪⎩

ẋ(t) =
[−0.1 −0.5

1 0

]
x(t) +

[
1
0

]
u(t),

y(t) = [0,2]x(t).

Take r = 2, τ1 = 0.3 s, τ2 = 0.5 s, then t1 = τ1 = 0.3 s, t2 = τ1 + τ2 = T = 0.8 s.
Discretizing this system gives⎧⎪⎨
⎪⎩

x(kT + T ) =
[

0.7754 −0.3642
0.7285 0.8483

]
x(kT ) +

[
0.2509 0.4776
0.1818 0.1217

][
u(kT )

u(kT + t1)

]
,

y(kT ) = [0,2]x(kT ).

The corresponding input–output relationship is(
1 − 1.6240z−1 + 0.9231z−2)y(kT )

= (
0.3636z−1 + 0.0836z−2)u(kT )

+ (
0.2433z−1 + 0.5072z−2)u(kT + t1) + v(kT ).

In the simulation, the inputs {u(kT + ti ), i = 0,1} are taken as persistent excita-
tion signal sequences with zero mean and unit variance, and {v(kT )} as a white
noise sequence with zero mean and variance σ 2 = 0.102. The corresponding noise-
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Table 2 The RLS parameter estimates and errors

k a1 a2 b11 b12 b21 b22 δ (%)

100 −1.61612 0.91343 0.35807 0.08953 0.23690 0.50639 0.81666

200 −1.61400 0.91200 0.36325 0.08797 0.23135 0.50325 1.00806

500 −1.61957 0.91958 0.36689 0.08817 0.23572 0.50105 0.63472

1000 −1.61987 0.91915 0.36622 0.08655 0.24118 0.49998 0.51537

2000 −1.62173 0.92164 0.36581 0.08308 0.24130 0.50172 0.34297

3000 −1.62271 0.92229 0.36476 0.08414 0.24004 0.50352 0.26680

True values −1.62400 0.92310 0.36360 0.08360 0.24330 0.50720

Table 3 The HLS parameter estimates and errors with N = 2

k a1 a2 b11 b12 b21 b22 δ (%)

100 −1.60036 0.90200 0.19301 0.21073 0.12421 0.48222 12.44216

200 −1.59887 0.90083 0.27020 0.15677 0.18314 0.50219 6.91245

500 −1.61081 0.91322 0.33452 0.11324 0.21580 0.50743 2.64112

1000 −1.61335 0.91424 0.35027 0.10031 0.23041 0.50343 1.44977

2000 −1.61832 0.91892 0.35776 0.09146 0.23572 0.50457 0.72947

3000 −1.62060 0.92063 0.35939 0.09047 0.23616 0.50595 0.58537

True values −1.62400 0.92310 0.36360 0.08360 0.24330 0.50720

Fig. 2 The parameter estimation error δ versus k

to-signal ratio is δns = 11.82 %. The parameter estimates and their errors δ :=
‖θ̂(kT )− θ‖/‖θ‖ given by the RLS algorithm in (7)–(8) are shown in Table 2. In this
simulation, the number of parameters is n0 = 6. Let N = 2 and n1 = n2 = 3, then ap-
ply the HLS algorithm in (11)–(12) to estimate the parameters of this non-uniformly
sampled system. The simulation results are shown in Table 3. The estimation errors
δ versus k of the two algorithms are shown in Fig. 2.
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From Tables 1–3 and Fig. 2, we have the following conclusions:

– The identification model is a fictitious two-input single-output system because the
input is non-uniformly sampled twice over the frame period. Table 2 and Fig. 2
show that RLS algorithm can give highly accurate estimation.

– In this simulation, r = 2, n0 = 6 and N = 2. From Table 1, we can see that the
numbers of multiplication and addition at each step for the HLS algorithm are 60
and 48, respectively, and are fewer than 96 and 84 of the RLS algorithm. Compared
to the RLS algorithm, the HLS algorithm saves 40 % computational cost.

– The parameter estimation errors for the HLS algorithm become smaller and grad-
ually get close to zero as the data length k increases.

– The convergence rate of the HLS algorithm is a little slower than that of the RLS
algorithm.

7 Conclusions

In this paper, an HLS algorithm is presented for a class of non-uniformly sampled
systems based on the hierarchical identification principle. The main advantage of the
proposed algorithm is that it can reduce the computation load compared with the
traditional RLS algorithm. The convergence analysis indicates that the parameter es-
timates given by the HLS algorithm can converge to their true values, and the number
N cannot be too large in the algorithm implementation because the number of the
submodels really affects the convergence rate. A numerical example shows that the
HLS algorithm can give effective parameter estimates with lower computational ef-
fort. The proposed hierarchical method based on decomposing the parameter vector
and the information vector can be extended to a variety of system models such as
the multivariable systems with a complicated colored noise [12]. Due to its benefit
of reduced computational complexity, the proposed identification method could be
applied to resource-constrained networked dynamic systems [19, 29, 30, 42, 44].
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