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Abstract We present two dual oscillating circuits having a wide spectrum of dy-
namical properties but relatively simple topologies. Each circuit has five bifurcating
parameters, one nonlinear element of cubic current–voltage characteristics, one con-
trolled element, LCR components and a constant biasing source. The circuits can
be considered as two coupled oscillators (linear and nonlinear) that form dual jerk
circuits. Bifurcation diagrams of the circuits show a rather surprising result that the
bifurcation patterns are of the Farey sequence structure and the circuits’ dynamics
is of a fractal type. The circuits’ fractal dimensions of the box counting (capacity)
algorithm, Kaplan–Yorke (Lyapunov) type and its modified (improved) version are
all estimated to be between 2.26 and 2.52. Our analysis is based on numerical cal-
culations which confirm a close relationship of the circuits’ bifurcation patterns with
those of the Ford circles and Stern–Brocot trees.

Keywords Oscillating circuits · Bifurcations · Singularly perturbed systems · Farey
sequence · Stern–Brocot tree · Ford circles · Fractals

1 Introduction

In the earlier paper [16] two dual circuits similar to those shown in Fig. 1 (without the
coupling conductance G and resistance R) were investigated from the point of view
of their mixed-mode oscillations (MMOs), canard solutions and folded points of the
corresponding system of differential-algebraic equations (DAEs).

Mathematical model of such circuits comprises two linear and one nonlinear or-
dinary differential equations (ODEs). Such a model was also investigated in [9] and
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Fig. 1 (A) The LCL circuit with L1 = ε � 1, V = (1 + b)x2, Vnonl = αx2
1 + βx3

1 . (B) The CLC circuit

with C1 = ε � 1, I = (1 + b)x2, Inonl = αx2
1 + βx3

1 . For both circuits: a > 0, b > 0, β < 0 and α > 0

Fig. 2 Coupling of oscillators
through conductance G and
resistance R. The coupling is of
full strength if G = 0 for
circuit A (equivalently R = 0 for
circuit B) while the oscillators
are completely decoupled if
G → ∞ (equivalently R → ∞)

several conclusions about the occurrence of the Ls patterns (large and small ampli-
tude oscillations, or LAOs and SAOs, respectively) were drawn.

Each of the two circuits in Fig. 1 can be considered as a coupling of two oscillators
(nonlinear and linear ones). The nonlinear oscillator comprises a nonlinear element
with a cubic characteristics Vnonl (or Inonl), an inductor (Fig. 1(A)) or a capacitor
(Fig. 1(B)), while the linear oscillator includes an inductor, a capacitor, a voltage
controlled voltage source (or a current controlled current source) and a biasing con-
stant voltage (or current) source. The inductance L and capacitance C in the circuits
in Fig. 1 are split between the two oscillators as shown in Fig. 2 with Ca + Cb = C

and La + Lb = L.
If we assume that 0 < L1 ≡ ε � 1 and C,L2 ∼ O(1) for the circuit in Fig. 1A

(0 < C1 ≡ ε � 1 and L,C2 ∼ O(1) for the circuit in Fig. 1B), then both circuits can
be described by the singularly perturbed model

εx′
1 = −x2 + αx2

1 + βx3
1 ≡ g(x1, x2, x3)

x′
2 = x1 − x3 − Kx2 ≡ f1(x1, x2, x3)

x′
3 = a − bx2 ≡ f2(x1, x2, x3)

(1)

where K ≡ G for the circuit in Fig. 1A and K ≡ R for the circuit in Fig. 1B.
As reported in [9, 16], the MMOs phenomenon (a combination of LAOs and

SAOs) may include oscillations with quite complex patterns. The SAOs trace the
weak canard trajectory of (1) around the origin (0,0,0), while the LAOs are due to
the cubic nonlinearity and return mechanism. Canard trajectories (weak and strong)
are closely related to certain folded nodes of DAEs that one obtains from (1) by as-
suming ε = 0. Furthermore, a desingularization process of DAEs results in a system
of two ODEs with a folded nodal point. See [1, 2, 6, 10, 13–15, 19, 21, 23] for more
details of these properties.

It is known that (1) is a prototypical model of mixed-mode oscillations with three
time scales. Since a and b in (1) are usually of order ε, therefore one can consider
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x1, x2 and x3 as the fastest, medium and slowest variables, respectively. Two time
scales are also possible to achieve in (1) by an appropriate choice of parameters.
Many practical oscillating systems in chemistry, physics and neuroscience have mul-
tiple time scales, exhibit MMOs and chaos (e.g. the Belousov–Zhabotinski reaction,
Bonhoeffer–van der Pol oscillator, neuron oscillations in human brain and others [6]).

In this paper we further analyze the two circuits in Fig. 1. The MMOs are not the
only possible dynamical features of the circuits. In fact, all the parameters α, β , a, b

and K in (1) may be considered as the bifurcation parameters. We shall analyze the
local maximum values of LAOs and SAOs and show that, by slowly changing any of
the above parameters, we can obtain the local maximum values of xi(t), i = 1,2,3,
that can be described by the Farey arithmetic [17] and related to the Stern–Brocot
tree [8, 24]. In our analysis we use the letters L and s in Ls to describe the number
of local maximum values of the steady-state LAOs and SAOs, respectively, and not
the number of LAOs and SAOs. Thus, our Ls is different from the Ls used, for
example, in [9, 16]. Through a series of numerical experiments we shall show that
the Ls oscillations for the circuits in Fig. 1 occur in the order of Farey sequence
of coprime integers. Also, the circuits can be considered as ones having a chaotic
strange attractor, and as such can be characterized by a special number called the
fractal dimension. Various fractal dimensions of the circuits in Fig. 1 are discussed in
Sects. 3 and 4.

The paper is written for the purpose of showing how relatively simple circuits with
one nonlinear element exhibit an amazing spectrum of dynamical properties ranging
from MMOs, through chaotic responses, various bifurcation diagrams related to the
Farey sequence of coprime integers, to fractal properties. We also propose a new bi-
furcation tree illustrating a hierarchical structure in which the circuits oscillate (see
Figs. 12 and 13 to follow). We also show a relationship between the dynamical prop-
erties of (1) and Newton’s second law (in Sect. 4.3), allowing for a “mechanical”
interpretation of x1, x′

1 and x′′
1 as “position”, “velocity” and “acceleration,” respec-

tively. It is our belief that the circuits analyzed in this paper could become benchmark
examples of nonlinear circuits’ studies.

The circuits shown in Fig. 1 also fall into the category of chaotic jerk circuits [22],
that is, the circuits described by a nonlinear third order equation in the form x′′′ =
J (x′′, x′, x). The nonlinear function J is called a jerk since, in mechanical systems,
it would correspond to the first derivative of acceleration of x(t). The jerk structure
of (1) follows from the fact that variable x1(t) in (1) satisfies the following equation:

x′′
1 + (

K − ε−1(2αx1 + 3βx2
1

))
x′

1 + ε−1(x1 − K
(
αx2

1 + βx3
1

)) = ε−1x3(t) (2)

which is coupled with the first-order equation

x′
3 − bεx′

1 = a − b
(
αx2

1 + βx3
1

)
. (3)

From (2) and (3) we obtain the jerk equation in variable x1

x′′′
1 + [

K − ε−1N ′(x1)
]
x′′

1 + [−ε−1N ′′(x1)x
′
1 + ε−1 − ε−1KN ′(x1) − b

]
x′

1

− ε−1a + ε−1bN(x1) = 0 (4)

where N(x1) ≡ αx2
1 + βx3

1 .
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Alternatively, one can consider the second-order equation x′′
3 +Kx′

3 −bx3 = Ka−
x1 coupled with (3). This gives another jerk equation in variable x3, as follows:

x′′′
3 + Kx′′

3 + (
ε−1 − b

)
x′

3 − ε−1a + ε−1bN
((−x′′

3 − Kx′
3 + bx3 + Ka

)
/b

) = 0

(5)

This equation is structurally different from the jerk equation (4). We comment about
this difference and further properties of both jerk equations in Sect. 4.

The paper is organized as follows. In Sect. 2 we present numerically obtained
representative bifurcation diagrams when parameters α, β , a and b vary. In Sect. 3
we compare the hierarchical oscillations of the circuits to the Farey sequences,
Stern–Brocot trees and Ford circles. After analyzing several bifurcation diagrams,
we also estimate the circuits’ counting box fractal dimension in Sect. 3. Then, we
construct our own tree with hierarchical windows of a fractal nature. In the infi-
nite sequence of such windows we focus on those windows denoted by 2k , k be-
ing a positive odd integer, as they are formed in the shape of the Stern–Brocot
trees. We discuss and compare the circuits’ fractal counting box, Kaplan–Yorke and
modified (improved) Kaplan–Yorke dimensions in Sect. 4. The jerky Newtonian na-
ture of (4) and its relationship to Newton’s second law F = mx′′ is also discussed
in Sect. 4. Finally, we draw our conclusions in Sect. 5. Throughout the paper the
symbol ⊕ stands for the following operation on four integers p1, q1, p2 and q2:
p1/q1 ⊕ p2/q2 = (p1 + p2)/(q1 + q2).

2 Bifurcation Diagrams

The three basic modes of operation of the circuits are illustrated in Fig. 3 [16] which
shows the time series and 2D solutions of (1) with ε = 0.01, α = 1.5, β = −1, b =

Fig. 3 (Color online) Left column: x1 versus x2; right column: time responses (172 ≤ t ≤ 194); both
columns: SAOs only (top: a = 0), LAOs only (middle: a = 0.00105) & MMOs (bottom: a = 0.00055)
with x1 (blue), x2 (red), x3 (green)
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Fig. 4 Bifurcation diagram for α = 1, β = −1, a = 0.0005, ε = 0.01, K = 0.3 and 0.005 < b < 0.035
with intervals of MMOs sequence 10 → 11 → 12 → ·· · → 19 → 01

Fig. 5 Bifurcation diagram for α = 1, β = −1, b = 0.005, ε = 0.01, K = 0.3 and 0.00015 < a < 0.0007
with intervals of MMOs sequence 01 → 18 → 17 → ·· · → 11 → 10

0.005, K = 0 and three values of a. In the SAOs only case, the small amplitude
oscillations around the origin (0,0,0) are due to the Hopf bifurcation for a = 0. We
used non-zero initial conditions only for the SAOs case in the top panel in Fig. 3. In
all other calculations in this paper the initial conditions were all zero.

In the LAOs only case, a trajectory bypasses the region of small amplitude os-
cillations around the origin. The MMOs case is in some sense a combination of the
previous two cases. The mechanism in which SAOs and LAOs occur is quite complex
and has been the topics of recent papers [2, 6, 9, 10, 16, 19, 23].

The occurrence of MMOs is not the only interesting feature of the circuits in Fig. 1.
When parameters α, β , a or b change slowly, system (1) may bifurcate and show
complex chaotic behavior with MMOs transitions of various types. Figures 4, 5, 6, 7
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Fig. 6 Bifurcation diagram for α = 1, a = 0.0005, b = 0.005, ε = 0.01, K = 0.3 and −1.15 < β < −0.70
with intervals of MMOs sequence 10 → 61 → 51 → ·· · → 11 → 12 → 13

Fig. 7 Bifurcation diagram for β = −1, a = 0.0005, b = 0.005, ε = 0.01, K = 0.3 and 0.9 < α < 1.1
with intervals of MMOs sequence 10 → 41 → ·· · → 11 → ·· · → 23

show typical bifurcation diagrams with the vertical axis representing the maximum
values of x1(t) identified in the interval 300 ≤ t ≤ 500. All calculations were done for
0 ≤ t ≤ 500 (with zero initial conditions), but the interval 0 ≤ t < 300 was not used
in the process of identifying the maximum values of x1(t). Throughout the whole
analysis we kept the value of ε unchanged at 0.01.

Bifurcation diagram in Fig. 4 clearly shows a pattern of sequence 10 → 01

(through a series of oscillations: 10 → 11 → 13 → ·· · → 01), while the sequence
in Fig. 5 is of type 01 → 10. On the other hand, Figs. 6 and 7 show the sequence of
local maximum values 10 → 11 with a few additional values of Ls to the right of 11.
The intervals Si will be used in the sequel to determine the fractal dimensions of the
circuits, as a detailed analysis of the Ls patterns clearly indicates that the patterns
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Fig. 8 Detailed bifurcation sequence of MMOs 10 → 11 with several lower level hierarchical oscillations
(interval S0 in Fig. 4)

Fig. 9 Detailed bifurcation sequence of MMOs 11 → 12 with several lower level hierarchical oscillations
(interval S1 in Fig. 4)

are directly linked to the Farey sequence of the pairs of coprime integers (see the Ls

values shown in Figs. 4, 5, 6, 7 and in Figs. 8, 9, 10, 11, which follow). As a conse-
quence, we shall conjecture that the dynamics of the circuits in Fig. 1 is in fact of a
fractal type. Next, we shall use the bifurcation diagrams with varying b to proceed
with a more detailed analysis.

3 Fractal Windows and Trees

First, when a resolution of computation is increased, one can obtain more detailed
bifurcation diagrams for any of the ten intervals Si in Fig. 4. Figures 8, 9, 10, 11
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Fig. 10 Detailed bifurcation sequence of MMOs 12 → 13 with several lower level hierarchical oscilla-
tions (interval S2 in Fig. 4)

Fig. 11 Detailed bifurcation sequence of MMOs 13 → 14 with several lower level hierarchical oscilla-
tions (interval S3 in Fig. 4)

show four such diagrams. These graphs yield a graphical representation of the first
several layers of the Ls sequences as is shown in Fig. 12. This tree is a modification of
the Farey and Stern–Brocot trees [8, 24] and also corresponds to the Ford circles [7].
Any pair of coprime integers Ls is marked in Fig. 12 as a single × point with its
horizontal coordinate L/(L + s), sometimes called the firing number. The vertical
coordinate depends on the window to which the pair Ls belongs. For fixed values of
coprime integers L and s, the tree in Fig. 12, just like the Farey sequence, includes
all possible coprimes between Ls and sL. The pairs of coprimes between Ls and
sL (coprimes at the same vertical level in Fig. 12) belong to different consecutive
windows. For instance, at the vertical level 8 we have all coprimes between 18 and 81

in the following sequence: 18, 213, 317, 316, 419, 417, 519, 518, 517, 516, 617, . . . , 87,
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Fig. 12 Bifurcation tree with Ls , L ≤ 20, s ≤ 20: each window 1k , k = 1,2, . . . ,20, comprises two
disjoint windows 2n and 2l such that 1

k
= 2

n ⊕ 2
l

(e.g. the 11 window comprises windows 21 and 23

with 1
1 = 2

1 ⊕ 2
3 = 4

4 ). Also, each 2k window comprises two disjoint windows 3n and 3l such that
2
k

= 3
n ⊕ 3

l
, etc. Within each window the Ls elements at the same horizontal level have the same L

value, their respective s values run through all possible integer values such that g.c.d.(L, s) = 1 and∑
m ⊕Lm/sm = L/s (e.g. the 23 window includes the elements 815, 813, 811 and 89 at the level marked 9

with 8
15 ⊕ 8

13 ⊕ 8
11 ⊕ 8

9 = 32
48 = 2

3 ). Other similarity patterns also exist for this tree, including vertical

patterns within each window. See Fig. 13 with a partial illustration of such a vertical pattern for the 21

window. Also, each window 2k has a pattern of elements as shown in Fig. 15. This tree is, if fact, the
Stern–Brocot tree [24]

85, 83, 81, with their increasing firing numbers 1/9, 2/15, 3/20, 3/19, 4/23, 4/21,
5/24, 5/23, 5/22, 5/21, 6/23, . . . , 8/15, 8/13, 8/11, 8/9. Also, the coprimes 81, 83,
85, 87 are located inside the window 21 (because (8+8+8+8)/(1+3+5+7) = 2/1,
see the vertical level 8). The coprimes 89, 811, 813, 815 are located inside the window
23 (because (8 + 8 + 8 + 8)/(9 + 11 + 13 + 15) = 2/3, see the vertical level 9), etc.
The total number of coprime pairs 8s within each window equals ϕ(8) = ϕ(23) = 4,
where ϕ(n) is Euler’s totient function [7]. Similarly, the total number of coprime pairs
15s within each window is ϕ(15) = ϕ(3)ϕ(5) = 8. For example, in the window 21 we
have the coprimes 151, 152, 154, 157, 158, 1511, 1513, 1514 which yield 151 ⊕ 152 ⊕
154 ⊕ 157 ⊕ 158 ⊕ 1511 ⊕ 1513 ⊕ 1514 = 8×15

16+17+19+22+23+26+28+29 = 2
3 , which is

the firing number for 21. This sequence of coprime pairs 15s continues in window
23 with the coprimes 1516, 1517, 1519, 1522, 1523, 1526, 1528, 1529 which result
(with the ⊕ operation) in value 2/5, that is, the firing number of 23. This pattern
continues indefinitely for windows 25, 27, . . . . The hierarchical oscillating sequences
of Ls grouped by windows in Fig. 12 (also in Fig. 13) are interesting as each of the
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Fig. 13 Bifurcation tree as in Fig. 12 with a pattern of vertically overlapping windows inside 21. The same
pattern exists for all windows 2k , k ≥ 1 and odd. There are no numbers Ls in the areas of light-shaded
tongues of 1k . Each dark-shaded window can also be subsequently partition into light-shaded tongues and
dark-shaded windows

2k (k being odd positive) windows is in fact the Stern–Brocot tree [24]. We discuss
this relationship later on.

We begin with the bifurcation diagram in Fig. 4. Using the values of Si and ST

one can solve the following equation to compute the fractal dimension, D [17]:

n∑

i=0

(Si/ST )D = 1. (6)

Equation (6) is known as the box counting (capacity) formula with D called the
counting box (capacity) fractal dimension [4]. In our computations we have cho-
sen i = 0, . . . ,9, that is, 10 intervals Si between various Ls sequences, as shown in
Figs. 4, 8–11. Equation (6) for the diagram in Fig. 4 is

0.1217D + 0.0986D + 0.0842D + 0.0717D + 0.0609D + 0.0538D

+ 0.0484D + 0.0448D + 0.0412D + 0.0376D = 1

which yields D = 0.8449. Due to a certain degree of uncertainty associated with a
precise estimation of the boundaries of Si and ST in our bifurcation diagrams, it is
impossible to compute the exact value of D, but we conjecture (based on further
analysis) that the counting box (capacity) dimension for each of the three variables
xi(t), i = 1,2,3 is about 0.84. This statement follows from the examination of the
diagrams in Figs. 4, 8–11 and also those in Figs. 16 and 17 to be done later. Table 1
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Table 1 Fractal dimensions D

(6) Figure L
s1
1 → L

s2
2 D

Fig. 11 13 → 14 0.7031

Fig. 10 12 → 13 0.7307

Fig. 9 11 → 12 0.8010

Fig. 8 10 → 11 0.8179

Fig. 4 10 → 01 0.8449

Table 2 Comparison of D: circuits and Ford circles

Figure L
s1
1 → L

s2
2 D Circles pq D

Fig. 4 10 → 01 0.8449 11,12,13,14,15,16,17,18,19 0.8498

Fig. 5 01 → 10 0.8443 18,17,16,15,14,13,12,11 0.8496

Fig. 6 10 → 11 0.7967 11,43,32,53,21,52,31,41,51,61 0.8024

Fig. 7 10 → 11 0.7919 11,54,43,32,53,21,52,31,41 0.8016

Fig. 14 Several Ford circles
with 0 ≤ p/q ≤ 1. More Ford
circles with p/q > 1 can be
found in [24]

shows several estimates of the values of D based on (6) and the five bifurcation
diagrams with varying parameter b. Further comparison of the fractal dimension D

for the circuits and the fractal dimension of the sequences of Ford circles p/q (see
Fig. 14) is given in Table 2. We only use the Ford circles with 0 ≤ p/q ≤ 1 since all
the sequences Ls (marked as points × in Fig. 12) have their first coordinate between
0 and 1. For example, the three Ls sequences 23, 21 and 31 have their representative
points × with the first coordinates 2/5, 2/3 and 3/4, respectively (see Fig. 12).

The fractal dimension values in Table 2 of such different fractal objects (circuits
and Ford circles) are surprisingly in a very good agreement. It is also known that
the total area of all Ford circles for 0 < p/q < 1 (therefore the fractal dimension of
the Ford circles) can be computed as follows. Since the Ford circles associated with
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Fig. 15 (Color online) General structure of all windows 2k in Fig. 12 (Stern–Brocot tree [24]). The
top red dot corresponds to the top 2k point of each window followed by horizontal segments with
2,2,4,2,6,4,6,4,10, . . . points. This sequence of numbers is equivalent to the values of Euler’s totient
function ϕ(n), n = 2,3, . . .

fractions 0 < p/q < 1, g.c.d.(p, q) = 1, are centered at (p/q,1/(2q2)) and have their
radii equal 1/(2q2) (see Fig. 14), therefore the total area of such circles is1

A =
∑

q≥1

∑

1≤p<q
g.c.d.(p,q)=1

π
(
2q2

)2
= π

4

∑

q≥1

1

q4

∑

1≤p<q
g.c.d.(p,q)=1

1 (7)

Using the Euler’s totient and Riemann zeta functions, ϕ and ζ , respectively, we obtain

A = π

4

∑

q≥1

ϕ(q)

q4
= πζ(3)

4ζ(4)
= 45ζ(3)

2π3
≈ 0.8723 (8)

where ζ(4) = π4/90 was used.
Next, it is interesting to notice that each of the windows 2k in Fig. 12 is in fact

the Stern–Brocot tree. If we consider each such window as a polygon with the top
point 2k and the distance between the boundary points on the left and right sides of
the window to be 1, then each window 2k can be represented by the tree shown in
Fig. 15. This is the Stern–Brocot tree. All the coprime pairs (L, s) represented by the
× sign in Fig. 12 are now the red dots (color online) in Fig. 15. The tree in Fig. 15
has hierarchical symmetries corresponding to the symmetries of the internal (smaller)
windows of each 2k window. For example, by selecting the window 21 in Fig. 12 we

1For the analysis in this paper it suffices to consider the Ford circles with 0 ≤ p/q ≤ 1 only. Because
of the structure of our windows in Figs. 12 and 13 with the horizontal axis between 0 and 1 (the first
coordinate of each point × is p/(p + q)), for Ford circles pq with p < q we use radii 0.5q−2, while for
those with p > q the radii are 0.5(p + q)−2. This applies to some computations in Table 2. For example,
the sequence of circles 11,54,43,32,53,21,52,31,41 gives the total area: (π/4)((1/12)2 + (1/92)2 +
(1/72)2 + (1/52)2 + (1/82)2 + (1/32)2 + (1/72)2 + (1/42)2 + (1/52)2) = 0.8016.
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see two subsequent internal windows 32 and 31. These two windows correspond to
the left and right subtrees in Fig. 15. Each of the windows 32 and 31 has its own
consecutive symmetry, etc. Infinite self-similarity fractal pattern is clearly seen in the
splitting of the trees in Fig. 15.

4 More Estimates of Fractal Dimensions and Comparison with Other Chaotic
Systems

4.1 Fractal Dimensions DKY and DΣ

By using the bifurcation diagram of x1(t) in Fig. 4 and formula (6) in Sect. 3 we
estimated the counting box fractal dimension D to be 0.84. Bifurcation diagrams
of the remaining variables x2(t) and x3(t) are shown in Figs. 16 and 17. If the for-
mula (6) is applied to both of those diagrams, then one obtains the same values of the
counting box fractal dimensions as we obtained for x1(t) (D = 0.84). Thus, all three
variables together yield the counting box fractal dimension, say Dc, of the circuits as
Dc = 2.52 (that is 3 × 0.84).

It is worth comparing the above fractal dimension with some of the other fractal
dimensions used in the analysis of fractals. It is well know that the Kaplan–Yorke
(Lyapunov) fractal dimension is a widely used one when the dynamical equations
are available. For a three-variable nonlinear dynamical system with a strange attrac-
tor the Kaplan–Yorke dimension is found by numerically calculating the Lyapunov
exponents λi , i = 1,2,3, and then using them in the formula [3]

DKY = 1 − λ1

λ3
(9)

with λ1 > 0, λ2 = 0, λ3 < 0 and λ1 + λ3 < 0 (conditions for the existence of strange
attractor). On the other hand, the modified (improved) Kaplan–Yorke dimension, de-
noted by DΣ results from a quadratic interpolation rather than a linear one used in

Fig. 16 Bifurcation sequence of MMOs 10 → 11 → ·· · → 19 → 01 for x2(t) and the same parameters
as in Fig. 4
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Fig. 17 Bifurcation sequence of MMOs 10 → 11 → ·· · → 19 → 01 for x3(t) and the same parameters
as in Fig. 4

Fig. 18 Fractal dimensions Dc = 2.52 (const), DΣ and DKY with varying parameter b

deriving (9). In the three-variable chaotic flow with a strange attractor the DΣ is
computed from [3]

DΣ = 1.5 + 0.5

√

1 − 8
λ1

λ3
(10)

with DΣ ≥ DKY for −1 ≤ λ1/λ3 ≤ 1. The maximum difference DΣ − DKY is 1/8
and it occurs at λ1/λ3 = −3/8. Finally, it is known that for most chaotic flows we find
that the Kaplan–Yorke and counting box (capacity) dimensions satisfy the following
relation: DKY ≤ DΣ .

To make our calculations comparable and consistent, we have used the same inter-
val ST (see Figs. 4, 16 and 17) to find DKY and DΣ for the circuits in Fig. 1. Figure 18
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shows the Dc, DKY and DΣ (the two later dimensions vary with varying b). This fig-
ure certainly supports the generally accepted conjecture that DKY ≤ DΣ ≤ Dc .

4.2 Comparison of Fractal Dimensions

Fractal dimensions, in most cases, depend on the parameters and nonlinearities used.
For example, in the case of Chua circuit, for most cases shown in Tables 1 and 2
in [20] we obtain the Kaplan–Yorke fractal dimensions, DKY , in the interval 2.00–
2.25, but there are also cases with DKY equal 2.32, 2.40 or even 2.94. Other os-
cillators described by systems of three ODEs with only quadratic nonlinearities yield
chaotic strange attractors with fractal dimensions DKY that span practically the whole
interval from 2 to 3. Those with values slightly greater than 2 come from simple flows
with just one or two quadratic nonlinear terms in all three equations [18], while those
systems with more quadratic terms yield higher values of DKY , often between 2.5
and 3 [3]. The Rössler and Lorenz systems have their fractal dimensions of 2.01 and
2.06, respectively, since they contain only one (Rössler) and two (Lorenz) quadratic
terms. On the other hand, the Newton–Leipnik system with three quadratic terms has
DKY between 2.24 and 2.30 (depending on parameters). The Rabinovich–Fabrikant
system with five nonlinear terms has DKY = 2.30 (for parameters γ = 0.87, α = 1.1)
[11]. The circuits studied in this paper have two nonlinear terms (quadratic, cubic)
and their DKY is between 2.26 and 2.36 (with varying parameter b, Fig. 18). This
fits well with the general observation that simple three-variable ODEs with one or
two nonlinear terms yield fractal dimensions DKY closer to 2, while those with more
nonlinear terms tend to have greater DKY , around 2.5, 2.6, or closer to 3. Our system
(1) falls in between: the system has slightly more complicated nonlinear terms than
the Rössler and Lorenz systems, but still not too complicated to yield DKY values
above 2.5.

4.3 The jerky Newtonian Dynamics

The two jerk equations in the introductory section are quite different in nature with
(4) being jerky Newtonian while (5) is not Newtonian. A jerk Newtonian equation
originates from Newton’s law x′′ − (1/m)F = 0 to become x′′′ − (1/m)(d/dt)F = 0,
where m is a mass and (d/dt) denotes the total derivative, yielding

x′′′ − 1

m

[
(∂x′F)x′′ + (∂xF )x′ + ∂tF

] = 0. (11)

Thus, from (4) we obtain

∂x′
1
F = m

[
ε−1N ′(x1) − K

]

∂x1F = m
[
ε−1N ′′(x1)x

′
1 − ε−1 + ε−1KN ′(x1) + b

]

∂tF = m
[
ε−1a − ε−1bN(x1)

]
(12)

and (12) yields the “acceleration” x′′
1 (= F/m) as follows:

F/m = [
ε−1N ′(x1) − K

]
x′

1 + (
b − ε−1)x1 + ε−1KN(x1)

+ ε−1at − ε−1b

∫ t

0
N

(
x1(τ )

)
dτ + C (13)
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where C is a constant.
It is easy to check from (12) that ∂x1x

′
1
F = ∂x′

1x1
F = mε−1N ′′(x1). The integral

term in (13) indicates that F depends not only on the instantaneous “position” x1(t)

and “velocity” x′
1(t), but also on the “memory” term ε−1b

∫ t

0 N(x1(τ ))dτ . This term
depends on x1, but not on x′

1. The jerk equation (4) is of polynomial and Newtonian
type.2

Because of the nonlinear function N(x1) = αx2
1 +βx3

1 , the jerk equation (5) is not
linear in x′′

3 . Thus, (5) is of a polynomial, but not Newtonian type. One cannot find
the F/m expression in the way it was possible for variable x1. Also, it is not possible
to find a single jerk equation for the remaining variable x2. This is, again, due to the
polynomial nonlinearity αx2

1 +βx3
1 in (1). It remains to be seen what consequences of

such a “mechanical” characterization of (1) are to the “electrical” variables x1, x2 and
x3 (currents and voltages). An application of the electromechanical Appell function
seems to be of interest here and should shed more light on the jerky dynamics of (1)
[25].

To compare, the celebrated Rössler system x′ = −y − ez, y′ = x + ey and z′ =
1+ (x −c)z is jerky polynomial and Newtonian in y, jerky rational but not Newtonian
in both x and z. The Lorenz systems is non-Newtonian in all three variables [12].

5 Conclusions

We have analyzed two dual circuits with one nonlinear element described by a cubic
nonlinearity (parameters α and β), a linearly controlled voltage (current) source de-
fined by parameter b, a small constant voltage (current) source (parameter a) and a
linear coupling resistance (conductance) K . Each of those parameters can be consid-
ered as a bifurcation parameter. For particular sets of the five parameters we obtain
various sequences of local maximum values corresponding to the regular periodic
MMOs, chaotic oscillations, simple relaxations, or small amplitude oscillations. Var-
ious bifurcation diagrams show the fractal nature of the local maximum sequences.
Graphical representation of those sequences results in special two-dimensional win-
dows trees (Figs. 12–13). Also, the hierarchical oscillatory sequences have their frac-
tal dimensions very close to those of the Ford circles and possibly other similar struc-
tures (e.g. the Cantor set complementary to the devil’s staircase associated with the
circle map [4]). We estimate the fractal dimensions of our circuits to be ∼2.52 (ca-
pacity dimension, formula (6)), 2.38–2.49 (modified Kaplan–Yorke dimension, for-
mula (10)) and 2.26–2.36 (Kaplan–Yorke dimension, formula (9)).

The circuits considered in this paper, while simple in their structures, show a very
rich spectrum of dynamical properties. This makes the circuits quite intriguing, not
only from the point of view of the bifurcation oscillations following the Farey se-
quence of coprime integers, but also from the point of view of fractal properties,
interaction of oscillators and singularly perturbed circuits. The jerk Newtonian vari-
able x1 relates the circuits to Newton’s law x′′

1 = F/m where x′′
1 is the “acceleration”

2For a polynomial jerk equation x′′′ = J (x′′, x′, x), the J (x′′, x′, x) must be a polynomial function of all
three variables x, v and a with v = x′ and a = x′′ [5, Appendix B].
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given by (13). It is expected that the circuits, considered as a coupling of oscillators
(through the K element), may also show the mode entrainment phenomenon leading
to the existence of the mode locking Arnold’s tongues.
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