
Circuits Syst Signal Process (2012) 31:987–1015
DOI 10.1007/s00034-011-9355-0

FPGA-Implementation of Discrete Wavelet Transform
with Application to Signal Denoising

Mohammed Bahoura · Hassan Ezzaidi

Received: 21 December 2010 / Revised: 15 August 2011 / Published online: 21 September 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper presents new architectures for real-time implementation of the
forward/inverse discrete wavelet transforms and their application to signal denoising.
The proposed real-time wavelet transform algorithms present the advantage to ensure
perfect reconstruction by equalizing the filter path delays. The real-time signal de-
noising algorithm is based on the equalized filter paths wavelet shrinkage, where the
noise level is estimated using only few samples. Different architectures of these algo-
rithms are implemented on FPGA using Xilinx System Generator for DSP and XUP
Virtex-II Pro development board. These architectures are evaluated and compared in
terms of reconstruction error, denoising performance and resource utilization.

Keywords Wavelet transform · Signal denoising · Soft-thresholding · Filter group
delay · Pipelining · FPGA

M. Bahoura (�)
Department of Engineering, Université du Québec à Rimouski, 300, allée des Ursulines, Rimouski,
QC, G5L 3A1, Canada
e-mail: Mohammed_Bahoura@uqar.qc.ca

H. Ezzaidi
Department of Applied Sciences, Université du Québec à Chicoutimi, 550, boul. de l’Université,
Chicoutimi, QC, G7H 2B1, Canada
e-mail: hezzaidi@uqac.ca

mailto:Mohammed_Bahoura@uqar.qc.ca
mailto:hezzaidi@uqac.ca

988 Circuits Syst Signal Process (2012) 31:987–1015

1 Introduction

In the last decades, the wavelet transform has been successfully used in wide range
of applications across several disciplines, including signal and image denoising and
compression, feature extraction, signal detection, pattern recognition, etc. The ex-
tensive use of the wavelet transform can be explained by its capability to provide
simultaneous time-scale analysis and its indefinite number of basis functions.

Due to recent advances in technology and decreasing costs, implementation of
the discrete wavelet transform (DWT) on field-programmable gate array (FPGA) has
been widely developed. To optimize time and resources consuming, many FPGA
architectures of the DWT have been proposed, which are mainly based on convolu-
tion [8, 11, 17] and lifting [1, 16, 23] schemas. To our knowledge, these architectures
do not take into account the group delays of the finite impulse response (FIR) filters
that are used to compute the DWT. These delays do not have a consequence in im-
age processing or when the signal is processed frame by frame. However, when the
signal is processed sample by sample, the group delays of different filter paths affect
considerably the synchronism between the wavelet coefficients in various scale lev-
els, which is aggravated by scale level increasing. Consequently, the reconstruction
of the signal from the wavelet coefficients will be altered because the delays will be
accumulated.

Wavelet-based denoising techniques were successfully applied to speech signal [5,
6], electrocardiogram (ECG) [18, 21], encephalogram [19], image [7], etc. Real-time
implementation of these algorithms using FPGA constitutes a great challenge, where
these techniques must be reorganized to meet the time and material constraints of the
existing technology. However, a real-time wavelet-based signal denoising system is
generally based on a real-time analysis/synthesis architecture that guaranties perfect
reconstruction of the signal.

In this paper, we propose a real-time implementation of the forward/inverse
wavelet transforms and their application to signal denoising. The proposed archi-
tectures have been implemented on FPGA using Xilinx System Generator and XUP
Virtex-II Pro development board. The rest of the paper is organized as follows. Sec-
tion 2 presents the proposed architectures for the real-time wavelet analysis/synthesis
transforms and their application to signal denoising. Section 3 describes in detail the
hardware implementation and the resource requirement of these architectures. Exper-
imental results are presented and discussed in Sect. 4. Finally, conclusion is given in
Sect. 5.

2 Method

This section describes the proposed real-time architectures. The first subsection
presents the wavelet transform theory and its implementation using the classical
frame-based and the proposed sample-based real-time algorithms. The second sub-
section presents the usual frame-based and the proposed sample-based signal denois-
ing algorithms. For both wavelet analysis/synthesis and signal denoising algorithms,
different architectures are defined depending on the analysis/synthesis schema, the
canonical form of the wavelet-based filters and the conventional or pipelined config-
uration.

Circuits Syst Signal Process (2012) 31:987–1015 989

2.1 Wavelet Transform

2.1.1 Continuous Wavelet Transform

The continuous wavelet transform of a signal x(t) is defined by

wψ
x (s, b) =

∫ ∞

−∞
x(t)ψ∗

s,b(t) dt, (1)

where (∗) denotes the complex conjugate, and ψs,b(t) are the basis functions obtained
by dilation or contraction (scaling), and translation of the mother wavelet ψ(t):

ψs,b(t) = 1√
s
ψ

(
t − b

s

)
, (2)

where s ∈ R
+ represents the scale parameter, and b ∈ R represents the time transla-

tion. A large value of the parameter s stretches the basis wavelet function and allows
the analysis of low-frequency components of the signal. On the other hand, a small
value of this parameter contracts this function and allows the analysis of the high-
frequency components [21].

The inverse continuous wavelet transform is obtained using

x(t) = 1

Cψ

∫ ∞

0

∫ ∞

−∞
wψ

x (s, b)ψs,b

ds db

s2
, (3)

where Cψ is a normalizing parameter that depends on ψ(t).

2.1.2 Discrete Wavelet Transform

The discrete wavelet transform (DWT) is obtained by discretizing the parameters
s and b. In general, the scale parameter is discretized by an exponential sampling
with fixed step, s = s

j

0 , and the translation parameter by integer multiple of a scale
dependent step, b = kb0s, where s0 > 1, b0 > 0, and k ∈ Z. Particularly, one can
chose samples from dyadic grid: s0 = 2 and b0 = 1. The DWT is then defined as

wj [k] = 2− j
2

∫ ∞

−∞
x(t)ψ∗(2−j t − k

)
dt. (4)

Here 2j represents the resolution or scale, j is the corresponding resolution level, and
k is the shifting parameter.

The discrete wavelet transform (DWT) is usually computed using the pyramid
algorithm proposed by Mallat [13]. As presented in Fig. 1, this algorithm is based on
a pair of high-pass (G) and low-pass (H) filters, named also quadrature mirror filters
(QMF), that are related through

g[n] = (−1)n+1h[N − n − 1], (5)

where g[n] and h[n] are the impulse responses of G and H , respectively, and N is
the number of their coefficients.

990 Circuits Syst Signal Process (2012) 31:987–1015

Fig. 1 Diagram of a frame-based forward and inverse wavelet transforms. Details of analysis/synthesis
cells are also given for pyramid and polyphase architectures

These filters are constructed from the wavelet kernel ψ(t) and its companion scal-
ing function φ(t). They are related by the following relations:

φ(t) = √
2
∑

k

h[k]φ(2t − k), (6)

ψ(t) = √
2
∑

k

g[k]φ(2t − k). (7)

The outputs of the high-pass filters are named details dj [n], and those of the low-
pass filters are named approximations aj [n]. They are defined by

dj+1[n] =
∑

k

aj [k]g[2n − k], (8)

aj+1[n] =
∑

k

aj [k]h[2n − k]. (9)

It can be noted that (8) and (9) represent the analysis cell of the pyramid architec-
ture that is described within a dashed box in Fig. 1.

The inverse discrete wavelet transform (IDWT) uses a pair of low-pass, h̃[n], and
high-pass, g̃[n], reconstruction filters. The analysis and synthesis filters are related to

Circuits Syst Signal Process (2012) 31:987–1015 991

each other through

g̃[n] = g[N − n − 1], (10)

h̃[n] = h[N − n − 1]. (11)

The reconstructed approximation is given by

aj [n] =
∑

k

(
dj+1[k]̃g[n − 2k] + aj+1[k]̃h[n − 2k]). (12)

Equation (12) represents the synthesis cell of the pyramid architecture that is also
described within a dashed box in Fig. 1. However, only orthogonal wavelets allow for
perfect reconstruction of a signal by IDWT.

It can be seen that for the pyramid architecture, the half of mathematical compu-
tation are wasted [12]. In the analysis cell, down-sampling discards half of samples
computed by filters; in the synthesis cell, up-sampling before filtering means that
half of the filter multiplications is done with the inserted zeros [12]. To overcome this
drawback, the polyphase structure has been proposed. Wasted operations are avoided
by placing down-sampling before filtering in the analysis cell and up-sampling after
filtering in the synthesis cell (Fig. 1). For a given level analysis cell of the pyramid
architecture, the detail output dj+1[n], defined by (8), can be expressed as [22]

dj+1[n] =
N
2 −1∑
k=0

g[2k]aj [2n − 2k] +
N
2 −1∑
k=0

g[2k + 1]aj [2n − 2k − 1]

=
N
2 −1∑
k=0

ge[k]ae,j [n − k] +
N
2 −1∑
k=0

go[k]ao,j [n − k − 1], (13)

where ge[k] and go[k] are the even and odd coefficients of the filter G, respectively.
The input signal x[n] is split into even samples xe[n] and odd samples xo[n]. On the
other hand, the approximation output aj+1[n], defined by (9), can be expressed as

aj+1[n] =
N
2 −1∑
k=0

h[2k]aj [2n − 2k] +
N
2 −1∑
k=0

h[2k + 1]aj [2n − 2k − 1]

=
N
2 −1∑
k=0

he[k]ae,j [n − k] +
N
2 −1∑
k=0

ho[k]ao,j [n − k − 1], (14)

where he[k] and ho[k] are the even and odd coefficients of the filter H , respectively.
Hence, (13) and (14) define the analysis cell of the polyphase architecture, which is
also described within a dashed box in Fig. 1. Similar development can be followed to
define the synthesis cell.

Despite the fact that polyphase structure is much more efficient than pyramid
structure, as it reduces the number of multiplication operations by half, these archi-
tectures require the same number of multipliers.

992 Circuits Syst Signal Process (2012) 31:987–1015

Fig. 2 Canonical
implementation of a five-tap FIR
filter. The critical path is
illustrated by the dashed line

2.1.3 Canonical Forms of the Wavelet-Based FIR Filters

As described in the previous subsection, the forward and inverse discrete wavelet
transforms are implemented using finite impulse response (FIR) filters both for pyra-
mid and polyphase architectures. The output y[n] of a FIR filter is defined as the
convolution of N filter coefficients c[k] with a sequence of input data samples x[n]:

y[n] =
N−1∑
k=0

c[k]x[n − k], (15)

where N − 1 is the filter order. N is the number of coefficients for the FIR filter,
which is also defined as the number of taps.

The FIR filters can be implemented using two well-known canonical forms, called
the direct and transposed forms [2, 4]. Figure 2 presents a five-tap FIR filters that are
functionally equivalent. In real-world applications, both forms suffer from important
drawbacks. The direct form is limited by the critical path corresponding to the longest
computation time among all paths that contain zero delays. The critical path is an
increasing function of the number of taps and at the same time needs to be less than
a clock period. It is defined as τcp = τm + (N − 1)τa , where τm and τa are the times
needed for one multiplication and one addition, respectively, and N is the number
of taps. The transposed form overcomes this limitation by retiming delays into the
adder chain. In this case, the critical path is reduced to a single multiply-accumulate
operation, τcp = τm + τa . However, this form suffers from significant fan-in to apply
simultaneously the input data signal to all taps of the filter [2, 4].

2.1.4 Conventional Real-Time Wavelet Transform

Figure 1 presents the frame-based forward and inverse wavelet transforms architec-
ture. When the input signal is processed frame by frame, the delays caused by the
wavelet analysis/synthesis filters are not needed to ensure perfect reconstruction of
the signal. However, when signal is processed sample by sample, these delays must

Circuits Syst Signal Process (2012) 31:987–1015 993

Fig. 3 Diagram of the proposed conventional real-time algorithm of a 3-level pyramid forward and inverse
wavelet transforms [3]. The Noble identities are defined in the bottom [15]

be taken into account to guarantee perfect reconstruction. This can be achieved by
equalizing delays over all filter paths [3, 15]. To our knowledge, these delays are
neglected in all other published architectures for FPGA-implementation of DWT.

The proposed real-time architecture for pyramid forward and inverse wavelet
transforms that ensure perfect reconstruction is presented Fig. 3. Equalization of the
filter path delays is obtained by inserting appropriate additional delays in various
paths.

For a given filter H , the group delay is defined as the negative derivative of the
phase response versus frequency:

τH (ω) = −dθ(ω)

dω
, (16)

where θ(ω) is the phase of the filter H(ejω) = |H(ejω)|ejθ(ω).
The group delay is a measure of the relative delay at different frequencies from

the input to the output in the filter. This parameter is constant for a linear phase filter.
Let τH , τG, τH̃ and τG̃ be the group delays of the filters H , G, H̃ and G̃, respec-

tively. The delay of each path is obtained by summing delays of the cascaded filters
using the Noble identities [15]:

– Path 1: τ = τH + 2τH + 4τH + 8τ1 + 4τH̃ + 2τH̃ + τH̃ = 7(τH + τH̃) + 8τ1

– Path 2: τ = τH + 2τH + 4τG + 8τ2 + 4τG̃ + 2τH̃ + τH̃

= 3(τH + τH̃) + 4(τG + τG̃) + 8τ2
– Path 3: τ = τH + 2τG + 4τ3 + 2τG̃ + τH̃ = (τH + τH̃) + 2(τG + τG̃) + 4τ3

– Path 4: τ = τG + 2τ4 + τG̃ = (τG + τG̃) + 2τ4.

They are expressed in samples. If τH + τH̃ = τG + τG̃, these delays are redefined
as:

– Path 1: τ = 7(τH + τH̃) + 8τ1

– Path 2: τ = 7(τH + τH̃) + 8τ2

994 Circuits Syst Signal Process (2012) 31:987–1015

Fig. 4 Group delays of the analysis/synthesis filters (based on Daubechies 5 wavelet). The left subfigure
presents the group delays of individual and cascaded analysis and synthesis low-pass filters, while the right
one presents those of the high-pass filters

– Path 3: τ = 3(τH + τH̃) + 4τ3
– Path 4: τ = (τH + τH̃) + 2τ4.

Equalizing Path 1 and Path 2 to their minimum common value, τ = 7(τH + τH̃),
leads to τ1 = τ2 = 0. By equalizing Path 3 and Path 4 to Path 1, one can deduce that
τ3 = (τH + τH̃) and τ4 = 3(τH + τH̃).

Figure 4 presents the group delays τH , τH̃ and τH + τH̃ on the left subfigure and
τG, τG̃ and τG + τG̃ on the right one. It can be shown that τH + τH̃ = τG + τG̃ = 9.
In this case, the overall delay is given by τ = 7(τH + τH̃) = 63. The inserted delays
τ1, τ2, τ3 and τ4 are equal to 0, 0, 9 and 27, respectively. The same delays are needed
in the polyphase equivalent architecture. Coefficients and group delays of the wavelet
filters are computed using wfilters and grpdelay functions of Matlab.

2.1.5 Pipelined Real-Time Wavelet Transform

Pipelining reduces the critical path delay by inserting delays between the computa-
tional elements (multipliers and adders) of the circuit. However, this process presents
two main drawbacks: increasing the number of latches and the output latency in the
system.

Figure 5 presents the canonical realizations of a five-tap pipelined FIR filter. The
critical path is reduced to a single multiplication operation τcp = τm. It can be seen
that the pipelining produces latency at the filter output, which is negligible for trans-
posed form (latency = 2) but can be considerable for direct form because it is an
increasing function of the number of taps (latency = N).

The proposed pipelined architecture for a 3-level forward and inverse wavelet
transforms is presented in Fig. 6. In addition to the pipelining of the wavelet-based
FIR filters, additional delays are inserted after the remaining adders in the analysis
and synthesis cells. In this fully pipelined architecture, the critical path is reduced to
a single multiplication operation.

The wavelet analysis/synthesis algorithm can be implemented in different ways,
depending on the used schema (pyramid or polyphase), the canonical form of the FIR

Circuits Syst Signal Process (2012) 31:987–1015 995

Fig. 5 Pipelined
implementation of canonical
forms presented in Fig. 2. The
inserted delays are presented by
the shaded boxes

Fig. 6 Diagram of the proposed pipelined real-time architecture of a 3-level forward and inverse wavelet
transforms. The pipelined wavelet-based FIR filters of the analysis/synthesis cells are detailed in Fig. 5

filters and the pipelining choice. Table 1 presents the abbreviations used to define the
eight possible combinations implemented in this work. The filter path delays of these
architectures are equalized by inserting appropriate delays to ensure perfect recon-
struction. For the pipelined architecture of the wavelet analysis/synthesis algorithm
that uses pyramid schema and direct-form FIR filters (AS-P-PY-DF), the path delays
are obtained as follows:

996 Circuits Syst Signal Process (2012) 31:987–1015

Table 1 Abbreviations used to define the wavelet analysis/synthesis architectures

Abbreviation Definition

AS-C-PY-DF Wavelet analysis/synthesis using conventional pyramid algorithm and direct-form FIR

AS-C-PY-TF Wavelet analysis/synthesis using conventional pyramid algorithm and transposed-form
FIR

AS-C-PO-DF Wavelet analysis/synthesis using conventional polyphase algorithm and direct-form FIR

AS-C-PO-TF Wavelet analysis/synthesis using conventional polyphase algorithm and
transposed-form FIR

AS-P-PY-DF Wavelet analysis/synthesis using pipelined pyramid algorithm and direct-form FIR

AS-P-PY-TF Wavelet analysis/synthesis using pipelined pyramid algorithm and transposed-form FIR

AS-P-PO-DF Wavelet analysis/synthesis using pipelined polyphase algorithm and direct-form FIR

AS-P-PO-TF Wavelet analysis/synthesis using pipelined polyphase algorithm and transposed-form
FIR

– Path 1: τ = (τH + N) + 2(τH + N) + 4(τH + N) + 8τ1 + 4(τH̃ + N + 1)

+ 2(τH̃ + N + 1) + (τH̃ + N + 1)

= 7(τH + τH̃ + 2N + 1) + 8τ1

– Path 2: τ = (τH + N) + 2(τH + N) + 4(τG + N) + 8τ1 + 4(τG̃ + N + 1)

+ 2(τH̃ + N + 1) + (τH̃ + N + 1)

= 3(τH + τH̃ + 2N + 1) + 4(τG + τG̃ + 2N + 1) + 8τ2
– Path 3: τ = (τH + N) + 2(τG + N) + 4τ3 + 2(τG̃ + N + 1) + (τH̃ + N + 1)

= (τH + τH̃ + 2N + 1) + 2(τG + τG̃ + 2N + 1) + 4τ3
– Path 4: τ = (τG + N) + 2τ4 + (τG̃ + N + 1)

= (τG + τG̃ + 2N + 1) + 2τ4.

If τH + τH̃ = τG + τG̃, these delays are redefined as:

– Path 1: τ = 7(τH + τH̃ + 2N + 1) + 8τ1
– Path 2: τ = 7(τH + τH̃ + 2N + 1) + 8τ2
– Path 3: τ = 3(τH + τH̃ + 2N + 1) + 4τ3
– Path 4: τ = (τH + τH̃ + 2N + 1) + 2τ4.

Equalizing Path 1 and Path 2 to their minimum common value, τ = 7(τH + τH̃ +
2N + 1), leads to τ1 = τ2 = 0. By equalizing Path 3 and Path 4 to Path 1, one can
deduce that τ3 = (τH + τH̃ + 2N + 1) and τ4 = 3(τH + τH̃ + 2N + 1).

For Daubechies 5 wavelet (db5), the analysis/synthesis filters have 10 coefficients
each (N = 10). Delays on Path 1 and Path 2 are identical and equal to the overall
delay τ = 7(9 + 2 × 10 + 1) = 210. The inserted delays are τ1 = τ2 = 0, τ3 = 30 and
τ4 = 90.

Table 2 presents the inserted delays and the output latency of the wavelet analy-
sis/synthesis architectures. As can be expected, the inserted delays τ3 and τ4 of the
pipelined architectures are increased compared to those of the conventional ones,
due to the delays added during the pipelining process. These delays are more im-
portant with the direct form than with the transposed form. Also, it can be seen that
the conventional architectures present the same output latency of 63 samples. The
output latencies of the pipelined architectures are more important than those of the

Circuits Syst Signal Process (2012) 31:987–1015 997

Table 2 Inserted delay values, expressed in samples, for eight wavelet analysis/synthesis architectures.
The output latency is evaluated for 3-level schema using Daubechies 5 wavelet, i.e., τH + τH̃ = 9 and
N = 10

Architecture τ1 τ2 τ3 τ4 τ Latency

AS-C-PY-DF 0 0 τH + τH̃ 3(τH + τH̃) 7(τH + τH̃) 63

AS-C-PY-TF 0 0 τH + τH̃ 3(τH + τH̃) 7(τH + τH̃) 63

AS-C-PO-DF 0 0 τH + τH̃ 3(τH + τH̃) 7(τH + τH̃) 63

AS-C-PO-TF 0 0 τH + τH̃ 3(τH + τH̃) 7(τH + τH̃) 63

AS-P-PY-DF 0 0 τH + τH̃ + 2N + 1 3(τH + τH̃ + 2N + 1) 7(τH + τH̃ + 2N + 1) 210

AS-P-PY-TF 0 0 τH + τH̃ + 5 3(τH + τH̃ + 5) 7(τH + τH̃ + 5) 98

AS-P-PO-DF 0 0 τH + τH̃ + 2(N + 2) + 1 3(τH + τH̃ + 2(N + 2) + 1) 7(τH + τH̃ + 2(N + 2) + 1) 238

AS-P-PO-TF 0 0 τH + τH̃ + 13 3(τH + τH̃ + 13) 7(τH + τH̃ + 13) 154

conventional one, where the largest value (238 samples) is obtained for AS-P-PO-DF
architecture.

2.2 Wavelet Shrinkage

The wavelet shrinkage is a signal denoising technique that consists to apply a thresh-
olding function to the wavelet coefficients. The main idea of this algorithm is that
the wavelet coefficients with magnitudes smaller than the preset threshold are caused
by noise and replaced by zero, and the others with amplitudes larger than the preset
threshold are caused by the original signal mainly and kept (hard-thresholding case)
or shrunk (soft-thresholding case) [20]. Then the denoised signal could be obtained
from the resulting wavelet coefficients.

2.2.1 Principle

Donoho [9] proposed an original algorithm to recover a signal x[n] by thresholding
the wavelet coefficients of the observed signal y[n],

y[n] = x[n] + b[n], n = 0, . . . ,N − 1, (17)

where N is the frame length of the observed signal, and b[n] is an additional Gaussian
white noise. If the dyadic algorithm proposed by Mallat [13] is used, N must be a
power of 2.

The wavelet-based denoising algorithm can be summarized in three steps:

• Wavelet transform of the noisy signal,
• Thresholding the resulting wavelet coefficients,
• Transformation back to obtain the cleaned signal.

Donoho and Johnstone [10] define the soft-thresholding function by

T S
λ (w) =

{0 if |w| ≤ λ,
w − λ if w > λ,
w + λ if w < −λ,

(18)

998 Circuits Syst Signal Process (2012) 31:987–1015

Fig. 7 Diagram of the proposed conventional real-time architecture of a wavelet-based denoising algo-
rithm. The conventional threshold estimator and the thresholding blocks are detailed in the bottom subfig-
ures

where λ ≥ 0 is the threshold, and w represents a wavelet coefficient to be thresholded.
They proposed a universal threshold λ for the WT:

λ = σ
√

2 log(N) (19)

with σ = MAD/0.6745, where N is the length of the analyzed signal y[n], and σ is
the noise level. MAD is the median absolute deviation estimated on the first scale:

MAD = median
(∣∣w − median(w)

∣∣). (20)

The MAD is generally approximated by median(|w|).
2.2.2 Conventional Real-Time Wavelet-Based Denoising

The proposed architecture is based on the Donoho and Johnstone algorithm described
in the previous subsection. However, this algorithm is reorganized to meet the real-
time condition in which the signal is processed sample by sample unlike frame by
frame (Fig. 7). This architecture is based on the proposed conventional real-time
wavelet analysis/synthesis diagram of (Fig. 3) and additional blocks for the threshold
estimation and the wavelet coefficients thresholding. Figure 7 also presents an imple-
mentation of the soft thresholding function (18). The universal threshold is applied to
the detail coefficients of each level.

The noise level estimation constitute the main challenge in computing the uni-
versal threshold (19). This can be done by computing the MAD (20) of the wavelet
coefficients at the first level. We recall that the median value of a set of M data is

Circuits Syst Signal Process (2012) 31:987–1015 999

Fig. 8 The left subfigure presents the parallel sorting of eight data [14]. The unsorted data values are
presented on the left register, and the sorted ones are recovered on the right register. Each pair of adjacent
data values (A and B) are sorted into high (H) and low (L) by the basic block detail in the right subfigure

obtained by: (a) sorting the set in ascending order and (b) selecting the value of the
middle datum if M is odd or finding the mean of the two middle data if M is even.

As shown in Fig. 7, the threshold estimator block is essentially composed of two
sublocks: (a) the absolute value subblock that provides the absolute value of the
wavelet coefficients at the first level and (b) the median value subblock that com-
putes the median of the absolute values of the last M wavelet coefficients at the first
level. The median value subblock uses a serial input register to keep the last M sam-
ples followed by a parallel sorter (Fig. 8) [14], which uses a basic subblock to sort
adjacent data values (A and B) into high (H) and low (L). Thus, the threshold is com-
puted by λ = MAD

√
2log(N)/0.6745, where N is the size of the used signal frame

(N = 2M due to the down-sampling by 2).
As for the wavelet analysis/synthesis architecture, the filter path delays of the

wavelet shrinkage one are computed as follows:

– Path 1: τ = 7(τH + τH̃) + 8τ1
– Path 2: τ = 3(τH + τH̃) + 4(τG + τG̃) + 8τ2
– Path 3: τ = (τH + τH̃) + 2(τG + τG̃) + 4τ3
– Path 4: τ = (τG + τG̃) + 2τ4.

These equations are similar to those obtained in Sect. 2.1.4.
If τH + τH̃ = τG + τG̃, these delays are redefined as:

– Path 1: τ = 7(τH + τH̃) + 8τ1
– Path 2: τ = 7(τH + τH̃) + 8τ2
– Path 3: τ = 3(τH + τH̃) + 4τ3
– Path 4: τ = (τH + τH̃) + 2τ4.

Equalizing Path 1 and Path 2 to their minimum common value, τ = 7(τH + τH̃),
leads to τ1 = τ2 = 0. By equalizing Path 3 and Path 4 to Path 1, one can deduce that
(τ3 = τH + τH̃) and τ4 = 3(τH + τH̃).

2.2.3 Pipelined Real-Time Wavelet-Based Denoising

The pipelined architecture is obtained from the conventional one by pipelining the
analysis/synthesis cells, the threshold estimator and the thresholding function without

1000 Circuits Syst Signal Process (2012) 31:987–1015

Fig. 9 Diagram of the proposed pipelined real-time architecture of a wavelet-based denoising algorithm.
The pipelined threshold estimator and the thresholding blocks are detailed in the bottom subfigures

altering the path delays equalization. As shown in Fig. 9, the pipelining leads to a
delay of one unit for the basic sorting cell, two units for the soft-thresholding function
and sixteen units for the threshold estimator block. The last delay is increased to the
next power of 2, i.e., 16. Due to the down-sampling of 2, a delay of 16 samples in
Path 4 corresponds to a delay of 8, 4 and 4 samples in Path 3, Path 2 and Path 1,
respectively. Inserted delays in different paths are readjusted to take into account
delays resulted from pipelining.

For the pipelined architecture of the wavelet denoising using pyramid schema and
direct-form FIR filters (D-P-PY-DF), the path delays are obtained as follows:

– Path 1: τ = 7(τH + τH̃ + 2N + 1) + 8(τ1 + 2)

– Path 2: τ = 3(τH + τH̃ + 2N + 1) + 4(τG + τG̃ + 2N + 1) + 8(τ2 + 2)

– Path 3: τ = (τH + τH̃ + 2N + 1) + 2(τG + τG̃ + 2N + 1) + 4(τ3 + 2)

– Path 4: τ = (τG + τG̃ + 2N + 1) + 2(τ4 + 2).

Circuits Syst Signal Process (2012) 31:987–1015 1001

Table 3 Abbreviations used to define the wavelet-based denoising architectures

Abbreviation Definition

D-C-PY-DF Wavelet denoising using conventional pyramid algorithm and direct-form FIR

D-C-PY-TF Wavelet denoising using conventional pyramid algorithm and transposed-form FIR

D-C-PO-DF Wavelet denoising using conventional polyphase algorithm and direct-form FIR

D-C-PO-TF Wavelet denoising using conventional polyphase algorithm and transposed-form FIR

D-P-PY-DF Wavelet denoising using pipelined pyramid algorithm and direct-form FIR

D-P-PY-TF Wavelet denoising using pipelined pyramid algorithm and transposed-form FIR

D-P-PO-DF Wavelet denoising using pipelined polyphase algorithm and direct-form FIR

D-P-PO-TF Wavelet denoising using pipelined polyphase algorithm and transposed-form FIR

These equations are obtained from those of Sect. 2.1.5 by adding the delays cor-
responding to the thresholding block at different levels.

If τH + τH̃ = τG + τG̃, these delays are redefined as:

– Path 1: τ = 7(τH + τH̃ + 2N + 1) + 8(τ1 + 2)

– Path 2: τ = 7(τH + τH̃ + 2N + 1) + 8(τ2 + 2)

– Path 3: τ = 3(τH + τH̃ + 2N + 1) + 4(τ3 + 2)

– Path 4: τ = (τH + τH̃ + 2N + 1) + 2(τ4 + 2).

Equalizing Path 1 and Path 2 to their minimum common value, τ = 7(τH + τH̃ +
2N + 1) + 8(4 + 2), leads to τ1 = τ2 = 4. By equalizing Path 3 and Path 4 to Path 1,
one can deduce that τ3 = (τH + τH̃ + 2N + 1) + 10 and τ4 = 3(τH + τH̃ + 2N +
1) + 22.

For Daubechies 5 wavelet, the filters have 10 coefficients each (N = 10). Delays
on Path 1 and Path 2 are identical and equal to the overall delay τ = 7(9 + 2 × 10 +
1)+ 48 = 258. By equalizing Path 3 and Path 4 to Path 1, one can obtain τ3 = 40 and
τ4 = 112.

As for the wavelet analysis/synthesis algorithm, the wavelet-based denoising one
can be implemented in different ways, depending on the used schema (pyramid or
polyphase), the canonical form of the FIR filters and the pipelining choice. Table 3
presents the abbreviations used to define the eight possible combinations imple-
mented in this work. The filter path delays of these architectures are equalized by
inserting appropriate delays. Table 4 presents the inserted delays and the output la-
tency of each architecture. The inserted delays τ3 and τ4 of the pipelined architectures
are increased compared to those of the conventional ones, due to the delays added
during the pipelining process. These delays are more important with the direct form
than with the transposed form. Also, it can be seen that the conventional architectures
present the same output latency of 63 samples. The output latencies of the pipelined
architectures are more important than those of the conventional one, where the largest
value of 286 samples is obtained for AS-P-PO-DF architecture.

1002 Circuits Syst Signal Process (2012) 31:987–1015

Ta
bl

e
4

In
se

rt
ed

de
la

y
va

lu
es

,e
xp

re
ss

ed
in

sa
m

pl
es

,f
or

ei
gh

tw
av

el
et

-b
as

ed
de

no
is

in
g

ar
ch

ite
ct

ur
es

.T
he

ou
tp

ut
la

te
nc

y
is

ev
al

ua
te

d
fo

r
3-

le
ve

ls
ch

em
a

us
in

g
D

au
be

ch
ie

s
5

w
av

el
et

,i
.e

.,
τ H

+
τ H̃

=
9

an
d

N
=

10

A
rc

hi
te

ct
ur

e
τ 1

τ 2
τ 3

τ 4
τ

L
at

en
cy

D
-C

-P
Y

-D
F

0
0

τ H
+

τ H̃
3(

τ H
+

τ H̃
)

7(
τ H

+
τ H̃

)
63

D
-C

-P
Y

-T
F

0
0

τ H
+

τ H̃
3(

τ H
+

τ H̃
)

7(
τ H

+
τ H̃

)
63

D
-C

-P
O

-D
F

0
0

τ H
+

τ H̃
3(

τ H
+

τ H̃
)

7(
τ H

+
τ H̃

)
63

D
-C

-P
O

-T
F

0
0

τ H
+

τ H̃
3(

τ H
+

τ H̃
)

7(
τ H

+
τ H̃

)
63

D
-P

-P
Y

-D
F

4
4

τ H
+

τ H̃
+

2N
+

1
+

10
3(

τ H
+

τ H̃
+

2N
+

1)
+

22
7(

τ H
+

τ H̃
+

2N
+

1)
+

48
25

8

D
-P

-P
Y

-T
F

4
4

τ H
+

τ H̃
+

5
+

10
3(

τ H
+

τ H̃
+

5)
+

22
7(

τ H
+

τ H̃
+

5)
+

48
14

6

D
-P

-P
O

-D
F

4
4

τ H
+

τ H̃
+

2(
N

+
2)

+
1

+
10

3(
τ H

+
τ H̃

+
2(

N
+

2)
+

1)
+

22
7(

τ H
+

τ H̃
+

2(
N

+
2)

+
1)

+
48

28
6

D
-P

-P
O

-T
F

4
4

τ H
+

τ H̃
+

13
+

10
3(

τ H
+

τ H̃
+

13
)
+

22
7(

τ H
+

τ H̃
+

13
)
+

48
20

2

Circuits Syst Signal Process (2012) 31:987–1015 1003

3 FPGA Implementation

The proposed architectures were implemented on FPGA using Xilinx System Gen-
erator (XSG) and XUP Virtex-II Pro Development System. XSG is a high-level soft-
ware tool that enables the use of MATLAB/Simulink environment to create and ver-
ify hardware designs for Xilinx FPGAs quickly and easily. It provides a library of
Simulink blocks bit and cycle accurate modeling for arithmetic and logic functions,
memories and DSP functions. It also includes a code generator that automatically
generates HDL code from the created model. Generated HDL code can be synthe-
sized and implemented in the Xilinx FPGAs. The XSG blocks are like standard
Simulink blocks except that they can operate only in discrete-time and fixed-point
format [4].

3.1 Wavelet Transform

The eight wavelet analysis/synthesis architectures defined in Table 1 are implemented
on FPGA. Figures 10 and 11 present the conventional and the pipelined wavelet anal-
ysis/synthesis architectures, respectively. Each module is identified by the label on
the block, where Ana_Cell and Syn_Cell correspond to the analysis cell and the syn-
thesis cell, respectively, and LO_D, HI_D, LO_R and HI_R correspond to H , G, H̃

and G̃, respectively. It can be noted that the inserted delays and the output latency
correspond to the values listed in Table 2.

Table 5 gives the resources required by the proposed architectures and the maxi-
mum operating frequency when the fixed-point data are represented by 2’s comple-
ment signed 18-bit number. For the conventional architectures, it can be seen that the
direct and transposed forms use exactly the same number of resources either for pyra-
mid or polyphase schemas. Compared to pyramid schema, the polyphase one reduces
the number of multiplications (see Sect. 2.1.2) but not the number of multipliers.
Thus, the maximum operating frequency of the AS-C-PO-DF and AS-C-PO-TF are
greater than those of AS-C-PY-DF and AS-C-PY-TF ones, respectively, because the
transposed-form FIR presents a smaller critical path than the direct-form FIR.

As expected, the pipelined architectures require more resources (Slices, Flip-flops
and 4-LUTs) than the conventional corresponding ones. Also, the AS-P-PY-DF and
AS-P-PO-DF require more resources than AS-P-PY-TF and AS-P-PO-TF, respec-
tively, because the pipelining of the direct form needs more delays than that of the
transposed one. For the pipelined architectures, the maximum operating frequency is
approximately constant because the critical path is reduced to a single multiplication
operation.

3.2 Wavelet Shrinkage

The eight wavelet-based denoising architectures defined in Table 3 are implemented
on FPGA. Figures 12 and 13 present the conventional and the pipelined wavelet-
based denoising architectures, respectively. These figures present also the conven-
tional and the pipelined circuits for the soft-thresholding function and the threshold
estimator. It can be noted that the inserted delays and the output latency correspond
to the values listed in Table 4.

1004 Circuits Syst Signal Process (2012) 31:987–1015

Fig. 10 Implementation of the conventional wavelet analysis/synthesis algorithms. Architectures of the
analysis/synthesis cells and the canonical forms of the wavelet-based FIR filters are also detailed

Circuits Syst Signal Process (2012) 31:987–1015 1005

Fig. 11 As in Fig. 10 but with the pipelined wavelet analysis/synthesis algorithms

1006 Circuits Syst Signal Process (2012) 31:987–1015

Ta
bl

e
5

R
es

ou
rc

e
ut

ili
za

tio
n

an
d

m
ax

im
um

op
er

at
in

g
fr

eq
ue

nc
y

fo
r

co
nv

en
tio

na
l

an
d

pi
pe

lin
ed

w
av

el
et

an
al

ys
is

/s
yn

th
es

is
ar

ch
ite

ct
ur

es
.

R
es

ou
rc

e
av

ai
la

bi
lit

y
of

X
ili

nx
V

ir
te

x-
II

Pr
o

X
C

2V
P3

0
FP

G
A

ar
e

gi
ve

n
be

tw
ee

n
br

ac
ke

ts

A
rc

hi
te

ct
ur

e
C

on
ve

nt
io

na
la

rc
hi

te
ct

ur
es

Pi
pe

lin
ed

ar
ch

ite
ct

ur
es

A
S-

C
-P

Y
-D

F
A

S-
C

-P
Y

-T
F

A
S-

C
-P

O
-D

F
A

S-
C

-P
O

-T
F

A
S-

P-
PY

-D
F

A
S-

P-
PY

-T
F

A
S-

P-
PO

-D
F

A
S-

P-
PO

-T
F

R
es

ou
rc

e
ut

ili
za

tio
n

Sl
ic

es
(1

3,
69

6)
1,

23
9

1,
23

9
1,

18
5

1,
18

5
3,

56
9

2,
78

7
3,

54
7

2,
97

5

Fl
ip

-fl
op

s
(2

7,
39

2)
2,

47
7

2,
47

7
2,

36
9

2,
36

9
6,

72
5

4,
92

5
6,

61
7

5,
28

5

4-
L

U
T

s
(2

7,
39

2)
2,

24
0

2,
24

0
2,

27
3

2,
27

3
4,

05
8

2,
18

6
3,

65
9

2,
32

7

18
-b

it
M

U
LT

(1
36

)
12

0
12

0
12

0
12

0
12

0
12

0
12

0
12

0

G
C

lo
ck

s
(1

6)
1

1
1

1
1

1
1

1

B
on

de
d

IO
B

s
(5

56
)

37
37

37
37

37
37

37
37

E
qu

iv
al

en
tg

at
e

52
5,

00
3

52
5,

00
3

52
4,

15
1

52
4,

15
1

67
5,

38
7

54
5,

76
3

64
7,

09
7

55
1,

16
3

M
ax

.O
pe

.F
re

q.
(M

H
z)

9.
75

9
25

.2
22

12
.1

68
18

.7
90

16
3.

47
0

15
8.

17
3

16
3.

47
0

16
0.

89
9

Circuits Syst Signal Process (2012) 31:987–1015 1007

Fig. 12 Implementation of the conventional wavelet-based denoising algorithms. Architectures of the
soft-thresholding function, the threshold estimator and the median value computation are also detailed

1008 Circuits Syst Signal Process (2012) 31:987–1015

Fig. 13 As in Fig. 12 but with the pipelined wavelet-based denoising algorithms

Circuits Syst Signal Process (2012) 31:987–1015 1009

Ta
bl

e
6

R
es

ou
rc

e
ut

ili
za

tio
n

an
d

m
ax

im
um

op
er

at
in

g
fr

eq
ue

nc
y

fo
r

co
nv

en
tio

na
l

an
d

pi
pe

lin
ed

fo
r

w
av

el
et

-b
as

ed
de

no
is

in
g

ar
ch

ite
ct

ur
es

.R
es

ou
rc

e
av

ai
la

bi
lit

y
of

X
ili

nx
V

ir
te

x-
II

Pr
o

X
C

2V
P3

0
FP

G
A

ar
e

gi
ve

n
be

tw
ee

n
br

ac
ke

ts

A
rc

hi
te

ct
ur

e
C

on
ve

nt
io

na
la

rc
hi

te
ct

ur
es

Pi
pe

lin
ed

ar
ch

ite
ct

ur
es

D
-C

-P
Y

-D
F

D
-C

-P
Y

-T
F

D
-C

-P
O

-D
F

D
-C

-P
O

-T
F

D
-P

-P
Y

-D
F

D
-P

-P
Y

-T
F

D
-P

-P
O

-D
F

A
S-

P-
PO

-T
F

R
es

ou
rc

e
ut

ili
za

tio
n

Sl
ic

es
(1

3,
69

6)
3,

47
3

2,
60

8
3,

39
4

2,
64

7
4,

78
7

4,
02

0
4,

76
2

4,
19

1

Fl
ip

-fl
op

s
(2

7,
39

2)
2,

68
5

2,
68

5
2,

57
7

2,
57

7
8,

13
5

6,
37

1
8,

02
7

6,
69

5

4-
L

U
T

s
(2

7,
39

2)
4,

19
0

4,
19

0
4,

18
7

4,
18

7
6,

17
8

4,
41

4
5,

74
3

4,
41

1

18
-b

it
M

U
LT

(1
36

)
12

2
12

2
12

2
12

2
12

2
12

2
12

2
12

2

G
C

lo
ck

s
(1

6)
1

1
1

1
1

1
1

1

B
on

de
d

IO
B

s
(5

56
)

37
37

37
37

37
37

37
37

E
qu

iv
al

en
tg

at
e

55
0,

57
3

55
0,

57
3

54
9,

49
3

54
9,

49
3

71
7,

74
8

59
0,

71
0

68
9,

08
2

59
3,

14
8

M
ax

.O
pe

.F
re

q.
(M

H
z)

9.
24

9
14

.6
53

11
.4

78
13

.8
45

16
0.

36
3

15
8.

17
3

16
0.

36
3

16
0.

36
3

1010 Circuits Syst Signal Process (2012) 31:987–1015

Fig. 14 Hardware-in-the-loop
co-simulation of pipelined
wavelet-based denoising
algorithm

Table 6 gives the resources required by the proposed architectures when the fixed-
point data are represented by 2’s complement signed 18-bit number. For the con-
ventional architectures, it can be seen that the direct and transposed forms use ap-
proximately the same number of resources either for pyramid or polyphase schemas.
As for the conventional analysis/synthesis architectures, the maximum operating fre-
quencies of the D-C-PO-DF and D-C-PO-TF are greater than those of D-C-PY-DF
and D-C-PY-TF ones, respectively. This can also be explained by the smallest critical
path of the transposed-form FIR.

As previously, the pipelined architectures require more resources (Slices, Flip-
flops and 4-LUTs) than the conventional corresponding ones. Also, the D-P-PY-DF
and D-P-PO-DF require more resources than D-P-PY-TF and D-P-PO-TF, respec-
tively, because the pipelining of the direct form needs more delays than that of the
transposed one. This table shows that the maximum operating frequency is approxi-
mately constant for the pipelined architectures because the critical path is reduced to
a single multiplication operation.

Tables 5 and 6 show that the hardware implementation of the proposed architec-
tures is mainly limited by the number of multipliers available on the used FPGA. In
fact, the universal thresholding step consumes only two additional multipliers (122
instead of 120). Therefore, parallel implementation of advanced wavelet-based de-
noising algorithm that needs more multipliers will require large FPGAs.

After successful simulation, the hardware co-simulation compilation automati-
cally creates bitstream file and associates it with a JTAG co-simulation block (shaded
block in Fig. 14). The hardware-in-the-loop co-simulation enables incorporating the
design running in an FPGA directly into a Simulink simulation. When the design is
simulated, the compiled portion (JTAG co-simulation block) is actually running on
the hardware, and data is transferred between computer and FPGA board [4].

In fact, the hardware-in-the-loop co-simulation can be accomplished only for the
pipelined architectures because the maximum of their operating frequencies (Tables 5
and 6) is greater than the system clock frequency (100 MHz) of the used board.
Figure 14 shows the diagram of the hardware-in-the-loop co-simulation that enables
running the compiled model (wavelet-based denoising) on the FPGA.

Circuits Syst Signal Process (2012) 31:987–1015 1011

Fig. 15 Results of simulation obtained by a conventional pyramid analysis/synthesis architecture with-
out (top) and with (bottom) path delays equalization for various fixed-point formats. For example, the
fixed-point format FIX18.14 is a 2’s complement signed 18-bit number having 14 fractional bits. For each
subfigure, the original signal x[n] is given on top, followed by the reconstructed signal with equalization
x̂[n] and the error signal e[n] that is defined by x(n − τ) − x̂[n]

4 Results and Discussion

Artificial signals are used to evaluate the proposed architectures as follows. Firstly,
the wavelet analysis/synthesis architectures are evaluated in term of the reconstruc-
tion error. Secondly, the wavelet-based denoising architecture are evaluated in term
of similarity between the original signal and the cleaned one.

4.1 Wavelet Transform

Figure 15 presents the results obtained by simulation using the conventional pyra-
mid architecture (AS-C-PY-DF) for various fixed-point formats. Characterized by
filter delays equalization, this architecture is compared with similar one but without
filter delays equalization. It can be shown that architecture with equalization guaran-
tees a perfect reconstitution, |e[n]| < 1.5 × 10−12, when quantization uses more than
54 bits. Near perfect reconstruction, |e[n]| < 2 × 10−3, is obtained using only 18
bits. However, architecture without equalization, presents an important error regard-
less of the number of bits. This can be explained by the wavelet coefficient desyn-
chronization through analysis and synthesis paths. It can be noted that the delay of

1012 Circuits Syst Signal Process (2012) 31:987–1015

Fig. 16 As in Fig. 15 but for results of hardware-in-the-loop co-simulation obtained with the pipelined
pyramid architectures

63 samples between the original signal x[n] and the reconstructed one x̂[n] corre-
sponds to the output latency given in Table 2. The reconstruction error is defined
by e[n] = x[n − τ] − x̂[n]. Reconstruction errors obtained by the other three con-
ventional wavelet analysis/synthesis architectures (AS-C-PY-TF, AS-C-PO-DF and
AS-C-PO-TF) are similar to that obtained by AS-C-PY-DF (Fig. 15). The four con-
ventional analysis/synthesis wavelet transform architectures (AS-C-PY-DF, AS-C-
PY-TF, AS-C-PO-DF and AS-C-PO-TF) present also the same output delay of 63
samples, according to Table 2.

On the other hand, Fig. 16 presents the results obtained by hardware co-simulation
using pipelined pyramid architectures (AS-P-PY-DF and AS-P-PYO-DF). These ar-
chitectures give the same construction errors as those obtained by the conventional
ones, but they present higher output latencies. In fact, the pipelining approach in-
serts delays in various paths (to reduce the critical path and consequently increase the
operating frequency), but it preserves the wavelet coefficient synchronization. The
AS-P-PY-DF presents higher output delay (210 samples) than that obtained with AS-
P-PY-TF (98 samples). The output delay differences can be explained by the fact
that AS-P-PY-DF uses pipelined direct form FIR filters that present larger output
delay than pipelined transposed form FIR filters used in AS-P-PY-TF (see Fig. 5 for
more details). The two other pipelined architectures (AS-P-PY-DF and AS-P-PO-DF)
present the same reconstruction errors as those obtained by AS-P-PO-DF and AS-P-

Circuits Syst Signal Process (2012) 31:987–1015 1013

Fig. 17 Results of simulation obtained with the conventional wavelet-based denoising architecture using
two synthetic signals. The original signal x[n] is given on top, followed by the noised version y[n] and the
filtered output x̂[n] for various conventional denoising architectures

PO-DF with error latencies of 238 and 154 samples, respectively. The polyphase
pipelined architectures present slightly higher output latencies than the pyramid ones
because they have longest critical path (additional adders as can be seen in Fig. 1).

Finally, the proposed equalized path architectures presents negligible reconstruc-
tion error compared to the unequalized ones. However, they present output laten-
cies that are increased by pipelining. The lowest output latency (98 samples) of the
pipelined architectures is obtained with AS-P-PY-TF, which is based on the pyramid
schema and the transposed-form FIR filters.

4.2 Wavelet Shrinkage

Figure 17 shows the denoising results obtained by simulation using the conventional
architectures (D-C-PY-DF, D-C-PY-TF, D-C-PO-DF and D-C-PO-TF) and two arti-
ficial signals. The noise is efficiently removed without altering the original signals.
However, the filtered outputs (̂x[n]) present delays, which are introduced by the fil-
ter delays equalization. The four architectures are characterized by the same output
delay of 63 samples, which corresponds to the output latencies listed in Table 4.

On the other hand, Fig. 18 presents the results obtained by hardware co-simulation
using pipelined architectures (D-P-PY-DF, D-C-PY-TF, D-P-PO-DF and D-P-PO-

1014 Circuits Syst Signal Process (2012) 31:987–1015

Fig. 18 As in Fig. 17 but with results of hardware-in-the-loop co-simulation obtained the pipelined de-
noising architectures

TF). They show the same filtering performances as those obtained with the conven-
tional ones, but they present higher output latencies. As previously, the pipelining
approach inserts delays in various filter paths, but it preserves the wavelet coefficient
synchronization.

Finally, the pipelined wavelet-based denoising architectures present the same per-
formances as those obtained by the conventional ones, except the output latencies
that are increased by pipelining. For the pipelined architectures, the lowest output
latency (146 samples) is obtained by the D-P-PY-TF architecture, which is based on
the pyramid schema and the transposed-form FIR filters.

5 Conclusion

A real-time wavelet transforms and their applications to signal denoising are imple-
mented on FPGA. It is shown that in addition to the wavelet orthogonality, the filter
path delays must be equalized in the forward/inverse wavelet transforms to ensure
perfect reconstruction. Near-perfect reconstruction is obtained using a fixed-point
data of only 18 bits. The universal threshold estimated on few samples allows one
to remove moderate noise efficiently and in real-time without altering the original
signal.

Circuits Syst Signal Process (2012) 31:987–1015 1015

In the future, more advanced methods for estimating the noise level will be imple-
mented and tested on real signals as electrocardiogram (ECG) and speech.

Acknowledgement The authors thank Professor Jean Rouat of Université de Sherbrooke for proof read-
ing.

References

1. K. Andra, C. Chakrabarti, T. Acharya, A VLSI architecture for lifting-based forward and inverse
wavelet transform. IEEE Trans. Signal Process. 50(4), 966–977 (2002)

2. K. Azadet, C.J. Nicole, Low-power equalizer architectures for high-speed modems. IEEE Commun.
Mag. 36(10), 118–126 (1998)

3. M. Bahoura, H. Ezzaidi, Real-time implementation of discrete wavelet transform on FPGA, in IEEE
10th International Conference on Signal Processing (ICSP), Oct. (2010), pp. 191–194

4. M. Bahoura, H. Ezzaidi, FPGA—implementation of parallel and sequential architectures for adaptive
noise cancelation. Circ. Syst. Signal Process. 1–28. doi:10.1007/s00034-011-9310-0

5. M. Bahoura, J. Rouat, Wavelet speech enhancement using the teager energy operator. IEEE Signal
Process. Lett. 8, 10–12 (2001)

6. M. Bahoura, J. Rouat, Wavelet speech enhancement based on time-scale adaptation. Speech Commun.
48(12), 1620–1637 (2006)

7. S.G. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for image denoising and compression.
IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

8. J. Chilo, T. Lindblad, Hardware implementation of 1D wavelet transform on an FPGA for infrasound
signal classification. IEEE Trans. Nucl. Sci. 55(1), 9–13 (2008)

9. D.L. Donoho, Nonlinear wavelet methods for recovering signals, images, and densities from indirect
and noisy data. Proc. Symp. Appl. Math. 47, 173–205 (1993)

10. D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)
11. A. Grzeszczak, M.K. Mandal, S. Panchanathan, VLSI implementation of discrete wavelet transform.

IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 4(4), 421–433 (1996)
12. K.A. Kotteri, S. Barua, A.E. Bell, J.E. Carletta, A comparison of hardware implementations of the

biorthogonal 9/7 DWT: convolution versus lifting. IEEE Trans. Circuits Syst. II, Express Briefs 52(5),
256–260 (2005)

13. S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans.
Pattern Anal. Mach. Intell. 11, 674–693 (1989)

14. J. Martinez, R. Cumplido, C. Feregrino, An FPGA-based parallel sorting architecture for the Burrows
Wheeler transform, in Proceedings of the 2005 International Conference on Reconfigurable Comput-
ing and FPGAs, (2005) 7 pp.

15. Matlab, Signal Processing Blockset 7 User’s Guide (The MathWorks, Inc., Natick, 2010)
16. K.G. Oweiss, A. Mason, Y. Suhail, A.M. Kamboh, K.E. Thomson, A scalable wavelet transform

VLSI architecture for real-time signal processing in high-density intra-cortical implants. IEEE Trans.
Circuits Syst. 54(6), 1266–1278 (2007)

17. K.K. Parhi, T. Nishitani, VLSI architectures for discrete wavelet transforms. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 1(2), 191–202 (1993)

18. S. Poornachandra, Wavelet-based denoising using subband dependent threshold for ECG signals.
Digit. Signal Process. 18(1), 49–55 (2008)

19. R. Quian Quiroga, Obtaining single stimulus evoked potentials with wavelet denoising. Physica D:
Nonlinear Phenom. 145(3–4), 278–292 (2000)

20. L. Su, G. Zhao, De-Noising of ECG signal using translation-invariant wavelet De-Noising method
with improved thresholding, in 27th Annual International Conference of the IEEE EMBS, Sept.
(2005), pp. 5946–5949

21. P.E. Tikkanen, Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal. Biol.
Cybern. 80(4), 259–267 (1999)

22. A. Vera, U. Meyer-Baese, M. Pattichis, An FPGA based rapid prototyping platform for wavelet co-
processors, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 6576,
pp. 657615.1–657615.10 (2007)

23. C. Wang, W.S. Gan, Efficient VLSI architecture for lifting-based discrete wavelet packet transform.
IEEE Trans. Circuits Syst. II 54(5), 422–426 (2007)

http://dx.doi.org/10.1007/s00034-011-9310-0

	FPGA-Implementation of Discrete Wavelet Transform with Application to Signal Denoising
	Abstract
	Introduction
	Method
	Wavelet Transform
	Continuous Wavelet Transform
	Discrete Wavelet Transform
	Canonical Forms of the Wavelet-Based FIR Filters
	Conventional Real-Time Wavelet Transform
	Pipelined Real-Time Wavelet Transform

	Wavelet Shrinkage
	Principle
	Conventional Real-Time Wavelet-Based Denoising
	Pipelined Real-Time Wavelet-Based Denoising

	FPGA Implementation
	Wavelet Transform
	Wavelet Shrinkage

	Results and Discussion
	Wavelet Transform
	Wavelet Shrinkage

	Conclusion
	Acknowledgement
	References

