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Abstract This paper deals with the stability of nonlinear continuous-time positive
systems with delays represented by the Takagi–Sugeno (T-S) fuzzy model. A sim-
pler sufficient condition of stability based on linear copositive Lyapunov functional
(LCLF) is derived which is not relevant to the magnitude of delays. Based on the re-
sult of stability, the problem of controller design via the so-called parallel distributed
compensation (PDC) scheme is solved. The control is under a positivity constraint,
which means that the resulting closed-loop systems are not only stable, but also pos-
itive. Constrained positive control is also considered, further requiring that the tra-
jectory of the closed-loop system is bounded by a prescribed boundary if the initial
condition is bounded by the same boundary. The stability results are formulated as
linear programs (LPs) and linear matrix inequalities (LMIs), and the control laws
can be obtained by solving a set of bilinear matrix inequalities (BMIs). A numerical
example and a real plant are studied to demonstrate the efficiency of the proposed
method.
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Nomenclature
A � 0 All entries of matrix A are nonnegative
A � 0 All entries of matrix A are nonpositive
A � 0 All entries of matrix A are positive
A ≺ 0 All entries of matrix A are negative
AT The transpose of matrix A

Rn+ n-dimensional positive vector space
Rn n-dimensional nonnegative vector space
Rn n-dimensional real vector space
Rn×m The set of all real matrices of (n × m)-dimension
N The set of the natural numbers
M the set of Metaler matrices whose off diagonal entries are nonnegative

1 Introduction

Many physical systems in the real world involve variables that are nonnegative, e.g.,
population levels, absolute temperature and concentration of substances. Such sys-
tems are referred to as positive systems [1, 4, 6], which means that their states and
output are nonnegative whenever the initial conditions and input are nonnegative, and
have numerous applications in areas such as economics, biology, sociology, and com-
munications. The states of positive systems are confined within a cone located in the
positive orthant rather than in the whole space. This feature makes analysis and syn-
thesis of positive systems a challenging and an interesting job [1, 12, 18]. However,
due to the difficulty of nonlinearity [13], some key results in linear positive systems
are not applied to nonlinear positive systems. For example, the key Lemma 4 which is
widely used to obtain the desirable results in [15] cannot apply to nonlinear system.
Thus, there is rare research on nonlinear positive systems [14, 15].

The T-S fuzzy model suggests an efficient way to represent complex nonlinear
systems by fuzzy sets and fuzzy reasoning. In the past two decades, fuzzy systems of
the Takagi–Sugeno (T-S) model [7, 20] have attracted great interest from the control
community, then the issue of stability and controller synthesis of fuzzy systems has
been studied extensively [5, 21]. Recently, some authors in [2, 3] use the discrete-
time T-S fuzzy model to investigate the stability and stabilization of discrete-time
nonlinear positive systems based on quadratic Lyapunov functions.

It is well known that time delays appear in many practical control systems. Since
time delays usually result in unsatisfactory performance and are frequently a source
of instability, their presence must be taken into account in practical analysis and syn-
thesis of systems. However, to the best of our knowledge, up to now, there has been no
literature studying the problems of the stability and the constrained control of fuzzy
positive systems with delays. Since fuzzy positive systems with delays are a special
class of delayed fuzzy systems, the relevant methods applicable to delayed fuzzy sys-
tems are also suitable for fuzzy positive systems with delays. These methods, such
as the popular quadratic Lyapunov–Krasovskii functional (QLKF) used in [10], how-
ever, generally fail to capture the nature of a positive system. When the stability of
positive systems is considered, it is natural to adopt the LCLF. The approach of LCLF
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relies on the following fact: a positive system is stable if there is a function V (x) that
is positive definite and its derivative (for continuous-time systems) or difference (for
discrete-time systems) taken along the system’s trajectories is negative definite when
x is in the positive orthant. This approach captures the nature of positivity and has
been shown to be a powerful tool for treating positive systems. As pointed out in
[11, 17], using the LCLF, we can get the sufficient and necessary stability conditions
both for continuous-time and discrete-time positive linear systems with delays and
their stability is not affected by the magnitude of delays. This motivates us to utilize
the LCLF in stability analysis and constrained controller design, which will make the
results less conservative and the computation less demanding.

To get more elegant results as positive linear systems, we will not adopt the pop-
ular quadratic Lyapunov–Krasovskii functional (QLKF) as widely used in [10] to
analyze the fuzzy positive system with delays, while a new LCLF is constructed.
In terms of constrained control, the controller should satisfy two conditions: (1) the
closed-loop systems are positive and asymptotically stable, (2) the closed-loop sys-
tems are bounded by a prescribed boundary. In fact, constrained controller design for
general systems has been extensively studied in the past years. And recently, [19]
discussed positivity control (i.e., controller design under the positivity constraint) of
positive linear systems without delays. Reference [16] investigated positivity control
of discrete-time positive linear systems with delays.

The main contribution of this paper lies in the following aspects. First, a less con-
servative sufficient condition of stability is obtained based on LCLF compared with
the result based on QLKF. Second, a sufficient condition is provided, which deter-
mines the existence of a controller that makes the closed-loop systems to be stable,
positive and their states are bounded by a prescribed boundary, if the initial condition
is bounded by the same boundary. Moreover, the stability checking results can be ob-
tained by solving a set of linear matrix inequalities (LMIs) or linear programs (LPs),
and the control laws can be cast in the form of solutions of a set of BMIs [8] that are
numerically tractable with commercially available software.

The rest of this paper is organized as follows. System descriptions and preliminar-
ies are presented in Sect. 2. Stability analysis of fuzzy positive systems with delays
is presented in Sect. 3. Section 4 is devoted to constrained control of positive de-
layed fuzzy systems. In Sect. 5, a numerical example and a real plant are studied to
demonstrate effectiveness of our results. Finally, conclusions are given in Sect. 6.

The following notation of matrices and vectors will be used throughout this pa-
per: P > 0(P < 0) stands for a square positive define matrix (square negative define
matrix). I is the identity matrix with appropriate dimensions. p = {1,2, . . . , p} with
p ∈ N, p

0
= {0} ∪ p. For two vectors x, y ∈ Rn, x � y if xi ≤ yi , i = 1,2, . . . , n,

and x ≺ y if xi < yi , i = 1,2, . . . , n. The definition is similarly applied to matrices:
A � B or A � B where A,B ∈ Rn×m.

2 System Descriptions and Preliminaries

Takagi and Sugeno have proposed a fuzzy model to represent nonlinear systems.
This fuzzy dynamic model is described by fuzzy IF-THEN rules which represent
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local linear input-output relations of a nonlinear system. It is proved that the Takagi–
Sugeno fuzzy model is a universal approximator.

Now consider the following fuzzy model system described by its ith rule as fol-
lows:

Plant rule i, i ∈ r

IF z1(t) is Mi1 and . . . and ze(t) is Mie THEN,

ẋ(t) = Ai0x(t) +
d∑

l=1

Ailx(t − τl) + Biu(t), t ≥ 0,

x(t) = ϕ(t), t ∈ [−τd,0],
(1)

where z1(t), z2(t), . . . , ze(t) are the premise variables, and Mip(p = 1,2, . . . , e) are
fuzzy sets, x(t) ∈ Rn is the state vector of the fuzzy system, x(t − τl) ∈ Rn is the
delay state vector with delays: 0 < τ1 < · · · < τd,u(t) ∈ Rq is the control signal.
Ail ∈ Rn×n,Bi ∈ Rn×q are coefficient matrices. ϕ : [−τd,0] → Rn is the vector-
valued initial function, r is the number of IF-THEN rules.

Through the use of “fuzzy blending” the final fuzzy system is inferred as follows:

ẋ(t) =
∑r

i=1 ωi(t)[Ai0x(t) + ∑d
l=1 Ailx(t − τl) + Biu(t)]∑r

i=1 ωi(t)

=
r∑

i=1

hi(t)

[
Ai0x(t) +

d∑

l=1

Ailx(t − τl) + Biu(t)

]
, t ≥ 0,

x(t) = ϕ(t), t ∈ [−τd,0],

(2)

with ωi(t) = ∏e
p=1 Mip(zp(t)), hi(t) = ωi(t)/

∑r
i=1 ωi(t) and Mip(zp(t)) is the

grade of the membership function of zp(t) in Mip . It is assumed that ωi(t) ≥ 0 for all
t ≥ 0, i = 1,2, . . . , r . Therefore the normalized membership function hi(t) satisfies
hi(t) ≥ 0,

∑r
i=1 hi(t) = 1, t ≥ 0.

For convenience, system (2) with u(t) ≡ 0 is introduced.

ẋ(t) =
r∑

i=1

hi(t)

[
Ai0x(t) +

d∑

l=1

Ailx(t − τl)

]
, t ≥ 0,

x(t) = ϕ(t), t ∈ [−τd,0].
(3)

The following definitions and lemma will be used throughout the paper.

Definition 1 System (3) is said to be positive if for any ϕ(·) � 0, the corresponding
trajectory x(t) � 0 holds for all t ≥ 0.

Definition 2 System (2) is said to be controlled positive relative to any ϕ(·) � 0, if
there exists a control strategy such that the corresponding trajectory remains in the
positive orthant for t ≥ 0.

Lemma 1 System (3) is positive if Ai0 ∈ M,Ail � 0 for any ϕ(·) � 0, i ∈ r , l ∈ d .
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Proof Let x(0) = 0, positivity implies ẋ(0) = ∑r
i=1 hi(0)

∑d
l=1 Ailϕ(·) ≥ 0 for

ϕ(·) ≥ 0. Now, suppose that there exists x(0) = x ∈ Rn such that xi = 0 and ẋi (0) < 0
with xi is the ith element of vector x, ẋi (0) is the ith element of vector ẋ(0). Then
it follows from the continuity of ẋ(t) that there exists a sufficiently small h > 0 such
that ẋ(t) < 0 for t ∈ [0, h). Thus xi(t) < 0 for t ∈ [0, h), which contradicts the posi-
tivity assumption.

To end this section, we define matrix Al for system (2) and (3) which is useful for
proving the main results in the subsequent sections, whose (m,n) element satisfying:

al,mn = max
i∈r

{ail,mn}, l ∈ d (4)

where ail,mn is the (m, n) element of matrix Ail and al,mn is the (m, n) element of
matrix Al . �

3 Stability Analysis

In this section, we consider the stability analysis for the fuzzy positive systems with
delays described in the previous section. The stability condition for fuzzy positive
system (3) can be summarized in the following theorem.

Theorem 1 (Stability Analysis) The system (3) is positive and asymptotically stable,
if it satisfies the condition in Lemma 1, and the equivalent statements (i) and (ii)
hold.

(i) (LP problem) Suppose there exists a vector λ ∈ Rn+ such that

λT

(
Ai0 +

d∑

l=1

Al

)
≺ 0, i ∈ r. (5)

(ii) (LMI problem) Suppose that there exist r + 1 matrices satisfying

P = diag{λ1, . . . , λn} > 0,

Ki = diag{k1, k2, . . . , kn} < 0 i ∈ r,
(6)

where kj = λTai,j with ai,j is the j th column vector of matrix Ai0 + ∑d
l=1 Al

and λT = [λ1, . . . , λn].

Proof Consider the following linear copositive Lyapunov function V (t) for the sys-
tem (3):

V (t) = λTx(t) +
d∑

l=1

(∫ t

t−τl

λTAlx(s) ds

)
. (7)

If the condition in Lemma 1 is satisfied, the system (3) is positive system, which
implies x(t) � 0. Vector λ ∈ Rn+ exists, thus V (t) is positive define. From (4), we
know that Al � Ail, i ∈ r, l ∈ d . Then one has
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V̇ (t) = λTẋ(t) + λT
d∑

l=1

Alx(t) − λT
d∑

l=1

Alx(t − τl)

= λT
r∑

i=1

hi(t)Ai0x(t) + λT
r∑

i=1

d∑

l=1

hi(t)Ailx(t − τl) + λT
r∑

i=1

d∑

l=1

hi(t)Alx(t)

− λT
r∑

i=1

d∑

l=1

hi(t)Alx(t − τl)

≤ λT
r∑

i=1

hi(t)Ai0x(t) + λT
r∑

i=1

d∑

l=1

hi(t)Alx(t)

=
r∑

i=1

hi(t)

[
λT

(
Ai0 +

d∑

l=1

Al

)]
x(t). (8)

From (8) we know that if (5) holds for all i ∈ r , then V̇ (t) < 0 for all t ≥ 0 and
thus the open loop fuzzy positive system (3) is asymptotically stable.

Next, we prove that (ii) ⇔ (i); this is straightforward. Suppose that (i) holds.
Thus, there exists vector λ = [λ1, . . . , λn]T ∈ Rn+, such that (6) holds. Let P =
diag{λ1, λ2, . . . , λn} and one immediately sees that (ii) holds if and only if (i) holds.
Then the proof is completed. �

Remark 3.1 Compared with the popular QLKF method used in the analysis and syn-
thesis of delayed systems, LCLF captures the nature of positive systems. By the novel
LCLF adopted above we get a simpler sufficient stability condition for the delayed
fuzzy positive system which is not relevant to the magnitude of delays, and the result
is less conservative.

Remark 3.2 Condition (i) in Theorem 1 is a linear programming problem and thus
can be numerically solved by the linear programming optimal toolbox with slight
computational effort. Meanwhile, (ii) is a linear matrix inequalities problem, which
can be solved by the linear matrix inequalities toolbox.

4 Constrained Fuzzy State-Feedback Controller Design

In this section, the design of a constrained state-feedback controller for this class of T-
S fuzzy system (2) is presented. Our goal is to design controller to ensure asymptotic
stability, positivity of the system (2) and their state x(t) can be bounded by prescribed
boundary. Recall that the PDC technique was presented by [7]; the control law can
be given as follows:

Plant rule i, i ∈ r

IF z1(t) is Mi1 and . . . and ze(t) is Mie THEN,

u(t) = Fi0x(t), t ≥ 0. (9)
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Then the closed-loop system (2) is rewritten as follows:

ẋ(t) =
r∑

i=1

r∑

m=1

hi(t)hm(t)

[
(Ai0 + BiFm0)x(t) +

d∑

l=1

Ailx(t − τl)

]
,

x(t) = ϕ(t), t ∈ [−τd,0].
(10)

This section studies the constrained state-feedback controller design of continuous-
time fuzzy positive system with delays, beginning with following lemmas.

Lemma 2 System (10) is controlled positive for any ϕ(·) � 0 if

Ai0 + BiFm0 ∈ M, ∀(i,m) ∈ r × r,

Ail � 0, ∀(i, l) ∈ r × d.
(11)

Proof The proof is similar to that of Lemma 1; here it is omitted �

Lemma 3 For the system (10), if it satisfies the condition in Lemma 2 and there exists
vector λ = [λ1, λ2, . . . , λn]T ∈ Rn+ satisfying

λT

[
Ai0 + BiFm0 +

d∑

l=1

Al

]
≺ 0, ∀(i,m) ∈ r × r, (12)

it is asymptotically stable.

Proof We adopt the same LCLF (7) used in the proof of Theorem 1. If system (10)
satisfies the condition in Lemma 2, we know it is controlled positive. And λ ∈ Rn+,
thus V (t) is positive define. One has

V̇ (t) = λTẋ(t) + λT
d∑

l=1

Alx(t) − λT
d∑

l=1

Alx(t − τl)

= λT
r∑

i=1

r∑

m=1

hi(t)hm(t)

[
(Ai0 + BiFm0)x(t) +

d∑

l=1

Ailx(t − τl) +
d∑

l=1

Alx(t)

−
d∑

l=1

Alx(t − τl)

]

≤
r∑

i=1

r∑

m=1

hi(t)hm(t)

[
λT

(
Ai0 + BiFm0 +

d∑

l=1

Al

)]
x(t). (13)

From (13), we know that if (12) holds for all (i,m) ∈ r × r , then V̇ (t) < 0 for all
t ≥ 0, and thus the closed-loop positive system (10) is asymptotically stable. �

Lemma 4 For the system (10) satisfying the condition in Lemma 2 and given vector
μ = [μ1,μ2, . . . ,μn]T ∈ Rn+ satisfying(

Ai0 + BiFm0 +
d∑

l=1

Ail

)
μ ≺ 0, ∀(i,m) ∈ r × r, (14)

then 0 � ϕ(·) � μ implies 0 � x(t) � μ, t ≥ 0.
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Proof From Lemma 2, we know system (10) is controlled positive. Set xk(t) as the
kth state variable of state vector x(t) for system (10) and μk as the kth element of
vector μ, k ∈ n. Suppose there exists ts > 0 such that 0 � x(t) � μ, t ∈ [−τd, ts] and
xk(ts) = μk . We get 0 � x(ts − τl) � μ, l ∈ d . From (14), one has ẋk(ts) < 0, thus we
have 0 � x(t) � μ, for all t ≥ 0, the proof is completed. �

The constrained controller design for system (10) can be summarized as the fol-
lowing theorem.

Theorem 2 Consider a closed-loop system (10) and given μ ∈ Rn+, if there exist
r × d + 1 matrices:

Pil := diag{αil,1·1, . . . , αil,s·t , . . . , αil,n·n} ≥ 0, ∀(i, l) ∈ r × d, (15)

Q : = diag{λ1, λ2, . . . , λn} > 0 (16)

and state-feedback law (9) such that the LMIs (17), (19), and BMIs (18) shown in the
following are satisfied:

Rim := diag{−βim,1·2, . . . ,−βim,s·t , . . . ,−βim,n·(n−1)} ≤ 0, s �= t,∀(i,m) ∈ r × r,

(17)

Sim := {θim,1, θim,2, . . . , θim,n} < 0, ∀(i,m) ∈ r × r, (18)

Tim := diag{ρim,1, ρim,2, . . . , ρim,n} < 0, ∀(i,m) ∈ r × r. (19)

The system (10) is globally asymptotically stable and 0 � x(t) ≺ μ when 0 � ϕ(·) �
μ for all t ≥ 0, where θim,k = λTaim,k, ρim,k = bT

im,kμ, λ = [λ1, λ2, . . . , λn]T with
βim,s·t is (s, t) element of matrix Ai0 +BiFm0,∀(i,m) ∈ r × r,αil,s·t is (s, t) element
of matrix Ail,∀(i, l) ∈ r × d, aim,k is kth column vector of matrix Ai0 + BiFm0 +∑d

l=1 Al , and bT
im,k is kth row vector of matrix Ai0 + BiFm0 + ∑d

l=1 Ail,∀(i,m) ∈
r × r .

Proof It is obvious that when (15) and (17) hold, Lemma 2 is satisfied, thus system
(10) is positive. If (16), (18) and (19) hold, then λ ∈ Rn+ exists, Lemmas 3 and 4 are
satisfied. Therefore, it can be concluded from Lemmas 2, 3 and 4 that the closed-loop
control system (10) is positive, asymptotically stable and state x(t) can be bounded
by prescribed boundary μ. Thus, the proof is completed. �

Based on the aforementioned theorem, the following algorithm can be developed
[9] though its solution cannot be guaranteed in general.

Algorithm 1 Initialization Step. Use pole placement design technique or any other
state-feedback controller design technique to determine a set of initial controller
gains.

V-Step Given a fixed controller gain Fm0, m ∈ r , solve the following optimization
problem:

min
λT

{γ }
−Pil − γ I ≤ 0, −Q − γ I < 0, Rim − γ I ≤ 0, Sim − γ I < 0,

Tim < 0,
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for series of matrices Pil,Q,Rim,Sim and Tim∀(i,m, l) ∈ r × r × d , which are de-
fined in (15)–(19), respectively.

K-Step Using the vector λT obtained in V-Step, solve the following optimization
problem:

min
Fm0

{γ }
−Pil − γ I ≤ 0, −Q − γ I < 0, Rim − γ I ≤ 0, Sim − γ I < 0,

Tim < 0,

for a set of matrices Fm0,m ∈ r,Pil,Q,Rim,Sim and Tim∀(i,m, l) ∈ r ×r ×d , which
are defined in (15)–(19), respectively.

The previous iteration of V-Step and K-Step stop when γ < 0.

Remark 4.1 The solution cannot be guaranteed in general. For example, if the pole is
not placed well, computation will be much demanding.

Remark 4.2 In the above theorem, if we neglect the condition (19), the controller de-
sign is reduced to positive stabilization which only guarantees the system is positive
and asymptotically stable. Its feedback gains Fm0,m ∈ r can also be solved by an
algorithm similar to Algorithm 1 in which Tim < 0,∀(i,m) ∈ r × r is not required.

5 Examples

To illustrate our approaches, two examples will be considered.

Example 1 (Stability analysis) First of all, we introduce the following continuous-
time nonlinear positive system with delay

ẋ1(t) = −bx1(t) − (0.0073 − b)sin2(t)x1(t) + 0.6643x2(t) + 0.01x2(t − 2),

ẋ2(t) = 1.54x1(t) − 1.713sin2(t)x2(t) − (a − 1.713)sin2(t)x2(t).
(20)

Next, we consider its fuzzy model as follows. Let z(t) = sin2(x1(t)), x
T(t) =

[xT
1 (t)xT

2 (t)].
Rule 1: IF z(t) is 0, THEN

ẋ(t) = A10x(t) + A11x(t − 1) + A12x(t − 2).

Rule 2: IF z(t) is 1, THEN

ẋ(t) = A20x(t) + A21x(t − 1) + A22x(t − 2).

Its normalized membership functions: h1(t) = 1−sin2(x1(t)), h2(t) = sin2(x1(t)),
then parameters matrices of the system (20) in form of fuzzy model are given as fol-
lows:

A10 =
[ −b 0.6643

10.54 −1.713

]
, A20 =

[−0.7734 0.6643
1.54 −a

]
,

A11 = A21 =
[

0 0
0 0

]
, A12 = A22 =

[
0 0.01
0 0

]
.
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Fig. 1 Feasible area for LCLF
and QLKF

We will compare the feasible regions for the result in Theorem 1 (LCLF) and the
result based on QLKF which is introduced in Lemma 1 in [10] by changing a and b,
where a takes a value between 1.2 and 1.8 by step of 0.05 and b takes a value between
0.773 and 0.7734 by step of 0.00005. The simulation in Fig. 1 (‘.’ denotes LCLF, ‘O’
denotes QLKF) shows the result in Theorem 1 is relaxed.

Example 2 ([2]) First of all, let us consider process composed of two linked tanks of
capacity of 221 each. This system can be described by the following balance equa-
tions:

ẋ1(t) = u1(t) − Q12(t) − Q1(t),

ẋ2(t) = u2(t) + Q12(t) − Q2(t)
(21)

where xi(t) holds for the level in the liter of the tank i. uj (t) represents the flow in
liter/min of pump j and Q12 is the variation of the flow between the two tanks,
Qi the loss flow of each tank. Applying the Torricelli law, one obtains Q1 =
γ1S1

√
2gx1,Q2 = γ1S2

√
2gx2,Q12 = γ12S1

√
2g|x1 − x2| sign(x1 − x2) where γi

and γij are physical constants, Si is the tank section and g the gravity acceleration.
Then the process model (21) is rewritten as follows:

ẋ1(t) = u1(t) − R1

√
x1(t) − R12

√∣∣x1(t) − x2(t)
∣∣ sign

(
x1(t) − x2(t)

)
,

ẋ2(t) = u2(t) − R2

√
x2(t) + R12

√∣∣x1(t) − x2(t)
∣∣ sign

(
x1(t) − x2(t)

)
.

(22)

The obtained model is then nonlinear. Note that the level xi must always be posi-
tive.

To obtain a T-S fuzzy representation for this nonlinear system, the classical trans-
formation

√
xi(t) = xizi with zi(t) = 1/

√
xi(t) is used. Consider time-delay in real

plant, its corresponding process model with time-varying delay is gotten as follows:
ẋ(t) = A(t)x(t) + Adx(t − d) + Bu(t), where we have the matrices
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A(t) =
⎡

⎢⎣
−R1z1(t) − R12z1(t)z2(t)√

|z2
1(t)−z2

2(t)|
R12z1(t)z2(t)√
|z2

1(t)−z2
2(t)|

−R12z1(t)z2(t)√
|z2

1(t)−z2
2(t)|

−R2z2(t) + R12z1(t)z2(t)√
|z2

1(t)−z2
2(t)|

⎤

⎥⎦ ,

B = I,Ad =
[

0 0.05
0 0

]
.

By considering that zi(k) ∈ [ai, bi], the four following rules are taken into ac-
count:

IF z1(t) is about a1 and z2(t) is about a2, THEN, A(t) = A(a1, a2) = A1.
IF z1(t) is about a1 and z2(t) is about b2, THEN, A(t) = A(a1, b2) = A2.
IF z1(t) is about b1 and z2(t) is about a2, THEN, A(t) = A(b1, a2) = A3.
IF z1(t) is about b1 and z2(t) is about b2, THEN, A(t) = A(b1, b2) = A4.

The membership functions are given by h1(t) = f11(t)f21(t), h2(t) = f11(t) ·
f22(t), h3(t) = f12(t)f21(t), h4(t) = f12(t)f22(t), with fi1(t) = (zi(t) − bi)/(ai −
bi), fi2(t) = 1 − fi1(t), i = 1,2.

Here we are interested in designing a controller by state-feedback PDC method
which ensures that the system is asymptotically stable and state xi always remain
positive and can be bounded by prescribed boundary η which η is maximum height
for admission of the level in the tank.

The parameters R1, R2, R12 are experimentally estimated as R1 = R2 = 0.95,
R12 = 0.52. For a1 = 0.2236, b1 = 0.4472, a2 = 0.2582, b2 = 0.4082 and boundary
η = [4,4]T, where η is accommodated maximum height for level x = [x1, x2]T in
the liter of the tank. Using the pole placement design technique, the initial controller
gains are chosen as

F10 =
[−0.4444 0.2325
−0.2325 −0.0123

]
, F20 =

[−0.3509 0.1390
−0.1390 −0.2483

]
,

F30 =
[−0.5888 0.1644
−0.1644 −0.0803

]
, F40 =

[−0.9441 0.5197
−0.5197 0.1324

]
,

which are corresponding to the nearby closed-loop pole [−0.0005, −0.0005] for the
delayed system. Then by Theorem 2 and using Algorithm 1 after two iterations, the
feedback gain Fm0 and λ have been obtained shown as follows:

λT = [
0.7468 0.5912

]
, F10 =

[−0.7734 0.6643
1.5400 −1.7130

]
,

F20 =
[−0.7734 0.6643

1.5400 −1.7130

]
,

F30 =
[−0.7693 0.6596

1.5362 −1.7110

]
, F40 =

[−0.7693 0.6596
1.5362 −1.7110

]
.

Figure 2 well illustrates our result with initial condition satisfying 0 � ϕ(·) � η.

6 Conclusions

This paper addressed the stability and constrained control of a class of fuzzy positive
systems with delays based on a novel LCLF. Its sufficient condition of asymptotic
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Fig. 2 Phase plots under
different initial conditions

stability is obtained. A constrained state-feedback fuzzy controller is designed such
that the states have positivity and asymptotic stability and are upper-bounded. The
stability condition is given under LMI formulations and LP formulations, and the
control design conditions are given in the form of BMIs. A constructive controller
design algorithm is given based on BMI techniques. A numerical example and a real
plant are studied to illustrate the results obtained. It is expected that the idea and
technique in this paper will be helpful for further research in this field such as robust
H∞ of fuzzy positive systems, stochastic positive systems and so on.
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