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Abstract In this paper, the H∞ filtering problem for a class of short-time switched
discrete-time linear systems is investigated. For such systems, switching always oc-
curs in some short interval. Since the error state may attain large unacceptable values
in short-time switching intervals, besides the asymptotic stability of error dynamics,
the boundedness of error state is also significant for short-time switched systems.
Thus the designed filter is composed of two parts: asymptotic filter, based upon the
existing results, ensures the asymptotic stability of the system during normal, rela-
tively long interval, and finite-time filter ensures system to be finite-time bounded
during the short interval of switching, which is the main concern in this paper. By
introducing the concept of finite-time boundedness, the proposed filter is formulated
as a set of sub-filters ensuring the error dynamics H∞ finite-time bounded in the
short switching interval. Finally, a numerical example is provided to illustrate the
effectiveness of this approach.
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1 Introduction

Switched systems are typical sub-class of hybrid dynamical systems. A switched
control system is composed of a family of subsystems described by differential or
difference equations and a switching rule orchestrating the switching between the
subsystems. This class of systems has attracted much attention in control theory and
practice during recent decades. Switched systems can be efficiently used to model
many practical systems which are inherently multi-model in the sense that several
dynamical systems are required to describe their behavior. Many physical processes
inherently exhibit switched and hybrid nature [7, 18, 30], and switched systems
arise in many engineering applications, such as in motor engine control [2], con-
strained robotics [3], and networked control systems [42], etc. Furthermore, more
and more engineering applications resort to switching strategy to improve control
performance [5, 16, 27, 29]. Generally, the stability and stabilization problems are
the main concern in the field of switched systems. Lyapunov function techniques
have been proved to be effective to deal with stability and stabilization problems
for switched systems [4, 6, 26, 41]. Dwell time and average dwell time approaches
were employed to study the stability and stabilization of time-dependent switched
systems [13, 25, 39]. For more details of the recent results on the basic problems in
stability and stabilization for switched systems, the reader is referred to [20], and the
references cited therein.

On the other hand, the issue of state filtering or estimation has been investigated
intensively for many decades in continuous and discrete domain. When a priori infor-
mation on the external noise is not precisely known, the celebrated Kalman filtering
scheme is no longer applicable. In this case, H∞ filter was introduced in [11]. Af-
ter it, a lot of results have been proposed in H∞ filtering problem [12, 28, 38, 40].
Many results are also available with specific applications such as for networked sys-
tems [8, 35], time-varying stochastic systems [9, 31, 34], and so on. More recently,
H∞ filtering for discrete-time switched systems with state delays by switched Lya-
punov function approach are addressed in [10]. H∞ filter design for switched descrip-
tor systems by solving LMIs in which filtering is envisaged both with proportional
and proportional integral observers is presented in [15]. Combining the single Lya-
punov function method with Finsler’s lemma and utilizing the parameter-dependent
idea, the robust filtering is investigated for uncertain switched discrete-time systems
by [14]. The H∞ filtering problem under asynchronous switching is investigated
in [36]. Based on average dwell time approach, the H∞ filtering problem is stud-
ied in [32].

It is worth mentioning that almost all the reported literature about filtering prob-
lem for switched systems only focuses on asymptotic filter design which is defined on
the infinite time interval. Only a few results concern the error dynamics performance
in a finite time interval, which is an interesting and important topic from theoretical
as well as practical point of view. For example, switched systems are often used to
model systems with abrupt structural variations resulting from occurrence of some
inner discrete events in the system such as failure and repair of machine in manufac-
turing systems. In practice such occurrence of inner discrete events is more likely to
appear in some short finite time interval, and for most of the remaining time the sys-
tem works in a fixed mode without any occurrence of switching which can be viewed
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Fig. 1 An illustrative diagram for switching which only occurs in some short interval

as the normal working interval. It is well known that switching between asymptot-
ically stable subsystems can lead to instability due to the obvious reason that the
overshoot caused by the transients of the subsystem may destroy the Lyapunov sta-
bility [17, 19]. The boundedness of state during a fixed interval, which almost relies
on the transient response, is supposed to be affected significantly by switching among
several subsystems. This fact will be proved by an example in this paper. As in prac-
tice the switching will not always occur for infinite times, the switching strategy is
often designed that switching most probably occurs in some short time intervals of
concern, and there exists no switching for remaining time interval. Hence we call it
short-time switching, as illustrated in Fig. 1.

Under this class of short-time switching, it is easy to see that the asymptotic stabil-
ity of overall control system will not be affected by the switching which only occurs
in some short time interval, and the asymptotic stability property is absolutely de-
termined by the stability property of each subsystem. Hence, for state filtering or
estimation problem for switched system under short-time switching, the asymptotic
filter designed independently for each subsystems can guarantee the asymptotic sta-
bility of error dynamics. But, to avoid the error state reaching the unacceptable large
values caused by switching during the short time interval, the boundedness of error
state needs to be considered when we design state filters. Thus, two classes of fil-
ters are involved in design procedure. The first one is the asymptotic filter for each
subsystem which is supposed to be active in the most of running time in which no
switching occurs, and the second one is the boundedness filter which can ensure the
error state bounded in a prescribed limit and will be active in the short-time switch-
ing interval. Although many results on asymptotic filtering or state estimation for
switched systems are available, the boundedness filter design guaranteeing the error
state boundedness for switched system has not been investigated fully. This is the
main motivation of our study.

In this paper we present a methodology of designing H∞ filter for short-time
switched systems under arbitrary switching, which ensures not only the asymptotic
stability of error dynamics but also the boundedness of error state. By classifying the
running time of a system into the short-time switching interval and the relatively long
interval, two classes of filters are proposed. In the relatively long intervals, the sub-
filters are designed according to some existing H∞ filtering results for non-switched
systems, which guarantee the asymptotic stability of switched system. Afterwards,
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H∞ finite-time filtering problem is considered, which is the main contribution of
our study. By introducing the concepts of finite-time boundedness and H∞ finite-
time boundedness, which concern the state boundedness in a specified interval [1],
the H∞ finite-time filtering problem formulating a set of sub-filters is proposed, en-
suring the error dynamics H∞ finite-time bounded in short-time switching intervals.
Altogether, the H∞ filters ensure both asymptotic stability and finite-time bounded-
ness properties of error dynamics. A numerical design example is given to illustrate
our result.

The remainder of this paper is organized as follows. In Sect. 2 the problem formu-
lation and some preliminaries are introduced. The finite-time boundedness analysis is
presented in Sect. 3. Based on the analysis results, the filtering for short-time switched
linear system is given in Sect. 4. In Sect. 5 a numerical design example is presented.
Conclusions are given in Sect. 6.

Notation The notation used in this paper is fairly standard. The superscript “T ”
stands for matrix transposition, R

n denotes the n-dimensional Euclidean space and
Z

+ represents the set of nonnegative integers, the notation ‖ ·‖ refers to the Euclidean
norm. In addition, in symmetric block matrices, we use ∗ as an ellipsis for the terms
that are introduced by symmetry and diag{· · · } stands for a block-diagonal matrix.
λmin(P ) and λmax(P ) stand for the smallest and the largest eigenvalue of matrix P .
The notation P > 0 (P ≥ 0) means that P is real symmetric and positive definite
(semi-positive definite).

2 Preliminaries and Problem Formulation

In this paper, a switched linear discrete-time system is described as follows:

x(k + 1) = Aσ(k)x(k) + Bσ(k)ω(k), (1a)

y(k) = Cσ(k)x(k) + Dσ(k)ω(k), (1b)

z(k) = Eσ(k)x(k), (1c)

where x(k) ∈ R
n is the discrete-time state vector, y(k) ∈ R

p is the measured output,
z(k) ∈ R

q is the output to be estimated, ω(k) ∈ R
r is the noise signal which satisfies

∞∑

k=0

ωT (k)ω(k) < d2, (2)

σ(k) : Z
+ → I := {1,2, . . . ,N} is a piecewise constant function of time, called

switching law or switching signal, taking value in a finite index set I := {1,2, . . . ,N},
where N > 0 is the number of subsystems; Ai,Bi,Ci,Di and Ei are time-invariant
matrices with appropriate dimensions.

In this paper, we consider the switching signal σ exhibiting short-time switching
property. For this class of switching signal, the time interval can be classified as Γ s

n

and Γ l
n . Γ s

n denotes the nth short-time switching interval, during which switching
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is supposed to occur. For this switching interval, the switching sequence can be de-
fined as Sn := {kn

0 , kn
1 , . . . , kn

m, . . . , kn
M}. Here kn

0 denotes the initial instant of Γ s
n , kn

m

denotes the mth switching instant in Γ s
n , and kn

M stands for the last instant in Γ s
n .

Explicitly, the length of interval Γ s
n can be figured out as Tn = kn

M − kn
0 . It is as-

sumed that the value of Tn is pre-specified in the filter design process. It should be
pointed out that it may be difficult to exactly determine Tn for each interval Γ s

n , but
without loss of generality, the maximal value of Tn, n = 1,2, . . . , can be estimated
before design process in a practical situation, and a filter can be easily designed by
choosing the maximal value into our following results. Γ l

n represents the nth (rela-
tively long) interval in which no switching occurs. By the classification of time inter-
val, the running time of system can be divided into amounts of short-time switching
intervals and relatively long time intervals. Hence we introduce the time interval se-
quence which is defined as S̄ := {Γ s

1 ,Γ l
1 ,Γ s

2 ,Γ l
2 . . . , Γ s

n ,Γ l
n, . . .} . It is assumed that⋃

n=1,2,...(Γ
s
n ∪ Γ l

n) = Z
+ and Γ s

n ∩ Γ l
m = ∅,∀n,m.

Here, we are interested in constructing a filter of the following form:

x̂(k + 1) = Âσ(k)x̂(k) + B̂σ (k)y(k), (3a)

ẑ(k) = Ĉσ (k)x̂(k) + D̂σ(k)y(k), (3b)

where x̂(k) ∈ R
n is the state vector of the filter, ẑ(k) ∈ R

q is the estimated output,
and Âi , B̂i , Ĉi , D̂i , i ∈ I , are matrices with appropriate dimensions to be determined.

Considering system (1a)–(1c) and (3a), (3b), we obtain the filtering error system
as:

ξ(k + 1) = Ãσ(k)ξ(k) + B̃σ (k)ω(k), (4a)

ze(k) = C̃σ (k)ξ(k) + D̃σ(k)ω(k), (4b)

where

ξ(k) =
[
x(k)

x̂(k)

]
, ze(k) = z(k) − ẑ(k),

Ãi =
[

Ai 0
B̂iCi Âi

]
, B̃i =

[
Bi

B̂iDi

]
,

C̃i = [
Ei − D̂iCi −Ĉi

]
, D̃i = −D̂iDi.

The filtering problem investigated here consists of obtaining an estimate ẑ of the
signal z via a causal filter (3a), (3b) with a guaranteed H∞ performance which is
described as follows:

Problem 1 Given a scalar γ > 0, construct a filter in the form of (3a), (3b) which
guarantees filtering error system (4a), (4b) to be asymptotically stable with ω(k) = 0
and under zero initial condition, and for every non-zero input ω(k) satisfying (2), it
holds that

∞∑

k=0

zT
e (k)ze(k) < γ 2

∞∑

k=0

ωT (k)ω(k). (5)



1932 Circuits Syst Signal Process (2012) 31:1927–1949

Under arbitrary switching, based on the search of single quadratic Lyapunov func-
tion of the form V (x(k)) = xT (k)Px(k), we can derive an H∞ filter (3a), (3b) solv-
ing Problem 1. This approach is similar to the way of constructing an H∞ filter with-
out switching behavior. However, it is explicit that such an approach often yields very
conservative results. A successfully improved H∞ filter design approach given in [6]
and [10] is the switched Lyapunov function of the form V (x(k)) = xT (k)Pix(k),
which concerns the case of arbitrary switching occurring along with the running time
of the system. However, for short-time switched system which only switches in some
short-time interval, the above Lyapunov function approach will be not suitable in
H∞ filter construction. Since it is assumed that the length of each relatively long
interval Γ l

n will be sufficiently large, it implies that the average dwell time of the
switched system will be large. By the familiar results based on average dwell time,
if the average dwell time is sufficiently large, the switched system is asymptotically
stable as long as each subsystem is asymptotically stable [13]. Therefore, a common
or switched Lyapunov function approach is more conservative since stability of each
subsystem is already sufficient to ensure the switched system’s stability, especially
for the particular case where the switching occurs for finite times.

However, in actual applications, the asymptotic stability is not sufficient for short-
time switched system since the fast switching behavior may cause the error states
reach very large values during the short-time switching interval Γ s

n , which is not
acceptable in filtering process in a practical situation. This problem is illustrated by
the following example.

Example 1 (Motivation example) A switched discrete-time linear system with two
subsystems is given as follows:

A1 =
[

0.1931 −0.2205
1.7838 0.1679

]
, B1 =

[
0.5960
0.1527

]
, CT

1 =
[−0.2111

1.1859

]
,

D1 = 0.6031, ET
1 =

[
0.7805
1.2305

]
;

A2 =
[

0.8080 −0.6700
1.3967 −0.9382

]
, B2 =

[−1.4497
−1.7358

]
, CT

2 =
[

0.1953
0.2407

]
,

D2 = 0.6001, ET
2 =

[−0.7333
0.2225

]
.

By traditional linear system theory, the following sub-filters can be easily obtained
without considering switching between two subsystems:

Â1 =
[

0.0120 0.3731
−0.4258 −0.0610

]
, B̂1 =

[
0.1107

−0.0346

]
,

ĈT
1 =

[−0.8937
0.1947

]
, D̂1 = −0.9158;
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Â2 =
[

0.2381 −0.6751
−0.2424 0.3490

]
, B̂2 =

[
1.0698

−0.1731

]
,

ĈT
2 =

[
0.4868

−0.5953

]
, D̂2 = −0.2168,

which guarantee the asymptotic stability of each error subsystem. A short-time
switching signal is proposed, assuming that the switching interval sequence has a
finite number of elements and is defined as S̄ := {Γ s

1 ,Γ l
1 }, where the short-time

switching interval is Γ s
1 := [0,40] and the switching signal is given as follows:

Switching signal: i(0) = 1 and i(k) =
{

1 when k is an even number
2 when k is an odd number

∀k ∈ {1,2, . . . ,40}.

Then the relatively long interval is Γ l
1 := [41,∞) in which the subsystem 1 works

for the remaining time. The initial state is assumed as x(0) = [1 1]T , x̂(0) = [0 0]T .
The simulation results are shown in Figs. 2 and 3.

Fig. 2 The value of error state
‖ξ(k)‖

Fig. 3 The value of error output
ze(k)
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From Figs. 2 and 3 we can see that the error state ξ(k) and the error output ze(k)

reach very large values in the short-time switching interval, which obviously could
not be acceptable in a practical situation. In Example 1 we observe that the asymp-
totic stability of error dynamics can be established if the subsystem 1 most of the
time works in Γ l

1 . However, another important system property we are concerned
with is the boundedness of the error state during the short-time interval Γ s

1 in which
the switching is likely to occur. So we conclude from the example that the switching
behavior can influence the boundedness of error state significantly. Secondly, we de-
duce that only the asymptotic stability of error dynamics is not sufficient for switched
system in filtering process, and the boundedness of error state needs full considera-
tion during the interval in which switching occurs. This example can be viewed as
a motivation example introducing the concerns about error state boundedness during
a short-time switching interval, which is not only theoretically interesting and chal-
lenging, but also very important in practical filtering for switched control systems.

To make our result more practical, the boundedness of the state and H∞ perfor-
mance in each finite interval Γ s

n should also be investigated, which is neglected by
most of the reported literature. By the above discussion, the filter designed in our
paper is considered to be composed by two parts: filter F1 is the H∞ finite-time filter
which works in short-time switching interval Γ s

n , and filter F2 is the H∞ asymptotic
filter which will be active for relatively long interval Γ l

n . The generic scheme of the
filtering for short-time switched system is illustrated in Fig. 4.

The H∞ asymptotic filter F2 can be directly derived from the published literature
on non-switched systems which guarantee the asymptotic stability and H∞ perfor-
mance for each subsystem for sufficient long interval Γ l

n . On the other hand, the H∞
finite-time filter will limit the error state attaining unacceptably high values and retain
the H∞ performance in a finite-time interval Γ s

n , which is the main contribution of
our paper.

At first, the notion of finite-time boundedness and H∞ finite-time boundedness
is introduced for the switched system (1a)–(1c). The so-called finite-time bounded-
ness concerns the boundedness of discrete state x(k) over finite discrete-time interval
[0,M],M ∈ Z

+, with respect to a given initial condition x0. This concept is expressed
by the following definition:

Fig. 4 Generic scheme of H∞ filter for short-time switched system
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Definition 1 ([1]) The switched system (1a)–(1c) with ω(k) satisfying (2) is said to
be finite-time bounded with respect to (δ, ε, d,R,M), where 0 ≤ δ < ε,R is a posi-
tive definite matrix and M ∈ Z

+, if xT (k)Rx(k) < ε2,∀k ∈ {1,2, . . . ,M}, whenever
xT

0 Rx0 < δ2.

When the H∞ performance is considered, the H∞ finite-time boundedness is
given as follows:

Definition 2 ([37]) The switched system (1a)–(1c) is said to be H∞ finite-time
bounded with respect to (δ, ε, d, γ,R,M), where 0 ≤ δ < ε,γ > 0,R is a positive
definite matrix and M ∈ Z

+, if the following conditions are satisfied:

(1) The switched system (1a)–(1c) is finite-time bounded (according to Definition 1);
(2) Under zero-initial condition, the output z(k) satisfies

M∑

k=0

zT (k)z(k) < γ 2
M∑

k=0

ωT (k)ω(k) (6)

for any exogenous disturbance ω(k) satisfying (2).

If we consider the error state boundedness during the nth short-time switching
interval Γ s

n := [kn
0 , kn

M ], with Tn = kn
M − kn

0 denoting the length of this interval, the
problem can be described as:

Problem 2 Given the switched system (1a)–(1c) and filter (3a), (3b), find matrices
Âi , B̂i , Ĉi , D̂i , i ∈ I , ensuring the H∞ finite-time boundedness of error dynamics
(4a), (4b) with respect to (δ, ε, d, γ,R, Tn) in Γ s

n .

Obviously, investigating the solution of Problem 2 together with the H∞ asymp-
totic filter F2 designed and activated in Γ l

n , the Problem 1 is solved for short-time
switched system. Hence, in this paper we mainly focus on solving Problem 2.

Before ending this section, we present a simple lemma, which will be used in the
proof of our main results.

Lemma 1 For a positive matrix P , there exists a matrix Ω such that P − (ΩT +
Ω) ≥ −ΩT P −1Ω is satisfied.

Proof Since matrix P is positive, there always exists a positive matrix P −1 such that
(P −Ω)T P −1(P −Ω) ≥ 0, which directly leads to P −(ΩT +Ω) ≥ −ΩT P −1Ω . �

3 H∞ Boundedness Analysis in Finite-Time Interval

In this section we first consider the H∞ finite-time boundedness analysis problem.
Before deriving the conditions for finite-time boundedness of the switched system
(1a)–(1c), some explicit facts are recalled. For a symmetric positive definite matrix
R ∈ R

n×n, it is easy to verify that R can be factorized according to R = (R1/2)T R1/2,
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where R1/2 ∈ R
n×n is a symmetric positive definite matrix. And for any positive

definite matrix R ∈ R
n×n, there always exists R−1 ∈ R

n×n which is positive definite.
Now we are ready to derive our first result as follows.

Theorem 1 Given γ > 0 and the switched system (1a)–(1c), if there exists a set of
positive matrices Pi and positive scalars λ1 > 0, λ2 > 0,μ ≥ 1 such that the follow-
ing conditions are satisfied, ∀(i, j) ∈ I × I ,

λ1R < Pi < λ2R, (7)
⎡

⎢⎢⎢⎣

−μPi 0 AT
i Pj CT

i

∗ − γ 2

μTn
I BT

i Pj DT
i

∗ ∗ −Pj 0
∗ ∗ ∗ −I

⎤

⎥⎥⎥⎦ < 0, (8)

μTnλ2α
2 + γ 2d2 − λ1β

2 < 0, (9)

then the switched system (1a)–(1c) is H∞ finite-time bounded in Γ s
n with respect to

(δ, ε, d, γ,R, Tn).

Proof It is easy to deduce from (8) that
[

AT
i PjAi − μPi AT

i PjBi

∗ BT
i PjBi − γ 2

μTn
I

]
< 0. (10)

Let Vi(k) = xT (k)Pix(k), i ∈ I , for each subsystem; then we let

V (k) =
∑

i∈I
θi(k)Vi(k) =

∑

i∈I
xT (k)θi(k)Pix(k) (11)

where θi(·) : Z
+ → {0,1} and

∑
i∈I θi(k) = 1, be the function indicating the acti-

vated subsystem. Then, the following results can be derived:

�V (k) = V (k + 1) − μV (k)

= [
xT (k) ωT (k)

]
[

AT
i PjAi − μPi AT

i PjBi

∗ BT
i PjBi

][
x(k)

ω(k)

]
.

In (8), the case i = j shows that the switched system (1a)–(1c) works in the ith
mode, and the case i 
= j implies that the switched system (1a)–(1c) is switching
from subsystem i to j at a switching instant k, k ∈ Γ s

n . Thus, from (10) we infer

V (k + 1) < μV (k) + γ 2

μTn
ωT (k)ω(k). (12)

From (11), we can write:

V (k) < μk−kn
0 V

(
kn

0

) + γ 2

μTn

k−1∑

l=kn
0

μk−l−1ωT (l)ω(l). (13)
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By the facts μ ≥ 1, k − kn
0 ≤ Tn and

∑∞
k=0 ωT (k)ω(k) < d2, we can obtain

V (k) < μTnV
(
kn

0

) + γ 2d2.

We know that for ∀i ∈ I and ∀k ∈ Γ s
n

V (k) = xT (k)R1/2QiR
1/2x(k) ≥ inf

i∈I

{
λmin(Qi)

}
xT (k)Rx(k) (14)

where Qi = R−1/2PiR
−1/2, i ∈ I .

On the other hand, for ∀i ∈ I we can write

μTnV
(
kn

0

) ≤ μTn sup
i∈I

{
λmax(Qi)

}
xT (0)Rx(0).

Using the fact that xT (0)Rx(0) ≤ δ2 we get

μTnV
(
kn

0

) ≤ μTn sup
i∈I

{
λmax(Qi)

}
δ2. (15)

Altogether, with (13), (14) and (15), the following inequality can be derived:

xT (k)Rx(k) <
μTn supi∈I {λmax(Qi)}δ2 + γ 2d2

infi∈I {λmin(Qi)} .

Then by condition (5) we have:

λ1R < Pi < λ2R ⇒ λ1I < R−1/2PiR
−1/2 < λ2I

⇒ λ1I < Qi < λ2I, ∀i ∈ I.

Since supi∈I {λmax(Qi)} ≤ λ2, infi∈I {λmin(Qi)} ≥ λ1, from condition (9) we ob-
tain the following relation:

xT (k)Rx(k) <
μTn supi∈I {λmax(Qi)}δ2 + μTnγ 2d2

infi∈I {λmin(Qi)} <
μTnλ2δ

2 + γ 2d2

λ1
< ε2.

Thus we can conclude that the switched system (1a)–(1c) is finite-time bounded in
Γ s

n with respect to (δ, ε, d,R, Tn).
Now, let us consider the relation

zT (k)z(k) − γ 2

μTn
ωT (k)ω(k) + �V (k)

= [
xT (k) ωT (k)

]
[

AT
i PjAi − μPi + CT

i Ci AT
i PjBi

∗ BT
i PjBi

][
x(k)

ω(k)

]
. (16)

From (8), we have
[

AT
i PjAi − μPi + CT

i Ci AT
i PjBi + CT

i Di

∗ BT
i PjBi + DT

i Di − γ 2

μTn
I

]
< 0. (17)
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From (16) and (17) we can derive

V (k + 1) < μV (k) − yT (k)y(k) + γ 2

μTn
ωT (k)ω(k).

The above inequality implies that

V (k) ≤ μkV
(
kn

0

) +
k−1∑

l=kn
0

μk−l−1
(

γ 2

μTn
ωT (l)ω(l) − yT (l)y(l)

)
.

Since the zero-initial condition, we can assume V (kn
0 ) = 0; thus we have

V (k) ≤
k−1∑

l=kn
0

μk−l−1
(

γ 2

μTn
ωT (l)ω(l) − yT (l)y(l)

)
.

As V (k) ≥ 0, we can write:

k−1∑

l=kn
0

μk−l−1
(

γ 2

μTn
ωT (l)ω(l) − yT (l)y(l)

)
> 0

⇒
k−1∑

l=kn
0

y(l)y(l) <
γ 2

μTn

k−1∑

l=kn
0

μk−l−1ωT (l)ω(l)

⇒
kn
M∑

l=kn
0

yT (l)y(l) < γ 2
kn
M∑

l=kn
0

ωT (l)ω(l).

Thus, the finite-time H∞ performance in Γ s
n is satisfied and the proof is completed. �

Remark 1 We note that the result in Theorem 1 depends on parameter μ which
deserves some comments. Let us consider the particular case of μ = 1. From the
switched Lyapunov function approach proposed in [6], we can easily derive that
the condition (8) is the exact sufficient condition guaranteeing the switched system
(1a)–(1c) to be asymptotically stable with H∞ performance γ under arbitrary switch-
ing. But in our results, the condition that μ = 1 is relaxed into μ ≥ 1 in finite-time
boundedness sense for short-time switched system. On the other hand, additional con-
straint for finite-time boundedness has to be satisfied, where conditions (7) and (9)
should be satisfied with respect to (δ, ε, d, γ,R, Tn). Here, we can also see that the
finite-time boundedness and asymptotic stability are the two independent concepts.
Only for the particular case of μ = 1, Theorem 1 ensures both asymptotic stability
and finite-time boundedness. Although there exist many results on Lyapunov asymp-
totic stability, finite-time boundedness also needs our full investigation, which has
been neglected by most of the previous work.
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Remark 2 From the practical point of view, we are often interested in the mini-
mal value of the state bound ε with the given performance. With a fixed μ, we let
λ1 = 1, λ2 = κ and conditions (7) and (9) in Theorem 1 become:

R < Pi < κR, (18)

ε2 > κμTnδ2 + γ 2d2. (19)

Together with (8), we can formulate the following optimization problem to obtain
minimal value of state bound ε in Γ s

n :

minκ

s.t. (8) and (18)
(20)

with the minimal value εmin = √
κμTnδ2 + γ 2d2. Furthermore, it should be pointed

out that this result depends on a fixed value of μ. In order to find a suitable μ, a one-
parameter search may be necessary. Nevertheless, this does not represent a hard com-
putational problem. More generally, the optimal value of the convex combination of
γ 2 and ε2, i.e., J (ρ) = ργ 2 + (1 − ρ)ε2, where 0 ≤ ρ ≤ 1, can be obtained by

minJ (ρ)

s.t. (8), (18) and (19)

with fixed μ.

Based on Theorem 1 and applying Lemma 1, we present the following theorem:

Theorem 2 Given γ > 0 and the switched system (1a)–(1c), if there exists a set of
positive matrices Pi , matrix Ω and positive scalars λ1 > 0, λ2 > 0,μ ≥ 1 such that
the following conditions are satisfied, ∀(i, j) ∈ I × I ,

λ1R < Pi < λ2R, (21)
⎡

⎢⎢⎢⎣

−μPi 0 AT
i Ω CT

i

∗ − γ 2

μTn
I BT

i Ω DT
i

∗ ∗ Pj − (ΩT + Ω) 0
∗ ∗ ∗ −I

⎤

⎥⎥⎥⎦ < 0, (22)

μTnλ2δ
2 + γ 2d2 − λ1ε

2 < 0, (23)

then the switched system (1a)–(1c) is H∞ finite-time bounded in Γ s
n with respect to

(δ, ε, d, γ,R, Tn).
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Proof From Lemma 1, condition (22) can be transformed into

⎡

⎢⎢⎢⎣

−μPi 0 AT
i Ω CT

i

∗ − γ 2

μTn
I BT

i Ω DT
i

∗ ∗ −ΩT P −1
j Ω 0

∗ ∗ ∗ −I

⎤

⎥⎥⎥⎦ < 0.

Pre-multiplying diag(I, I,Ω−T , I ) and post-multiplying diag(I, I,Ω−1, I ), we get

⎡

⎢⎢⎢⎣

−μPi 0 AT
i CT

i

∗ − γ 2

μTn
I BT

i DT
i

∗ ∗ −P −1
j 0

∗ ∗ ∗ −I

⎤

⎥⎥⎥⎦ < 0.

Then pre-multiplying diag(I, I,Pj , I ) and post-multiplying diag(I, I,Pj , I ), we de-
rive the following:

⎡

⎢⎢⎢⎣

−μPi 0 AT
i Pj CT

i

∗ − γ 2

μTn
I BT

i Pj DT
i

∗ ∗ −Pj 0
∗ ∗ ∗ −I

⎤

⎥⎥⎥⎦ < 0.

Thus, together with (21) and (23), the proof is completed by Theorem 1. �

Remark 3 To make the filtering design feasible, a new additional matrix Ω is intro-
duced so that the matrices Pj are not involved in any product with Ai and Bi .

4 H∞ Finite-Time Filtering for Switched Systems

In this section, Problem 2 is considered at first. Then, based on the solution of Prob-
lem 2, an H∞ filter design algorithm for short-time switched system solving Prob-
lem 1 is proposed. We will present sufficient conditions for existence of filter (3a),
(3b) ensuring the error system (4a), (4b) H∞ finite-time bounded, and the method-
ology of constructing the H∞ finite-time filter based on Theorem 2. Here, we will
mention that the value of switching signal function σ(k) is needed to be known at a
discrete time k so that the index of activated subsystem can be detected online. In this
context, a necessary assumption is given:

Assumption 1 It is assumed that the switching sequence Sn is not known a priori,
but the instantaneous value of σ(k) is available at a discrete time k.

Assumption 1 corresponds to practical implementations where the switched sys-
tem is supervised by a discrete-event system and the discrete state value of σ(k) is
available in real time. Now the filter design is proposed by the following theorem:
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Theorem 3 Given γ > 0 and the switched system (1a)–(1c) under Assumption 1,
if there exist sets of matrices Pi,1,Pi,2,Pi,3, matrices W,X,Y,Ψi,1,Ψi,2,Ψi,3,Ψi,4,
nonsingular matrix V , and positive scalars κ ≥ 1,μ ≥ 1 such that the following con-
ditions are satisfied, ∀(i, j) ∈ I × I ,

⎡

⎢⎢⎣

−Pi,1 −Pi,2
∗ −Pi,3
∗ ∗
∗ ∗

I 0
Y V

−
[
R1 R2
∗ R3

]−1

⎤

⎥⎥⎦ < 0, (24)

⎡

⎢⎢⎣

Pi,1 − 2I Pi,2 − YT I 0
∗ Pi,3 − V − V T 0 I

∗ ∗ −κR1 −κR2
∗ ∗ ∗ −κR3

⎤

⎥⎥⎦ < 0, (25)

⎡

⎢⎢⎢⎢⎢⎢⎣

−μPi,1 −μPi,2 0 AT
i X + CT

i Ψi,2 AT
i ET

i − CT
i Ψi,4

∗ −μPi,3 0 Ψi,1 YAT
i YET

i − Ψi,3

∗ ∗ − γ 2

μTn
I BT

i X + DT
i Ψi,2 BT

i −DT
i Ψi,4

∗ ∗ ∗ Pj,1 − XT − X Pj,2 − WT − I 0
∗ ∗ ∗ ∗ Pj,3 − YT − Y 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥⎦
< 0,

(26)

μTnκδ2 + γ 2d2 − ε2 < 0, (27)

then there exists a filter in the form (3a), (3b) with matrices

[
ÂT

i ĈT
i

B̂T
i D̂T

i

]
=

[
V −1 0

0 I

][
Ψi,1 − YAT

i X − YCT
i Ψi,2 Ψi,3

Ψi,2 Ψi,4

][
U−1 0

0 I

]

where U = V −1(W − YX), such that the error system is H∞ finite-time bounded in
Γ s

n with respect to (δ, ε, d, γ, R, Tn), where R = [ R1 R2
∗ R3

].

Proof At first, we prove that the matrix W −YX is nonsingular such that (W − YX)−1

exists. Let us suppose that (26) holds, then it can be derived that

[
XT + X WT + I

∗ YT + Y

]
>

[
Pj,1 Pj,2
∗ Pj,3

]
> 0 (28)

which indicates that X and Y are nonsingular. Then, pre-multiplying (28) with
[X−T − I ] and post-multiplying it with [X−1 − I ]T , we deduce:

[
X−T −I

][
XT + X WT + I

∗ YT + Y

][
X−1

−I

]

= −WX−1 − X−T WT + YT + Y = (YX − W)X−1 + X−T (YX − W)T > 0

which implies that W − YX is nonsingular. �



1942 Circuits Syst Signal Process (2012) 31:1927–1949

From (24) and Schur complement formula, we have

−
[

Pi,1 Pi,2
∗ Pi,3

]
+

[
I 0
Y V

][
R1 R2
R3 R4

][
I Y T

0 V T

]
< 0

⇒
[
R1 R2
R3 R4

]
<

[
I 0
Y V

]−1 [
Pi,1 Pi,2
∗ Pi,3

][
I 0
Y V

]−T

. (29)

From (25) and Schur complement formula, we can obtain the following inequality:

[
Pi,1 − 2I Pi,2 − YT

∗ Pi,3 − V − V T

]
+ 1

κ

[
R1 R2
∗ R3

]−1

< 0

⇒
[
Pi,1 Pi,2
∗ Pi,3

]
+ 1

κ

[
R1 R2
∗ R3

]−1

−
([

I 0
Y V

]
+

[
I Y T

0 V T

])
< 0.

By Lemma 1 it yields

[
Pi,1 Pi,2
∗ Pi,3

]
−

[
I 0
Y V

][
κR1 κR2
∗ κR3

][
I Y T

0 V T

]
< 0

⇒
[

I 0
Y V

]−1 [
Pi,1 Pi,2
∗ Pi,3

][
I 0
Y V

]−T

<

[
κR1 κR2
κR3 κR4

]
. (30)

By choosing

Λ =
[

I 0
Y V

]
, Pi = Λ−1

[
Pi,1 Pi,2
∗ Pi,3

]
Λ−T and R =

[
R1 R2
∗ R3

]
,

(29) and (30) can be rewritten as

R < Pi < κR. (31)

Then we let

Ω =
[

X (I − XYT )V −T

U −UYT V −T

]
where U = V −1(W − YX).

Hence the following results can be derived:

ΛÃT
i ΩΛT =

[
I 0
Y V

][
AT

i CT
i B̂T

i

0 ÂT
i

][
X (I − XYT )V −T

U −UYT V −T

][
I Y T

0 V T

]

=
[

AT
i X + CT

i Ψi,2 AT
i

YAT
i X + YCT

i Ψi,2 + Ψi,1 YAT
i

]
,

B̃T
i ΩΛT = [

BT
i DT

i B̂T
i

][
X (I − XYT )V −T

U −UYT V −T

][
I Y T

0 V T

]

= [
BT

i X + DT
i Ψi,2 BT

i

]
,
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ΛC̃T
i =

[
I 0
Y V

][
ET

i − CT
i D̂T

i

−ĈT
i

]
=

[
ET

i − CT
i Ψi,4

YET
i − YCT

i Ψi,4 − Ψi,3

]
,

ΛΩΛT =
[

I 0
Y V

][
X (I − XYT )V −T

U −UYT V −T

][
I Y T

0 V T

]
=

[
X I

W Y

]
,

where Ψi,1 = YAT
i X + YCT

i B̂T
i U + V ÂT

i U,Ψi,2 = B̂T
i U,Ψi,3 = V ĈT

i ,Ψi,4 = D̂T
i .

Furthermore, it can be easily derived that:

ΛPiΛ
T =

[
Pi,1 Pi,2
∗ Pi,3

]
,

Λ
(

Pj − (
ΩT + Ω

))
ΛT =

[
Pj,1 − XT − X Pj,2 − WT − I

∗ Pj,3 − YT − Y

]
.

Thus, from the results derived above, pre-multiplying (26) with diag(Λ−1, I,

Λ−1, I ) and post-multiplying it with diag(Λ−T , I,Λ−T , I ), we can easily obtain the
following relation:

⎡

⎢⎢⎢⎣

−μPi 0 ÃT
i Ω C̃T

i

∗ − γ 2

μTn
I B̃T

i Ω D̃T
i

∗ ∗ Pj − (ΩT + Ω) 0
∗ ∗ ∗ −I

⎤

⎥⎥⎥⎦ < 0. (32)

Together with (27) and (31) and based on Theorem 2 we can conclude that the
error system is H∞ finite-time bounded in Γ s

n with respect to (δ, ε, d, γ, R,M).

Remark 4 In a practical situation, the related parameter Tn may be difficult to ob-
tain. However, from Theorem 3 it is easy to see that we can choose T ∗ ≥ Tn,∀n =
1,2, . . . , to guarantee Theorem 3 to be satisfied. This implies that a maximal length
of short-time intervals can be employed in filter design. Apparently the value of T ∗
is easier and more practical to be estimated before design process than the determi-
nation of each Tn, n = 1,2, . . . .

Remark 5 In Theorem 3 we see that the conditions are not in LMI form. However,
once we fix parameter μ, these conditions can be turned into LMI-based feasibility
problem. Based on Theorem 3 with fixed μ, an optimized filter with the optimal
value of J (ρ) = ργ 2 + (1 − ρ)ε2, where 0 ≤ ρ ≤ 1, can be obtained by solving the
following optimization problem:

minJ (ρ)

s.t. (24), (25), (26) and (27)
(33)

with a fixed parameter μ. Furthermore, the optimal value of parameter μ can be found
by an unconstrained nonlinear optimization approach, which can be implemented on
some numerical optimization software tools such as the function fminsearch in
the optimization toolbox of MATLAB to ascertain a locally convergent solution.
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Fig. 5 The value of Jmin with
different μ

Based on optimization problem (33), a detailed design algorithm is given to solve
Problem 1 which includes two parts: H∞ finite-time filter F1 and H∞ asymptotic
filter F2.

H∞ filter design algorithm for short-time switched system:
Step 1 Initialize a value of μ = 1, set a variation value �μ > 0 and termination

value μ̄.
Step 2 Setting μ = μ + �μ, solve optimization problem (33) with fixed μ.
Step 3 When the optimization problem (33) is solvable for the first time, record

the value of μ as μmin. Then, if μ ≥ μmin + μ̄ , terminate the procedure. Otherwise,
record the parameters (μ,Jmin) pair-wise and return to Step 2.

Step 4 Select μ̃ with the smallest Jmin recorded in Step 3. Obtain the locally
optimized finite-time filter F1 matrices and ascertain the local optimal value of J ∗

min
near μ̃ by an unconstrained nonlinear optimization approach.

Step 5 Given the performance index γ obtained in Step 1–4, figure out H∞
asymptotic filter F2 matrices by traditional H∞ filter design approach.

Remark 6 By using the techniques similar to [14] and [41], the results in this pa-
per can be readily extended to the switched system with norm-bounded parameter
uncertainties or polytopic uncertainties.

5 Numerical Design Example

Example 2 A switched discrete-time linear system with two subsystems is given as
follows:

A1 =
[

0.1414 0.7881
0.4570 0.2811

]
, B1 =

[
1.3737
0.3078

]
, CT

1 =
[−1.6624

2.0426

]
,

D1 = −0.0258, ET
1 =

[−0.4891
1.6147

]
;
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A2 =
[

0.2248 0.0073
0.9089 0.5887

]
, B2 =

[
0.2435
0.4071

]
, CT

2 =
[−0.5352

2.1345

]
,

D2 = 0.6401, ET
2 =

[
0.1121
0.0189

]
.

We consider the short-time switching signal which assumes that the switch-
ing interval sequence has finite number elements and is defined as S̄ := {Γ s

1 ,Γ l
1 },

where the short-time switching interval is Γ s
1 := [0,10] and the long interval is

Γ l
1 := [11,∞). The initial state is assumed to be xT (0)x(0) < 2 and the distur-

bance ω(k) = 1/(k + 1). Thus, the parameters can be ascertained as δ = √
2, d = 2,

R = I, Tn = 10. Now the objective is to design a set of sub-filters ensuring the asymp-
totic stability of error dynamics and the value of J = γ 2 + ε2 should be minimized.
By H∞ filter design algorithm for short-time switched system, the design procedure
is given as follows:

Step 1 Initialize parameters μ = 1,�μ = 0.02, μ̄ = 0.6.
Step 2 Solving optimization problem (20), find the values Jmin with different μ

which is shown in Fig. 5.
It is shown that the minimal value of Jmin with μ̃ = 1.14.
Step 3 Ascertain the local optimal value of Jmin = 228.5382 with μ = 1.1352 near

μ̃ = 1.14 by an unconstrained nonlinear optimization approach. The corresponding
performance index and boundary are γ = 8.4413, ε = 12.5412. Finally we obtain the
optimal finite-time filter F1 in the short-time switching interval Γ s

1 as follows:

Â1 =
[

0.1993 0.4464
0.0213 0.0891

]
, B̂1 =

[
0.1930
0.0606

]
, ĈT

1 =
[

0.4300
0.6276

]
,

D̂1 = 0.7482;

Â2 =
[

0.6810 −0.2392
0.4925 0.2348

]
, B̂2 =

[−0.1211
0.1724

]
, ĈT

2 =
[

0.2026
−0.7872

]
,

D̂2 = 0.2704.

The simulation results in Γ s
1 are shown in the Fig. 6.

Explicitly, the finite-time boundedness with respect to bound ε = 12.5412 is en-
sured by Fig. 6.

Step 4 Design H∞ asymptotic filter F2 in Γ l
1 as

Â1 =
[

0.5975 0.4757
0.3605 0.1968

]
, B̂1 =

[−0.3097
−0.1003

]
, ĈT

1 =
[

0.9742
1.0492

]
,

D̂1 = 0.2315.

The system state x (denoted by solid line in Fig. 7), estimated state x̂ (denoted by
dotted line in Fig. 7) and error output ze are shown in Figs. 7 and 8.

Obviously, the asymptotic stability of error dynamics is guaranteed by Fig. 7.
Moreover, the performance is guaranteed since we have

∑∞
k=0 zT

e (k)ze(k) ≈
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Fig. 6 The value of
√

ξT (k)Rξ(k) in Γ s
1

Fig. 7 Error state response ξ(k)

∑100
k=0 zT

e (k)ze(k) = 13.4840 and γ 2 ∑∞
k=0 ωT (k)ω(k) ≈ 116.5084. Obviously,∑∞

k=0 zT
e (k)ze(k) < γ 2 ∑∞

k=0 ωT (k)ω(k).

In this example, two classes of filters are involved, the filter F1 which serves in
short-time switching interval and guarantees the error state bounded in the prescribed
boundary. As we observe, the finite-time filter F1 alone cannot ensure the asymptotic
stability of error dynamics because the optimal filter with minimal value of Jmin is
obtained with parameter μ = 1.1352 > 1. Hence the asymptotic filter F2 is designed
which will be activated during the relatively long interval to guarantee the asymptotic
stability of error system.

Here we add some further comments on the simulation results of this example.
At first, in the simulation results we see that the error state is bounded to the value
ε = 12.5412. Compared with Example 1, the advantage of our approach is obvious
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Fig. 8 Error output ze(k)

as the error state is successfully avoided to reach very large values caused by fre-
quent switching behavior. On the other hand, another point of advantage in contrast
to other observed design approach arises in this example. From Fig. 5 we see that
we cannot find feasible solution for μ = 1. This implies that the asymptotic filter
cannot be designed by the switched Lyapunov function approach. As mentioned in
Remark 1, our approach provides an alternative method to design filter ensuring both
boundedness and asymptotic stability of error system. Thus, we can conclude that our
approach not only solves the boundedness filtering problem for short-time switched
system, but also presents a new way to ensure the convergence of error state when
other methods such as common or switched Lyapunov function methodologies fail.

6 Conclusions

In this paper, the H∞ filtering problem for so-called short-time switched systems is
addressed. Since the switching frequently occurs in some certain short time intervals
and for the rest of the time no switching occurs, the designed filter is composed of
two parts: asymptotic filter and finite-time boundedness filter. The finite-time bound-
edness filter is the main concern of our investigation in this paper. By introducing the
concept of finite-time boundedness and based upon the analysis results of finite-time
boundedness of switched system, an H∞ finite-time filter is proposed to ensures the
error state to be bounded in a certain limit and retain the H∞ performance in the spe-
cific finite interval. At last, a numerical design example is given to illustrate the design
procedure. Due to the common existence of short-time switching in many practical
systems, our theoretical results have a potential to be extended into cases such as
the time-varying and time-delay cases based on the recent results in [21–24, 33], and
are meant to be widely used in practical control synthesis such as neural network
systems, which will be further considered in future work.

Acknowledgements This work is supported by the National Natural Science Foundation of China (Nos.
51177137, 61134001). The authors would like to thank the associate editor and the reviewers for their
helpful comments and suggestions which have helped improve the presentation of the paper.



1948 Circuits Syst Signal Process (2012) 31:1927–1949

References

1. F. Amato, M. Ariola, Finite-time control of discrete-time linear systems. IEEE Trans. Autom. Control
50(5), 724–729 (2005)

2. A. Balluchi, M.D. Benedetto, C. Pinello, C. Rossi, A. Sangiovanni-Vincentelli, Cut-off in engine
control: a hybrid system approach, in Proceedings of the 36th IEEE Conference on Decision and
Control (1997), pp. 4720–4725

3. B.E. Bishop, M.W. Spong, Control of redundant manipulators using logic-based switching, in Pro-
ceedings of the 36th IEEE Conference on Decision and Control (1998), pp. 16–18

4. M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems.
IEEE Trans. Autom. Control 43(4), 475–482 (1998)

5. B. Castillo–Toledo, S. Di Gennaro, A.G. Loukianov, J. Rivera, Hybrid control of induction motors
via sampled closed representations. IEEE Trans. Ind. Electron. 55(10), 758–3771 (2008)

6. J. Daafouz, R. Riedinger, C. Iung, Stability analysis and control synthesis for switched systems:
a switched Lyapunov function approach. IEEE Trans. Autom. Control 47(11), 1883–1887 (2002)

7. R.A. Decarlo, M.S. Branicky, S. Pettersson, B. Lennartson, Perspectives and results on the stability
and stabilization of hybrid systems. Proc. IEEE 88(7), 1069–1082 (2000)

8. H. Dong, Z. Wang, H. Gao, Robust H∞ filtering for a class of nonlinear networked systems with
multiple stochastic communication delays and packet dropouts. IEEE Trans. Signal Process. 58(4),
1957–1966 (2010)

9. H. Dong, Z. Wang, D.W.C. Ho, H. Gao, Variance-constrained H∞ filtering for nonlinear time-varying
stochastic systems with multiple missing measurements: the finite-horizon case. IEEE Trans. Signal
Process. 58(5), 2534–2543 (2010)

10. D. Du, B. Jiang, P. Shi, S. Zhou, H∞ filtering of discrete-time switched systems with state delays via
switched Lyapunov function approach. IEEE Trans. Autom. Control 52(8), 1520–1524 (2007)

11. A. Elsayed, M. Grimble, A new approach to H∞ design for optimal digital linear filters. IMA J.
Math. Control Inf. 6(3), 233–251 (1989)

12. H. Gao, T. Chen, H∞ estimation for uncertain systems with limited communication capacity. IEEE
Trans. Autom. Control 52(11), 2070–2084 (2007)

13. J.P. Hespanha, D. Liberzon, A.S. Morse, Stability of switched systems with average dwell time, in
Proceedings of 38th Conference on Decision and Control (1999), pp. 2655–2660

14. K. Hu, J. Yuan, Improved robust H∞ filtering for uncertain discrete-time switched systems. IET
Control Theory Appl. 3(3), 315–324 (2009)

15. D. Koenig, B. Marx, H∞ filtering and state feedback control for discrete-time switched descriptor
systems. IET Control Theory Appl. 3(6) 661–670 (2009)

16. I.V. Kolmanovsky, J. Sun, A multi-mode switching-based command tracking in network controlled
systems with pointwise-in-time constraints and disturbance inputs, in Proceedings of 6th WCICA
(2006), pp. 99–104

17. D.J. Leith, R.N. Shorten, W.E. Leithead, O. Mason, P. Curran, Issues in the design of switched linear
control systems: a benchmark study. Int. J. Adapt. Control Signal Process. 17(2), 103–118 (2003)

18. D. Liberzon, Switching in Systems and Control (Birkhäuser, Boston, 2003)
19. D. Liberzon, A.S. Morse, Basic problems in stability and design of switched systems. IEEE Control

Syst. Mag. 19(5), 59–70 (1999)
20. H. Lin, P.J. Antsaklis, Stability and stabilizability of switched linear systems: a survey of recent re-

sults. IEEE Trans. Autom. Control 54(2), 308–322 (2009)
21. M.S. Mahmoud, Switched Time-Delay Systems (Springer, Boston, 2010)
22. M.S. Mahmoud, Switched delay-dependent control policy for water-quality systems. IET Control

Theory Appl. 3(12), 1599–1610 (2009)
23. M.S. Mahmoud, Delay-dependent dissipativity analysis and synthesis of switched delay systems. Int.

J. Robust Nonlinear Control 21(1), 1–20 (2011)
24. M.S. Mahmoud, Y. Xia, Switched state feedback for uncertain continuous-time systems with interval-

delays. Int. J. Robust Nonlinear Control 21(9), 1045–1065 (2011)
25. A.S. Morse, Supervisory control of families of linear set–point controllers, part 1: exact matching.

IEEE Trans. Autom. Control 41(10), 413–1431 (1996)
26. K.S. Narendra, J.A. Balakrishnan, Common Lyapunov function for stable LTI systems with commut-

ing A-matrices. IEEE Trans. Autom. Control 39(12), 2469–2471 (1994)
27. K.S. Narendra, O.A. Driollet, M. Feiler, K. George, Adaptive control using multiple models, switch-

ing and tuning. Int. J. Adapt. Control Signal Process. 17(2), 87–102 (2003)



Circuits Syst Signal Process (2012) 31:1927–1949 1949

28. P. Shi, M. Mahmoud, S. Nguang, Robust filtering for jumping systems with mode-dependent delays.
Signal Process. 86(1), 140–152 (2006)

29. C. Sreekumar, V. Agarwal, A hybrid control algorithm for voltage regulation in DC–DC boost con-
verter. IEEE Trans. Ind. Electron. 55(6), 2530–2538 (2008)

30. Z. Sun, S.S. Ge, Switched Linear Systems–Control and Design (Springer, London, 2005)
31. L. Wu, D.W.C. Ho, Reduced-order l2–l∞ filtering of switched nonlinear stochastic systems. IET

Control Theory Appl. 3(5), 493–508 (2009)
32. L. Wu, J. Lam, Weighted H∞ filtering of switched systems with time-varying delay: average dwell

time approach. Circuits Syst. Signal Process. 28(6), 1017–1036 (2009)
33. L. Wu, J. Lam, Sliding mode control of switched hybrid systems with time-varying delay. Int. J.

Adapt. Control Signal Process. 22(10), 909–931 (2008)
34. L. Wu, P. Shi, H. Gao, C. Wang, H∞ filtering for 2D Markovian jump systems. Automatica 44(7),

1849–1858 (2008)
35. L. Wu, Z. Feng, W. Zheng, Exponential stability analysis for delayed neural network with switching

parameters: average dwell time approach, IEEE Transactions on. Neural Netw. 21(9), 1396–1407
(2010)

36. W. Xiang, J. Xiao, H∞ filtering for switched nonlinear systems under asynchronous switching. Int.
J. Syst. Sci. 42(5), 751–765 (2011)

37. W. Xiang, J. Xiao, H∞ finite-time control for switched nonlinear discrete-time systems with norm-
bounded disturbance. J. Franklin Inst. 348(2), 331–352 (2011)

38. S. Xu, J. Lam, Y. Zou, H∞ filtering for singular systems. IEEE Trans. Autom. Control 48(12), 2217–
2222 (2003)

39. G.S. Zhai, B. Hu, K. Yasuda, A.N. Michel, Stability analysis of switched systems with stable and
unstable subsystems: an average dwell time approach, in Proceedings of the American Control Con-
ference (2000), pp. 200–204

40. B. Zhang, S. Xu, Robust H∞ filtering for uncertain discrete piecewise time-delay systems. Int. J.
Control 80(4), 636–645 (2007)

41. L. Zhang, C. Wang, L. Chen, Stability and stabilization of a class of multimode linear discrete-time
systems with polytopic uncertainties. IEEE Trans. Ind. Electron. 56(9), 3684–3692 (2009)

42. W. Zhang, M.S. Branicky, S.M. Phillips, Stability of networked control systems. IEEE Control Syst.
Mag. 21(1), 84–99 (2001)


	Hinfty Filtering for Short-Time Switched Discrete-Time Linear Systems
	Abstract
	Introduction
	Notation

	Preliminaries and Problem Formulation
	Hinfty Boundedness Analysis in Finite-Time Interval
	Hinfty Finite-Time Filtering for Switched Systems
	Numerical Design Example
	Conclusions
	Acknowledgements
	References


