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Abstract In this paper, the problems of fault detection and estimation for nonlinear
dynamic systems are considered by using fault detection observer and adaptive fault
diagnosis observer. Based on Lyapunov stability theory and linear matrix inequality
(LMI) techniques, a new sufficient condition in terms of LMIs for the proposed prob-
lem is derived. At the same time, we get the adaptive fault estimation algorithm. The
LMI condition can be easily solved by MATLAB LMI toolbox. Finally, a flexible
joint robotic example is given to illustrate the efficiency of the proposed approach.

Keywords Fault estimation · Fault detection · Fault diagnosis observer · Nonlinear
dynamic systems · Linear matrix inequality

1 Introduction

The increasing demand for high performance and reliability has led to more challeng-
ing operating conditions for many complex industry systems. Unexpected change of
external circumstance, components’ normal wear or breakdown may lead to critical
or even catastrophic failure of the system. Therefore, to improve system’s reliability
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and safety, fault diagnosis and fault-tolerant control have received a great deal of at-
tention in recent years. And a lot of fruitful results can be found in several excellent
books [2, 3] and the references therein.

Generally speaking, fault detection and estimation is the first step of the fault di-
agnosis. Timely detection can avoid the development of more serious faults [4, 6, 9,
10, 17, 22]. In [17], the problem of robust fault detection for discrete-time switched
systems with state delays was investigated. And a robust fault detection filter that
guaranteed both sensitivity to faults and robustness to disturbances was designed.
Using a generalized form of observer-based fault detection filter (FDF) as a residual
generator, Ding and Zhong [6] dealt with the problem of robust fault detection for
Markovian jump linear systems with polytopic uncertainties, and presented an adap-
tive sensor fault detection and isolation approach in linear multi-input multi-output
systems with unknown system parameters. For nonlinear time-delay systems with un-
known inputs, the robust fault detection filter (RFDF) design problems were studied
in [1]. On the other hand, fault-tolerant control (FTC) has been used to improve effi-
ciency during the past two decades [5, 8, 15, 18, 19]. Fault estimation can provide the
magnitude of the fault, then using the obtained fault information one can design an
additive controller to compensate for the fault. Therefore, fault estimation has been
studied by many scholars, and the methods they adopted mainly include diagnosis ob-
server, parameter estimation, adaptive fault diagnosis observer, neural network, and
so on [7, 11–14, 16, 20, 21]. Zhang and Jiang [20] studied the problem of fault es-
timation of time-varying delay systems using adaptive fault diagnosis observer. It is
well known that most real systems have very strong nonlinearity, so it is significantly
practical to study nonlinear systems. Bin et al. [12] investigated process fault accom-
modation in a class of nonlinear continuous-time systems. There, the derivative of
output was not in the adaptive fault estimator and had some conservativeness. Us-
ing radial basis function (RBF) neural network, Huang and Kok [11] investigated the
problem of fault detection and diagnosis in a class of nonlinear systems with model-
ing uncertainties. To our knowledge, there are only few conclusions of fault detection
and estimation for practical nonlinear systems using adaptive fault diagnose observer.

Motivated by these considerations, the authors of this paper discuss the problems
of fault detection and estimation for nonlinear dynamic systems using fault detection
observer and adaptive fault diagnosis observer. Based on Lyapunov stability theory
combined with linear matrix inequality (LMI) techniques, we get the adaptive fault
estimation algorithm. And a new sufficient conditions in terms of LMI, which guaran-
tee the error system stability, are derived. The LMI condition can be easily solved by
MATLAB LMI toolbox. Finally, a flexible joint robotic example is given to illustrate
the efficiency of the proposed approach.

2 Problem Formulation

Consider the following nonlinear continuous-time system:{
ẋ(t) = Ax(t) + g(t, x(t)) + Bu(t) + Ef (t)

y(t) = Cx(t)
(1)
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where x(t) ∈ �n is the state vector, u(t) ∈ �m is the input vector and y(t) ∈ �q

is the output vector, f (t) ∈ �r represent the actuator fault; A,B,C,E are known
constant real matrices of appropriate dimensions; column rank and the pair (A,C)

are observable; g(t, x(t)) is a continuous nonlinear vector function, assumed to be
Lipschitz, with a Lipschitz constant lg , i.e., ‖g(t, x2(t)) − g(t, x1(t))‖ ≤ lg‖x2(t) −
x1(t)‖. It is assumed that the derivative of f (t) with respect to time is norm-bounded,
i.e. ‖ḟ (t)‖ ≤ f1, where f1 ≥ 0.

Remark 1 It is known that, in the conventional method, the fault f (t) was often seen
as a constant one, which has considerable conservativeness. In our paper, we consider
time-varying fault rather than the constant fault: ḟ (t) �= 0.

3 Adaptive Diagnostic Observer Design

The following observer is proposed to detect the actuator fault occurred in dynamics:{ ˙̂x(t) = Ax̂(t) + g(t, x̂(t)) + Bu(t) − L(ŷ(t) − y(t))

ŷ(t) = Cx̂(t)
(2)

where x̂(t) ∈ �n is the observer state vector, ŷ(t) ∈ �q is the observer output vector,
L ∈ �n×q is the observer gain matrix, which will be determined later. As the assump-
tion that (A,C) is observable, for gain matrix L, there exists positive definite matrix
P such that the following linear matrix inequality hods:

(A − LC)T P + P(A − LC) < 0. (3)

Let x̃(t) = x̂(t) − x(t), ỹ(t) = ŷ(t) − y(t), then the error dynamic is described by{ ˙̃x(t) = (A − LC)x̃(t) + G(t, x̂(t), x(t)) − Ef (t)

ỹ(t) = Cx̃(t)
(4)

where G(t, x̂(t), x(t) = g(t, x̂(t)) − g(t, x(t)).
If no fault occurs (i.e. f (t) = 0), then from (4) it can be seen that limt→∞ ỹ(t) = 0.

However, if there is fault f (t) and limt→∞ f (t) �= 0, then limt→∞ ỹ(t) �= 0. There-
fore the fault detection can be carried out as{

limt→∞ ỹ(t) = 0, no fault occurs
limt→∞ ỹ(t) �= 0, fault has occurred

(5)

and the observer given by (2) is referred to as the fault detection observer for the
system described by (1).

To diagnose the fault after the alarm (5) is generated, consider the following fault
diagnostic observer:{ ˙̂x(t) = Ax̂(t) + g(t, x̂(t)) + Bu(t) + Ef̂ (t) − L(ŷ(t) − y(t))

ŷ(t) = Cx̂(t)
(6)
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where f̂ (t) is the estimation of the actuator fault f (t). Note that if f̃ (t) =
f̂ (t) − f (t), then the error system is{ ˙̃x(t) = (A − LC)x̃(t) + G(t, x̂(t), x(t)) + Ef̃ (t)

ỹ(t) = Cx̃(t).
(7)

Now, based on the above adaptive fault estimator, the following theorem will give
the fault estimation algorithm and the conditions that guarantee the stability of error
system (7).

Theorem 1 If there exist symmetric positive definite matrices P ∈ �n×n, M ∈ �r×r ,
and real matrices Y ∈ �n×q , F ∈ �r×q such that the following LMIs hold:

ET P = FC (8)

Π =
⎡
⎣Π11 Π12 P

∗ Π22 −ET P

∗ ∗ −εI

⎤
⎦ < 0, (9)

where

Π11 = PA + AT P − YC − CT YT + εl2
g,

Π12 = −AT PE + CT YT E,

Π22 = −2ET PE + M,

then the adaptive fault estimation algorithm

˙̂
f (t) = −Γ F

( ˙̃y(t) + ỹ(t)
)

(10)

can realize x̃(t) and f̃ (t) uniformly ultimately bounded and the matrix Γ ∈ �r×r is
the learning rate with ∗ denoting the symmetric elements in a symmetric matrix.

Proof Choose a positive definite Lyapunov–Krasovskii functional as follows:

V = x̃T (t)P x̃(t) + f̃ T (t)Γ −1f̃ (t).

Taking the time derivative on V (t) along the trajectories of system (6), we get

V̇ (t) = x̃T (t)
[
P(A − LC) + (A − LC)T P

]
x̃(t) + 2x̃T (t)PG

(
t, x̂(t), x(t)

)
− 2f̃ T (t)ET P (A − LC)x̃(t) − 2f̃ T (t)ET PG

(
t, x̂(t), x(t)

)
− 2f̃ T (t)ET PEf̃ (t) − 2f̃ T (t)Γ −1ḟ (t).

For a symmetric positive definite matrix M , it is easy to show that

−2f̃ T (t)Γ −1ḟ (t) ≤ f̃ T (t)Mf̃ (t) + ḟ T (t)Γ −1M−1Γ −1ḟ (t)

≤ f̃ T (t)Mf̃ (t) + f 2
1 λmax

(
Γ −1M−1Γ −1).
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As the nonlinear term g(t, x(t)) satisfies the Lipschitz condition, for a scalar ε > 0
we have

εl2
gx̃

T (t)x̃(t) − εGT
(
t, x̂(t), x(t)

)
G

(
t, x̂(t), x(t)

) ≥ 0.

Then we can further obtain that

V̇ (t) = x̃T (t)
[
P(A − LC) + (A − LC)T P

]
x̃(t) + 2x̃T (t)PG

(
t, x̂(t), x(t)

)
− 2f̃ T (t)ET P (A − LC)x̃(t) − 2f̃ T (t)ET PG

(
t, x̂(t), x(t)

)
− 2f̃ T (t)ET PEf̃ (t) + f̃ T (t)Mf̃ (t) + f 2

1 λmax
(
Γ −1M−1Γ −1)

+ εl2
gx̃T (t)x̃(t) − εGT

(
t, x̂(t), x(t)

)
G

(
t, x̂(t), x(t)

)
= ξT (t)Πξ(t) + δ,

where

δ = f 2
1 λmax

(
Γ −1M−1Γ −1).

So, if (9) holds, V̇ (t) < −ε‖ξ(t)‖2 + δ, where ε is the minimum eigenvalue of −Π .
It follows that V (t) < 0 for ε‖ξ(t)‖2 > δ, which means that the ξ(t) converges to a
set according to Lyapunov stability theory. Therefore, estimation errors of the fault
and the state are uniformly bounded. �

Remark 2 It is well known that most real systems have very strong nonlinearity,
therefore, conclusions obtained in our paper are more general than in [20]. We will
consider the fault estimation and accommodation for nonlinear system with time-
varying delay later.

Remark 3 Compared with [12], the fault estimation algorithm in our paper contains
the derivative of output error. It can make the estimation more accurate.

Remark 4 Here, we discuss the method of how to solve the conditions in Theorem 1.
Using LMI toolbox, it is easy to solve the inequality (9), but for (8) there are some
difficulties. Practically, it is difficult to solve (8) and (9) simultaneously, which is not
stated in [20]. In our paper, equation constraint (8) in Theorem 1 can be transformed
into solving the optimization problem: Minimize β such that the following linear
matrix inequality holds:[

βI ET P − FC

PE − CT FT βI

]
> 0. (11)

If fault f (t) is a constant, i.e. ḟ (t) = 0, then we have ˙̃
f (t) = ˙̂

f (t). From this
point, we can get the following corollary.

Corollary 1 If there exist symmetric positive definite matrices P ∈ �n×n, and real
matrices Y ∈ �n×q , F ∈ �r×q such that the following LMIs hold:

ET P = FC (12)
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Π =
⎡
⎣Π11 Π12 P

∗ −2ET PE −ET P

∗ ∗ −εI

⎤
⎦ < 0, (13)

where

Π11 = PA + AT P − YC − CT YT + εl2
g,

Π12 = −AT PE + CT YT E,

then the adaptive fault estimation algorithm

˙̂
f (t) = −Γ F

( ˙̃y(t) + ỹ(t)
)

(14)

can realize x̃(t) and f̃ (t) uniformly ultimately bounded and the matrix Γ ∈ �r×r is
the learning rate with ∗ denoting the symmetric elements in a symmetric matrix.

4 Simulation Results

Consider a one-link manipulator, whose revolution joint is actuated by a dc motor.
The joint elasticity is modeled by a linear torsional spring [12]. The states are the
angular positions and velocities of the motor and of the link xT = (x1, x2, x3, x4) =
(θm,ωm, θ1,ω1). The state-pace model is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ̇m = ωm

ω̇m = k
Jm

(θ1 − θm) − b
Jm

ωm + Kτ

Jm
u

θ̇m = ω1

ω̇1 = k
J1

(θ1 − θm) − mgh
J1

sin(θ1)

(15)

with Jm and J1 the inertia of the motor and the link. The system dynamics is nonlinear
of the form (1). The numerical values of the parameters given in [12] are

A =

⎡
⎢⎢⎣

0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 10
1.95 0 −1.95 0

⎤
⎥⎥⎦ , g

(
t, x(t)

) =

⎡
⎢⎢⎣

0
0
0

−0.333 sinx3

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

0
21.6

0
0

⎤
⎥⎥⎦ , E =

⎡
⎢⎢⎣

0
12.5

0
0

⎤
⎥⎥⎦ , C =

[
1 0 0 0
0 1 0 0

]
.

By solving (8) and (9), one obtains that

P =

⎡
⎢⎢⎣

26.4820 −0.8851 4.8286 −15.3387
−0.8851 0.0577 −0.2463 1.1474
4.8286 −0.2463 3.1286 −4.0254

−15.3387 1.1474 −4.0254 38.0104

⎤
⎥⎥⎦ ,
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Fig. 1 The fault and its estimation

Y =

⎡
⎢⎢⎣

131.9468 78.7166
−2.0634 −0.8728
−5.4386 15.8781
93.9841 −51.1876

⎤
⎥⎥⎦ , F = [−11.0643 0.7215],

L =

⎡
⎢⎢⎣

7.4263 5.2611
−153.3504 149.9675
−14.2173 4.5578

8.5929 −3.2680

⎤
⎥⎥⎦ .

Consider the following fault:

f (t) =
{

0, t < 6 s
0.05 sin(t − 6), t ≥ 6 s.

By taking Γ = 25 and the sampling period T = 0.01 s, the simulation result can
be obtained as follows with the help of the Matlab Simulink. Figure 1 shows that
the proposed fault estimation observer and algorithm have a good performance to
estimate the fault f (t). It follows from Figs. 2–4 that the error states, system states
and observer states respective responses x̃(t), x(t) and x̂(t) are obviously stable.
From Figs. 3 and 4, the system (1) can be reflected by the designed observer very
well.

Remark 5 Compared Fig. 1 in [12] with that of our paper we can find that the method
proposed in our paper has better performance and less conservativeness. By using the
proposed algorithm, we can estimate the fault more accurately.
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Fig. 2 The states of error system

Fig. 3 The system states

5 Conclusions

This paper mainly discusses the fault detection and estimation for nonlinear dynamic
systems. By constructing fault detection observer and fault estimation observer, the
fault information is obtained. Based on the Lyapunov theorem, we give the adaptive
fault estimation algorithm and a less conservative criteria, which guarantee the error
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Fig. 4 The observer states

system stability. Consequently, a flexible joint robotic example is given to illustrate
the efficiency of the proposed approach. Since most of industrial systems are uncer-
tain and nonlinear, extension of the proposed method to robust fault diagnosis for
uncertain nonlinear systems is another interesting issue.
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